【必備】八年級(jí)數(shù)學(xué)教案三篇
作為一名辛苦耕耘的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。寫教案需要注意哪些格式呢?下面是小編為大家整理的八年級(jí)數(shù)學(xué)教案3篇,僅供參考,歡迎大家閱讀。
八年級(jí)數(shù)學(xué)教案 篇1
教學(xué)目標(biāo):
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;
3.通過對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)
5. 通過對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學(xué)重點(diǎn):
三角形內(nèi)角和定理及其推論。
教學(xué)難點(diǎn):
三角形內(nèi)角和定理的證明
教學(xué)用具:
直尺、微機(jī)
教學(xué)方法:
互動(dòng)式,談話法
教學(xué)過程:
1、創(chuàng)設(shè)情境,自然引入
把問題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。
問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?
問題2 你能用幾何推理來論證得到的關(guān)系嗎?
對(duì)于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的'),問題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問質(zhì)疑,探究嘗試
(1)求證:三角形三個(gè)內(nèi)角的和等于
讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來,再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫顯示具體情景。然后,圍繞問題設(shè)計(jì)以下幾個(gè)問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)
什么角?問題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?
(把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)
問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問題3學(xué)生經(jīng)過思考會(huì)畫出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個(gè)內(nèi)角之和為定值
,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?問題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?
問題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?
問題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?
其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。
3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論
引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過程
八年級(jí)數(shù)學(xué)教案 篇2
一元二次方程根與系數(shù)的關(guān)系的知識(shí)內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個(gè)例題介紹了利用根與系數(shù)的關(guān)系簡化一些計(jì)算的知識(shí)。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。
根與系數(shù)的`關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級(jí)階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對(duì)后面函數(shù)的學(xué)習(xí)研究也是作用非凡。
通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。
通過韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。
(二)重點(diǎn)、難點(diǎn)
一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。
(三)教學(xué)目標(biāo)
1、知識(shí)目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會(huì)求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。
八年級(jí)數(shù)學(xué)教案 篇3
教學(xué)目標(biāo)
知識(shí)與技能
用二元一次方程組解決有趣場景中的數(shù)字問 題和行程問題,歸納用方程(組)解決實(shí)際問題的一般步驟.
過程與方法
1.通過設(shè)置問題串,讓學(xué)生體會(huì)分析復(fù)雜問題的思考方法.
2.讓學(xué)生進(jìn)一步經(jīng)歷和體驗(yàn)列方程組解決實(shí)際問題的過程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界 的有效數(shù)學(xué)模型.
情感態(tài)度與價(jià)值觀
在學(xué)習(xí)過程中讓學(xué)生體驗(yàn)把復(fù)雜問題化為簡單問題的策略,體驗(yàn)成功感,同時(shí)培養(yǎng)學(xué)生克服困難的意志和勇氣, 樹立自信心,并鼓勵(lì)學(xué)生合作 交流,培養(yǎng)學(xué)生的團(tuán)隊(duì)精神.
教學(xué)重點(diǎn)
1.初步體會(huì)列方程組解決實(shí)際問題的步驟.
2.學(xué)會(huì)用圖表 分析較復(fù)雜的數(shù)量關(guān)系問題。
教學(xué)難點(diǎn)
將實(shí)際問題轉(zhuǎn)化 成二元一次方程組的數(shù)學(xué)模型;會(huì)用圖表分析數(shù) 量關(guān)系。
教學(xué)準(zhǔn)備:
教具:教材,課件,電腦(視頻播放器)
學(xué)具:教材,練習(xí)本
教學(xué)過程
第一環(huán)節(jié):復(fù)習(xí)提問(5分鐘,學(xué)生口答)
內(nèi)容:填空:
(1)一個(gè)兩位數(shù),個(gè)位數(shù)字是 ,十位數(shù)字是 ,則這個(gè)兩位數(shù)用代數(shù)式表示為 ;若交換個(gè)位和十位上的數(shù)字得到一個(gè)新的兩位數(shù),用代數(shù)式表示為 .
(2)一個(gè)兩位數(shù),個(gè)位上的數(shù)為 ,十位上的數(shù)為 ,如果在它們之間添上一個(gè)0,就得到一個(gè)三位數(shù),這個(gè)三位數(shù)用代數(shù)式可以表示為 .
(3)有兩個(gè)兩位數(shù) 和 ,如果將 放在 的'左邊,就得到一個(gè)四位數(shù),那么這個(gè)四位數(shù)用代數(shù)式表示為 ;如果將 放在 的右邊,將得到一個(gè)新的四位數(shù),那么這個(gè)四位數(shù)用代數(shù)式可表示為 .
第二環(huán)節(jié):情境引入(10分鐘,學(xué)生動(dòng)腦思考,全班交流)
內(nèi)容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時(shí)看到的里程情況.你能 確定小明在12:00時(shí)看到的里程碑上的數(shù)嗎?
第三環(huán)節(jié):合作學(xué)習(xí)(10分鐘,小組討論,找等量關(guān)系,解決 問題)
內(nèi)容:例1
兩個(gè)兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個(gè)四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個(gè)四位數(shù).已知前一個(gè)四位數(shù)比后一個(gè)四位數(shù)大2178,求這兩個(gè)兩位數(shù).
學(xué)生先獨(dú)立思考例1,在此基礎(chǔ)上,教師根據(jù)學(xué)生思考情況組織交流與討論.
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生嘗試獨(dú)立解決問題,全班交流)
內(nèi)容:練習(xí)
1.一個(gè)兩位數(shù),減去它的各位數(shù)字之和的3倍,結(jié)果是23;這個(gè)兩位數(shù)除以它的各位數(shù)字 之和,商是5,余數(shù)是1.這個(gè)兩位數(shù)是多少?
2.一個(gè)兩位數(shù)是另一個(gè)兩位數(shù)的3倍,如果把這個(gè)兩位數(shù)放在另一個(gè)兩位數(shù)的左 邊與放在右邊所得的數(shù)之和為8484.求這個(gè)兩位數(shù).
第五環(huán)節(jié):課堂小結(jié)(5分鐘,教師引導(dǎo)學(xué)生總結(jié)一般步驟)
內(nèi)容:
1.教師提問:本節(jié)課我們學(xué)習(xí)了那些內(nèi)容,對(duì)這些內(nèi)容你有什么體會(huì)和想法?請(qǐng)與同伴交流.
2.師生互相交流總結(jié)出列方程(組)解決實(shí)際問題的一般步驟.
第 六環(huán)節(jié):布置作業(yè)
內(nèi)容:習(xí)題7.6
A組(優(yōu)等生) 2,3,4
B組(中等生)2、3
C組(后三分之一生)2
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27
八年級(jí)下冊(cè)數(shù)學(xué)教案01-01