- 相關(guān)推薦
角的平分線 —— 初中數(shù)學(xué)第四冊教案
3.9角的平分線
教學(xué)目標(biāo)
1.掌握角的平分線的性質(zhì)定理和它的逆定理的內(nèi)容、證明及應(yīng)用.
2.理解原命題和逆命題的概念和關(guān)系,會找一個簡單命題的逆命題.
3.滲透角平分線是滿足特定條件的點(diǎn)的集合的思想。
教學(xué)重點(diǎn)和難點(diǎn)
角平分線的性質(zhì)定理和逆定理的應(yīng)用是重點(diǎn).
性質(zhì)定理和判定定理的區(qū)別和靈活運(yùn)用是難點(diǎn).
教學(xué)過程設(shè)計(jì)
一、角平分錢的性質(zhì)定理與判定定理的探求與證明
1,復(fù)習(xí)引入課題.
(1)提問關(guān)于直角三角形全等的判定定理.
(2)讓學(xué)生用量角器畫出圖3-86中的∠AOB的角
平分線OC.
2.畫圖探索角平分線的性質(zhì)并證明之.
(1)在圖3-86中,讓學(xué)生在角平分線OC上任取一
點(diǎn)P,并分別作出表示P點(diǎn)到∠AOB兩邊的距離的線段
PD,PE.
(2)這兩個距離的大小之間有什么關(guān)系?為什么?學(xué)生度量后得出猜想,并用直角三角形全等的知識進(jìn)行證明,得出定理.
3.逆向思維探求角平分線的判定定理.
(1)讓學(xué)生將定理1的條件、結(jié)論進(jìn)行交換,并思考所得命題是否成立?如何證明?請一位同學(xué)敘述證明過程,得出定理2——角平分線的判定定理.
(2)教師隨后強(qiáng)調(diào)定理1與定理2的區(qū)別:已知角平分線用性質(zhì)為定理1,由所給條件判定出角平分線是定理2.
(3)教師指出:直接使用兩個定理不用再證全等,可簡化解題過程.
4.理解角平分線是到角的兩邊距離都相等的點(diǎn)的集合.
(1)角平分線上任意一點(diǎn)(運(yùn)動顯示)到角的兩邊的距離都相等(滲透集合的純粹性).
(2)在角的內(nèi)部,到角的兩邊距離相等的點(diǎn)(運(yùn)動顯示)都在這個角的平分線上(而不在其它位置,滲透集合的完備性).
由此得出結(jié)論:角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合.
二、應(yīng)用舉例、變式練習(xí)
練習(xí)1填空:如圖3-86(1)∵OC平分∠AOB,點(diǎn)P在射線OC上,PD⊥OA于D
PE⊥OB于E.∴---------(角平分線的性質(zhì)定理).
(2)∵PD⊥OA,PE⊥OB,----------∴ OP平分∠AOB(-------------)
例1已知:如圖3-87(a), ABC的角平分線BD和CE交于F.
(l)求證:F到AB,BC和 AC邊的距離相等;
(2)求證:AF平分∠BAC;
(4)怎樣找△ABC內(nèi)到三邊距離相等的點(diǎn)?
(5)若將“兩內(nèi)角平分線BD,CE交于F”改為“△ABC的兩個外角平分線BD,CE交于F,如圖3-87(b),那么(1)~(3)題的結(jié)論是否會改變?怎樣找△ABC外到三邊所在直線距離相等的點(diǎn)?共有多少個?
說明:
(1)通過此題達(dá)到鞏固角平分線的性質(zhì)定理(第(1)題)和判定定理(第(2)題)的目的.
(2)此題提供了證明“三線共點(diǎn)”的一種常用方法:先確定兩條直線交于某一點(diǎn),再證明這點(diǎn)在第三條直線上。
(3)引導(dǎo)學(xué)生對題目的條件進(jìn)行類比聯(lián)想(第(5)題),觀察結(jié)論如何變化,培養(yǎng)發(fā)散思維能力.
練習(xí) 3已知:如圖 3-88,在四邊形 ABCD中, AB=AD, AB⊥BC,AD⊥DC.求證:點(diǎn) C在∠DAB的平分線上.
分析:證明第(1)題時,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分線的性質(zhì)定理得到 OC=OD.這樣處理,可避免證明兩個三角形全等.
練習(xí)4 課本第54頁的練習(xí).
說明:訓(xùn)練學(xué)生將生活語言翻譯成數(shù)學(xué)語言的能力.
三、互逆命題,互逆定理的定義及應(yīng)用
1.互逆命題、互逆定理的定義.
教師引導(dǎo)學(xué)生分析角平分線的性質(zhì),判定定理的題設(shè)、結(jié)論,使學(xué)生看到這兩個命題的題設(shè)和結(jié)論正好相反,得出互逆命題、互逆定理的定義,并舉出學(xué)過的互逆命題、互逆定理的例子.教師強(qiáng)調(diào)“互逆命題”是兩個命題之間的關(guān)系,其中任何一個做為原命題,那么另一個就是它的逆命題.
2.會找一個命題的逆命題,并判定它是真、假命題.
例3寫出下列命題的逆命題,并判斷(1)~(5)中原命題和它的逆命題是真命題還是假命題:
(1)兩直線平行,同位角相等;
(2)直角三角形的兩銳角互余;
(3)對頂角相等;
(4)全等三角形的對應(yīng)角相等;
(5)如果|x|=|y|,那么x=y(tǒng);
(6)等腰三角形的兩個底角相等;
(7)直角三角形兩條直角邊的平方和等于斜邊的平方.
說明:注意逆命題語言的準(zhǔn)確描述,例如第(6)題的逆命題不能說成是“兩底角相等的三角形是等腰三角形”.
3.理解互逆命題、互逆定理的有關(guān)結(jié)論.
例4 判斷下列命題是否正確:
(1)錯誤的命題沒有逆命題;
(2)每個命題都有逆命題;
(3)一個真命題的逆命題一定是正確的;
(4)一個假命題的逆命題一定是錯誤的;
(5)每一個定理都一定有逆定理.
通過此題使學(xué)生理解互逆命題的真假性關(guān)系及互逆定理的定義.
四、師生共同小結(jié)
1.角平分線的性質(zhì)定理與判定定理的條件內(nèi)容分別是什么?
2.三角形的角平分線有什么性質(zhì)?怎樣找三角形內(nèi)到三角形三邊距離相等的點(diǎn)?
3.怎樣找一個命題的逆命題?原命題與逆命題是否同真、同假?
五、作業(yè)
課本第55頁第3,5,6,7,8,9題.
課堂教學(xué)設(shè)計(jì)說明
本教學(xué)設(shè)計(jì)需2課時完成.
角平分線是符合某種條件的動點(diǎn)的集合,因此,利用教具,投影或計(jì)算機(jī)演示動點(diǎn)運(yùn)動的過程和規(guī)律,更能展示知識的形成過程,有利于學(xué)生自己觀察,探索新知識,從中提高興趣,以充分培養(yǎng)能力,發(fā)揮學(xué)生學(xué)習(xí)的主動性.
3.9角的平分線
教學(xué)目標(biāo)
1.掌握角的平分線的性質(zhì)定理和它的逆定理的內(nèi)容、證明及應(yīng)用.
2.理解原命題和逆命題的概念和關(guān)系,會找一個簡單命題的逆命題.
3.滲透角平分線是滿足特定條件的點(diǎn)的集合的思想。
教學(xué)重點(diǎn)和難點(diǎn)
角平分線的性質(zhì)定理和逆定理的應(yīng)用是重點(diǎn).
性質(zhì)定理和判定定理的區(qū)別和靈活運(yùn)用是難點(diǎn).
教學(xué)過程設(shè)計(jì)
一、角平分錢的性質(zhì)定理與判定定理的探求與證明
1,復(fù)習(xí)引入課題.
(1)提問關(guān)于直角三角形全等的判定定理.
(2)讓學(xué)生用量角器畫出圖3-86中的∠AOB的角
平分線OC.
2.畫圖探索角平分線的性質(zhì)并證明之.
(1)在圖3-86中,讓學(xué)生在角平分線OC上任取一
點(diǎn)P,并分別作出表示P點(diǎn)到∠AOB兩邊的距離的線段
PD,PE.
(2)這兩個距離的大小之間有什么關(guān)系?為什么?學(xué)生度量后得出猜想,并用直角三角形全等的知識進(jìn)行證明,得出定理.
3.逆向思維探求角平分線的判定定理.
(1)讓學(xué)生將定理1的條件、結(jié)論進(jìn)行交換,并思考所得命題是否成立?如何證明?請一位同學(xué)敘述證明過程,得出定理2——角平分線的判定定理.
(2)教師隨后強(qiáng)調(diào)定理1與定理2的區(qū)別:已知角平分線用性質(zhì)為定理1,由所給條件判定出角平分線是定理2.
(3)教師指出:直接使用兩個定理不用再證全等,可簡化解題過程.
4.理解角平分線是到角的兩邊距離都相等的點(diǎn)的集合.
(1)角平分線上任意一點(diǎn)(運(yùn)動顯示)到角的兩邊的距離都相等(滲透集合的純粹性).
(2)在角的內(nèi)部,到角的兩邊距離相等的點(diǎn)(運(yùn)動顯示)都在這個角的平分線上(而不在其它位置,滲透集合的完備性).
由此得出結(jié)論:角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合.
二、應(yīng)用舉例、變式練習(xí)
練習(xí)1填空:如圖3-86(1)∵OC平分∠AOB,點(diǎn)P在射線OC上,PD⊥OA于D
PE⊥OB于E.∴---------(角平分線的性質(zhì)定理).
(2)∵PD⊥OA,PE⊥OB,----------∴ OP平分∠AOB(-------------)
例1已知:如圖3-87(a), ABC的角平分線BD和CE交于F.
(l)求證:F到AB,BC和 AC邊的距離相等;
(2)求證:AF平分∠BAC;
(4)怎樣找△ABC內(nèi)到三邊距離相等的點(diǎn)?
(5)若將“兩內(nèi)角平分線BD,CE交于F”改為“△ABC的兩個外角平分線BD,CE交于F,如圖3-87(b),那么(1)~(3)題的結(jié)論是否會改變?怎樣找△ABC外到三邊所在直線距離相等的點(diǎn)?共有多少個?
說明:
(1)通過此題達(dá)到鞏固角平分線的性質(zhì)定理(第(1)題)和判定定理(第(2)題)的目的.
(2)此題提供了證明“三線共點(diǎn)”的一種常用方法:先確定兩條直線交于某一點(diǎn),再證明這點(diǎn)在第三條直線上。
(3)引導(dǎo)學(xué)生對題目的條件進(jìn)行類比聯(lián)想(第(5)題),觀察結(jié)論如何變化,培養(yǎng)發(fā)散思維能力.
練習(xí) 3已知:如圖 3-88,在四邊形 ABCD中, AB=AD, AB⊥BC,AD⊥DC.求證:點(diǎn) C在∠DAB的平分線上.
分析:證明第(1)題時,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分線的性質(zhì)定理得到 OC=OD.這樣處理,可避免證明兩個三角形全等.
練習(xí)4 課本第54頁的練習(xí).
說明:訓(xùn)練學(xué)生將生活語言翻譯成數(shù)學(xué)語言的能力.
三、互逆命題,互逆定理的定義及應(yīng)用
1.互逆命題、互逆定理的定義.
教師引導(dǎo)學(xué)生分析角平分線的性質(zhì),判定定理的題設(shè)、結(jié)論,使學(xué)生看到這兩個命題的題設(shè)和結(jié)論正好相反,得出互逆命題、互逆定理的定義,并舉出學(xué)過的互逆命題、互逆定理的例子.教師強(qiáng)調(diào)“互逆命題”是兩個命題之間的關(guān)系,其中任何一個做為原命題,那么另一個就是它的逆命題.
2.會找一個命題的逆命題,并判定它是真、假命題.
例3寫出下列命題的逆命題,并判斷(1)~(5)中原命題和它的逆命題是真命題還是假命題:
(1)兩直線平行,同位角相等;
(2)直角三角形的兩銳角互余;
(3)對頂角相等;
(4)全等三角形的對應(yīng)角相等;
(5)如果|x|=|y|,那么x=y(tǒng);
(6)等腰三角形的兩個底角相等;
(7)直角三角形兩條直角邊的平方和等于斜邊的平方.
說明:注意逆命題語言的準(zhǔn)確描述,例如第(6)題的逆命題不能說成是“兩底角相等的三角形是等腰三角形”.
3.理解互逆命題、互逆定理的有關(guān)結(jié)論.
例4 判斷下列命題是否正確:
(1)錯誤的命題沒有逆命題;
(2)每個命題都有逆命題;
(3)一個真命題的逆命題一定是正確的;
(4)一個假命題的逆命題一定是錯誤的;
(5)每一個定理都一定有逆定理.
通過此題使學(xué)生理解互逆命題的真假性關(guān)系及互逆定理的定義.
四、師生共同小結(jié)
1.角平分線的性質(zhì)定理與判定定理的條件內(nèi)容分別是什么?
2.三角形的角平分線有什么性質(zhì)?怎樣找三角形內(nèi)到三角形三邊距離相等的點(diǎn)?
3.怎樣找一個命題的逆命題?原命題與逆命題是否同真、同假?
五、作業(yè)
課本第55頁第3,5,6,7,8,9題.
課堂教學(xué)設(shè)計(jì)說明
本教學(xué)設(shè)計(jì)需2課時完成.
角平分線是符合某種條件的動點(diǎn)的集合,因此,利用教具,投影或計(jì)算機(jī)演示動點(diǎn)運(yùn)動的過程和規(guī)律,更能展示知識的形成過程,有利于學(xué)生自己觀察,探索新知識,從中提高興趣,以充分培養(yǎng)能力,發(fā)揮學(xué)生學(xué)習(xí)的主動性.
【角的平分線 —— 初中數(shù)學(xué)第四冊教案】相關(guān)文章:
數(shù)學(xué)角平分線教學(xué)反思03-15
角平分線教學(xué)反思08-25
角平分線教學(xué)反思01-27
角平分線教學(xué)反思18篇07-17
角平分線教學(xué)反思(15篇)04-05
角平分線教學(xué)反思 15篇01-27
角平分線教學(xué)反思匯編15篇06-14
角平分線教學(xué)反思集錦15篇04-05
數(shù)學(xué)《角的度量》教案01-24