四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

八年級數學教案

時間:2022-08-22 11:45:40 八年級數學教案 我要投稿

八年級數學教案范文5篇

  作為一名無私奉獻的老師,編寫教案是必不可少的,借助教案可以有效提升自己的教學能力。教案應該怎么寫才好呢?以下是小編整理的八年級數學教案5篇,僅供參考,大家一起來看看吧。

八年級數學教案范文5篇

八年級數學教案 篇1

  教學目標:

  1. 掌握三角形內角和定理及其推論;

  2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;

  3.通過對三角形分類的學習,使學生了解數學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。

  4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹的科學態(tài)

  5. 通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉化的辯證思想。

  教學重點:

  三角形內角和定理及其推論。

  教學難點:

  三角形內角和定理的證明

  教學用具:

  直尺、微機

  教學方法:

  互動式,談話法

  教學過程:

  1、創(chuàng)設情境,自然引入

  把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現新知識創(chuàng)造一個最佳的心理和認知環(huán)境。

  問題1 三角形三條邊的關系我們已經明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內角有何關系呢?

  問題2 你能用幾何推理來論證得到的關系嗎?

  對于問題1絕大多數學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內容(板書課題)

  新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內容自然合理。

  2、設問質疑,探究嘗試

  (1)求證:三角形三個內角的和等于

  讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。

  問題1 觀察:三個內角拼成了一個

  什么角?問題2 此實驗給我們一個什么啟示?

  (把三角形的三個內角之和轉化為一個平角)

  問題3 由圖中AB與CD的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

  其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的.作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。

  (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

  學生回答后,電腦顯示圖表。

  (3)三角形中三個內角之和為定值

  ,那么對三角形的其它角還有哪些特殊的關系呢?問題1 直角三角形中,直角與其它兩個銳角有何關系?

  問題2 三角形一個外角與它不相鄰的兩個內角有何關系?

  問題3 三角形一個外角與其中的一個不相鄰內角有何關系?

  其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經過分析討論,得出結論并書寫證明過程。

  這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。

  3、三角形三個內角關系的定理及推論

  引導學生分析并嚴格書寫解題過程

八年級數學教案 篇2

  分式方程

  教學目標

  1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

  2.經歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養(yǎng)學生的應用意識。

  3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數學的應用價值.

  教學重點:

  將實際問題中的等量 關系用分式方程表示

  教學難點:

  找實際問題中的等量關系

  教學過程:

  情境導入:

  有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)

  如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。

  根據題意,可得方程___________________

  二、講授新課

  從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

  這 一問題中有哪些等量關系?

  如果設客車由高速公路從甲地到乙地 所需的'時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

  根據題意,可得方程_ _____________________。

  學生分組探討、交流,列出方程.

  三.做一做:

  為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?

  四.議一議:

  上面所得到的方程有什么共同特點?

  分母中含有未知數的方程叫做分式方程

  分式方程與整式方程有什么區(qū)別?

  五、 隨堂練習

  (1)據聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

  (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

  (3)根據分式方程 編一道應用題,然后同組交流,看誰編得好

  六、學 習小結

  本節(jié)課你學到了哪些知識?有什么感想?

  七.作業(yè)布置

八年級數學教案 篇3

  1、教材分析

  (1)知識結構

  (2)重點、難點分析

  本節(jié)內容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.

  本節(jié)內容的難點是定理及逆定理的關系. 垂直平分線定理和其逆定理,題設與結論正好相反. 學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.

  2、 教法建議

  本節(jié)課教學模式主要采用“學生主體性學習”的教學模式. 提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納. 教師的.作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人. 具體說明如下:

  (1)參與探索發(fā)現,領略知識形成過程

  學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關系?學生會很容易得出“相等”. 然后學生完成證明,找一名學生的證明過程,進行投影總結. 最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理. 這樣讓學生親自動手實踐,積極參與發(fā)現,激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.

  (2)采用“類比”的學習方法,獲取逆定理

  線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯(lián)系.

  (3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養(yǎng)學生發(fā)現問題、提出問題的創(chuàng)造性能力.

八年級數學教案 篇4

  活動一、創(chuàng)設情境

  引入:首先我們來看幾道練習題(幻燈片)

 。◤土暎浩叫芯及三角形全等的知識)

  下面我們一起來欣賞一組圖片(幻燈片)

  [學生活動]觀看后答問題:你看到了哪些圖形?

 。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)

  [學生活動]小組合作交流,拼出圖案的類型。

  同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質。(幻燈片出示課題)

  活動二、合作交流,探求新知

  問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

  [學生活動]認真觀察、討論、思考、推理。

  鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的'定義。

  學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

  并說明:平行四邊形不相鄰的兩個頂點連成的線段叫它的對角線。

  平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

  問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?

  [學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。

  小結平行四邊形的性質:

  平行四邊形的對邊相等

  平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

  你能演示你的結論是如何得到的嗎?(學生演示)

  你能證明嗎?(幻燈片出示證明題)

  [學生活動]先分析思路尤其是輔助線,請學生上黑板證明。

  自己完成性質2的證明。

  活動三、運用新知

  性質掌握了嗎?一起來看一道題目:

  嘗試練習(幻燈片)例1

  [學生活動]作嘗試性解答。

八年級數學教案 篇5

  教學目標:

  1、經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關畫圖的操作技能,發(fā)展初步審美能力,增強對圖形欣賞的意識。

  2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據圖形的軸對稱關系設計軸對稱圖形。

  教學重點:本節(jié)課重點是掌握已知對稱軸L和一個點,要畫出點A關于L的軸對稱點的畫法,在此基礎上掌握有關軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關系來設計軸對稱圖形,掌握有關畫圖的技能及設計軸對稱圖形是本節(jié)課的難點。

  教學方法:動手實踐、討論。

  教學工具:課件

  教學過程:

  一、 先復習軸對稱圖形的定義,以及軸對稱的相關的性質:

  1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

  2.軸對稱的三個重要性質______________________________________________

  _____________________________________________________________________

  二、提出問題:

  二、探索練習:

  1. 提出問題:

  如圖:給出了一個圖案的一半,其中的.虛線是這個圖案的對稱軸。

  你能畫出這個圖案的另一半嗎?

  吸引學生讓學生有一種解決難點的想法。

  2.分析問題:

  分析圖案:這個圖案是由重要六個點構成的,要將這個圖案的另一半畫出來,根據軸對稱的性質只要畫出這個圖案中六個點的對應點即可

  問題轉化成:已知對稱軸和一個點A,要畫出點A關于L的對應點 ,可采用如下方法:`

  在學生掌握已知一個點畫對應點的基礎上,解決上述給出的問題,使學生有一條較明確的思路。

  三、對所學內容進行鞏固練習:

  1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

  2. 試畫出與線段AB關于直線L的線段

  3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

  小 結: 本節(jié)課學習了已知對稱軸L和一個點如何畫出它的對應點,以及如何補全圖形,并利用軸對稱的性質知道如何設計軸對稱圖形。

  教學后記:學生對這節(jié)課的內容掌握比較好,但對于利用軸對稱的性質來設計圖形覺得難度比較大。因本節(jié)課內容較有趣,許多學生上課積極性較高

【八年級數學教案】相關文章:

八年級的數學教案12-14

八年級數學教案06-18

初中八年級數學教案11-03

八年級的數學教案15篇12-14

【熱門】八年級數學教案11-29

八年級數學教案【熱】11-29

八年級數學教案【薦】12-06

【熱】八年級數學教案12-07

八年級上冊數學教案11-09

人教版八年級數學教案11-04