- 相關推薦
第三冊平行線的特征
教學目標]:
1、經(jīng)歷觀察、操作、推理、交流等活動,進一步發(fā)展空間觀念、推理能力和有條理表達的能力。
2、經(jīng)歷探索平行線特征的過程,掌握平行線的特征,并能解決一些問題。
[教材分析]:
教材設置了一個通過測量探索平行線特征的活動,在活動中,鼓勵學生充分交流,運用多種方法進行探索,盡可能地發(fā)現(xiàn)有關事實,并能應用平行線的性質解決一些問題,運用自己的語言說明理由,使學生的推理能力和語言表達能力得到提高。
[教學重點]
平行線的特征的探索
[教學難點]
運用平行線的特征進行有條理的分析、表達
[設計理念]
為學生提供充足的探索與交流的時間和空間,重視學生在實際操作以及在操作過程中的思考,使學生的空間觀念、推理能力得到培養(yǎng)。
[教學過程]
一、鞏固舊知,問題引入。
鞏固平行線的判定方法,并引導學生分析平行線的判定是由一些角的關系得出平行的結論
在學生分析的基礎上,提出若交換判定中的條件與結論,能否由“兩直線平行”得出“同位角相等”等一些角的關系,從而引入課題。
二、實驗驗證,探索特征。
1、教室的窗戶的橫格是平行的,請看老師用三角尺去檢驗一對同位角,看看結果怎樣?(教師用三角尺在窗戶上演示,學生觀察并思考)
2、學生實驗(發(fā)印好平行線的紙單)
(1)已知,a//b,任意畫一條直線c與平行線a、b相交。
(2)任選一對同位角,用適當?shù)姆椒▽嶒,看看這一對同位角有什么關系
3、實驗結論:
兩條平行線被第三條直線所截,同位角相等。
簡記為“兩直線平行,同位角相等”
識記該性質,并討論在這個特征中,已知的是什么,結論是什么?它與前面學過的“同位角相等,兩直線平行”有什么不同?
4、問題討論:
我們知道兩條平行線被第三條直線所截,不但形成有同位角,還有內錯角、同旁內角。我們已經(jīng)知道“兩條平行線被第三條直線所截,同位角相等”。那么請同學們想一想:兩條平行線被第三條直線所截,內錯角、同旁內角有什么關系呢
(小組討論,給予充足的時間交流,可引導學生
與同位角進行比較,從而得出結論,關注學生在
此能否積極地、有條理地思考)
結論: “兩直線平行,內錯角相等”
“兩直線平行,同旁內角互補”
(識記這兩個性質,并思考已知什么條件,得出什么結論,與“內錯角相等,兩直線平行”“同旁內角互補,兩直線平行”有什么不同。)
5、歸納平行線的三個性質及三個判定
三個性質:
三個判定:
三、例題學習,實踐運用。
(一)找找看:
如圖所示,AB∥CD,AC∥BD,分別找出與∠1相等或互補的角。
(學生可通過討論交流找到所有的答案,
并標注在圖中)
(二)做一做:
如圖,一束平行光線AB與DE射向一個水平鏡面后被反射,此時∠1=∠2,∠3=∠4,
(1)∠1、∠3的大小有什么關系?∠2與∠4呢?
(2)反射光線BC與EF也平行嗎?
先由學生回答,用自己的語言說理,然后再出示以下說理過程,由學生說明每一步的理由。
(1) AB∥CD→∠1=∠3→∠2=∠4
(2) ∠2=∠4→BC∥EF
(三)考考你:
如圖是舉世聞名的三星堆考古中發(fā)掘出的一個梯形殘缺玉片,工作人員從玉片上已經(jīng)量得∠A=115°,∠D=100°。已知梯形的兩底AD//BC,請你求出另外兩個角的度數(shù)。
(學生嘗試用自己的方式書寫說理過程)
已知:如圖,∠ADE=60°,∠B=60°,∠C=80°。
問∠ AED等于多少度?為什么
∵ ∠ADE=∠B=60° (已知)
∴ DE//BC( )
∴ ∠AED=∠C=80° ( )
(通過填空題,檢驗學生對平行線的判定與性質的區(qū)分)
四、課堂小結:
1、說說平行線的三個性質是什么?
2、平行線的性質與平行線的判定的區(qū)別:
3、證平行,用判定;知平行,用性質。
五、課后作業(yè):
教材62頁1、2、3題平行線的
【第三冊平行線的特征】相關文章:
平行線作文04-26
平行線的交點作文10-28
畫平行線的教學反思08-18
平行線的性質教學反思04-04
初中數(shù)學平行線教案12-30
平行線的判定教學反思03-20
《平行線的性質》數(shù)學教案02-15
相交線與平行線教學反思03-09
初中數(shù)學平行線的性質教案12-29
平行線教學反思(通用12篇)02-16