- 相關(guān)推薦
第五冊用公式解一元二次方程(一)
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點:1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項.
(二)能力訓(xùn)練點:1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.
(三)德育滲透點:由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.
二、教學(xué)重點、難點
1.教學(xué)重點:一元二次方程的意義及一般形式.
2.教學(xué)難點:正確識別一般式中的“項”及“系數(shù)”.
三、教學(xué)步驟
(一)明確目標(biāo)
1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學(xué)生的實際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.
2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?
教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.
板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.
(二)整體感知
通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實際,并且又為實際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.
(三)重點、難點的學(xué)習(xí)及目標(biāo)完成過程
1.復(fù)習(xí)提問
(1)什么叫做方程?曾學(xué)過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊.
2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?
引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.
整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.
一元二次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.
一元二次方程的概念是在整式方程的前提下定義的.一元二次方程中的“一元”指的是“只含有一個未知數(shù)”,“二次”指的是“未知數(shù)的最高次數(shù)是2”.“元”和“次”的概念搞清楚則給定義一元三次方程等打下基礎(chǔ).一元二次方程的定義是指方程進(jìn)行合并同類項整理后而言的.這實際上是給出要判定方程是一元二次方程的步驟:首先要進(jìn)行合并同類項整理,再按定義進(jìn)行判斷.
3.練習(xí):指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一個一元二次方程都可以化為一個固定的形式,這個形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).a(chǎn)x2稱二次項,bx稱一次項,c稱常數(shù)項,a稱二次項系數(shù),b稱一次項系數(shù).
一般式中的“a≠0”為什么?如果a=0,則ax2+bx+c=0就不是一元二次方程,由此加深對一元二次方程的概念的理解.
5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項系數(shù),一次項系數(shù)及常數(shù)項?
教師邊提問邊引導(dǎo),板書并規(guī)范步驟,深刻理解一元二次方程及一元二次方程的一般形式.
6.練習(xí)1:教材P.5中1,2.要求多數(shù)學(xué)生在練習(xí)本上筆答,部分學(xué)生板書,師生評價.題目答案不唯一,最好二次項系數(shù)化為正數(shù).
練習(xí)2:下列關(guān)于x的方程是否是一元二次方程?為什么?若是一元二次方程,請分別指出其二次項系數(shù)、一次項系數(shù)、常數(shù)項.
教師提問及恰當(dāng)?shù)囊龑?dǎo),對學(xué)生回答給出評價,通過此組練習(xí),加強(qiáng)對概念的理解和深化.
(四)總結(jié)、擴(kuò)展
引導(dǎo)學(xué)生從下面三方面進(jìn)行小結(jié).從方法上學(xué)到了什么方法?從知識內(nèi)容上學(xué)到了什么內(nèi)容?分清楚概念的區(qū)別和聯(lián)系?
1.將實際問題用設(shè)未知數(shù)列方程轉(zhuǎn)化為數(shù)學(xué)問題,體會知識來源于實際以及轉(zhuǎn)化為方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次項系數(shù)、一次項系數(shù)及常數(shù)項.歸納所學(xué)過的整式方程.
3.一元二次方程的意義與一般形式ax2+bx+c=0(a≠0)的區(qū)別和聯(lián)系.強(qiáng)調(diào)“a≠0”這個條件有長遠(yuǎn)的重要意義.
四、布置作業(yè)
1.教材P.6 練習(xí)2.
2.思考題:
1)能不能說“關(guān)于x的整式方程中,含有x2項的方程叫做一元二次方程?”
2)試說出一元三次方程,一元四次方程的定義及一般形式(學(xué)有余力的學(xué)生思考).
五、板書設(shè)計
第十二章 一元二次方程
12.1用公式解一元二次方程
1.整式方程:……
4.例1:……
2.一元二次方程……:
……
3.一元二次方程的一般形式:
……
5.練習(xí):……
……
……
六、課后習(xí)題參考答案
教材P.6A2.
教材P.6B1、2.
1.(1)二次項系數(shù):ab 一次項系數(shù):c 常數(shù)項:d.
(2)二次項系數(shù): m-n 一次項系數(shù):0 常數(shù)項:m+n.
2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次項系數(shù):m+n,一次項系數(shù):m-n,常數(shù)項:p-q.
思考題
(1)不能.如x3+2x2-4x=5.
(2)一元三次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是3,這樣的整式方程叫做一元三次方程.一般形式:ax3+bx2+cx+d=0(a≠0).
一元四次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是4,這樣的整式方程叫做一元四次方程.一般形式:ax4+bx3+cx2+dx+e=0(a≠0).
【第五冊用公式解一元二次方程一】相關(guān)文章:
解一元二次方程教學(xué)反思04-01
《一元二次方程》教學(xué)反思08-22
一元二次方程教學(xué)反思04-04
《一元二次方程》教學(xué)反思11-10
《一元二次方程》數(shù)學(xué)教學(xué)反思06-07
一元二次方程的解法教學(xué)反思04-04
一元二次方程的概念教學(xué)反思04-07
《解一元一次不等式》教學(xué)反思08-21
解一元一次不等式教學(xué)反思04-04