八年級數(shù)學(xué)教案模板合集八篇
作為一名為他人授業(yè)解惑的教育工作者,就不得不需要編寫教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。那么優(yōu)秀的教案是什么樣的呢?以下是小編收集整理的八年級數(shù)學(xué)教案8篇,僅供參考,希望能夠幫助到大家。
八年級數(shù)學(xué)教案 篇1
總課時:7課時 使用人:
備課時間:第八周 上課時間:第十周
第4課時:5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識與技能
1.在給定的直角坐標(biāo)系下,會根據(jù)坐標(biāo)描出點的位置;
2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點、連線、看圖以及由點找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點確定坐標(biāo)到根據(jù)坐標(biāo)描點的轉(zhuǎn)化過程,進一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識。
情感態(tài)度與價值觀
通過生動有趣的教學(xué)活動,發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點:在已知的`直角坐標(biāo)系下找點、連線、觀察,確定圖形的大致形狀。
教學(xué)難點:在已知的直角坐標(biāo)系下找點、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點)
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點的坐標(biāo)有什么特點。
練習(xí):指出下列 各點以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點找坐標(biāo)是已知點在直角坐標(biāo) 系中的位置,根據(jù)這點在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點,你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點,并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個平面直角坐標(biāo)系中,描出下列各組內(nèi)的點用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨立完成。
(學(xué)生描點、畫圖)
(拿出一位做對的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨立完成,后小組討論)
(補充)1.在直角坐標(biāo)系中描出下列各點,并將各組內(nèi)的點用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。
先獨立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數(shù)學(xué)教案 篇2
教材分析
本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運算和因式分解是基本而重要的代數(shù)初步知識,在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運算等知識的基礎(chǔ)上,而本節(jié)課的知識是學(xué)習(xí)本章的基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的學(xué)習(xí)效果。
學(xué)情分析
本節(jié)課知識是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的`好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的知識相對較簡單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的運算性質(zhì)的過程是一個由特殊到一般的認(rèn)識過程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。
從學(xué)生做練習(xí)和作業(yè)來看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。
教學(xué)目標(biāo)
1、知識與技能:
掌握同底數(shù)冪乘法的運算性質(zhì),能熟練運用性質(zhì)進行同底數(shù)冪乘法運算。
2、過程與方法:
。1)通過同底數(shù)冪乘法性質(zhì)的推導(dǎo)過程,體會不完全歸納法的運用,進一步發(fā)展演繹推理能力;
。2)通過性質(zhì)運用幫助學(xué)生理解字母表達式所代表的數(shù)量關(guān)系,進一步積累選擇適當(dāng)?shù)某绦蚝退惴ń鉀Q用符號所表達問題的經(jīng)驗。
3、情感態(tài)度與價值觀:
。1)通過引例問題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進一步認(rèn)識數(shù)學(xué)與生活的密切聯(lián)系;
。2)通過性質(zhì)的推導(dǎo)體會“特殊。
八年級數(shù)學(xué)教案 篇3
課題:三角形全等的判定(三)
教學(xué)目標(biāo):
1、知識目標(biāo):
(1)掌握已知三邊畫三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;
(3)會添加較明顯的輔助線.
2、能力目標(biāo):
(1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;
(2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.
3、情感目標(biāo):
(1)在公理的形成過程中滲透:實驗、觀察、歸納;
(2)通過變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.
教學(xué)重點:SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。
教學(xué)難點:如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚三角形全等。
教學(xué)用具:直尺,微機
教學(xué)方法:自學(xué)輔導(dǎo)
教學(xué)過程:
1、新課引入
投影顯示
問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的`儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個問題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問題的本質(zhì):三角形的三個元素――三條邊。
2、公理的獲得
問:通過上面問題的分析,滿足什么條件的兩個三角形全等?
讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)
公理:有三邊對應(yīng)相等的兩個三角形全等。
應(yīng)用格式: (略)
強調(diào)說明:
(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。
(2)、在應(yīng)用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)
(3)、此公理與前面學(xué)過的公理區(qū)別與聯(lián)系
(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨立的條件”做好了準(zhǔn)備,進行了溝通。
(5)說明AAA與SSA不能判定三角形全等。
3、公理的應(yīng)用
(1) 講解例1。學(xué)生分析完成,教師注重完成后的點評。
例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架
求證:AD⊥BC
分析:(設(shè)問程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1=
只要證什么?(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
八年級數(shù)學(xué)教案 篇4
教學(xué)目標(biāo)
、俳(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨立思考、集體協(xié)作的能力。
②理解整式除法的算理,發(fā)展有條理的思考及表達能力。
教學(xué)重點與難點
重點:整式除法的運算法則及其運用。
難點:整式除法的運算法則的推導(dǎo)和理解,尤其是單項式除以單項式的運算法則。
教學(xué)準(zhǔn)備
卡片及多媒體課件。
教學(xué)設(shè)計
情境引入
教科書第161頁問題:木星的質(zhì)量約為1。90×1024噸,地球的`質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?
重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。
注:教科書從實際問題引入單項式的除法運算,學(xué)生在探索這個問題的過程中,將自然地體會到學(xué)習(xí)單項式的除法運算的必要性,了解數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。
探究新知
。1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據(jù)是什么?
(2)你能利用(1)中的方法計算下列各式嗎?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
。3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?
注:教師可以鼓勵學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的語言進行描述。
單項式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進行。探究活動的安排,是使學(xué)生通過對具體的特例的計算,歸納出單項式的除法運算性質(zhì),并能運用乘除互逆的關(guān)系加以說明,也可類比分?jǐn)?shù)的約分進行。在這些活動過程中,學(xué)生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強調(diào)的。
歸納法則
單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
注:通過總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語言表達自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
應(yīng)用新知
例2計算:
。1)28x4y2÷7x3y;
(2)—5a5b3c÷15a4b。
首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學(xué)生口述,教師板書的形式完成。口述和板書都應(yīng)注意展示法則的應(yīng)用,計算過程要詳盡,使學(xué)生盡快熟悉法則。
注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學(xué)生來講,難免會出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問題。
鞏固新知教科書第162頁練習(xí)1及練習(xí)2。
學(xué)生自己嘗試完成計算題,同桌交流。
注:在獨立解題和同伴的相互交流過程中讓學(xué)生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動參與學(xué)習(xí)的習(xí)慣。
作業(yè)
1。必做題:教科書第164頁習(xí)題15。3第1題;第2題。
2。選做題:教科書第164頁習(xí)題15。3第8題
八年級數(shù)學(xué)教案 篇5
知識要點
1、函數(shù)的概念:一般地,在某個變化過程中,有兩個 變量x和 y,如果給定一個x值,
相應(yīng)地就確定了一個y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。
2、一次函數(shù)的概念:若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當(dāng)b=0 時,稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).
3、正比例函數(shù)y=kx的性質(zhì)
(1)、正比例函數(shù)y=kx的圖象都經(jīng)過
原點(0,0),(1,k)兩點的一條直線;
(2)、當(dāng)k0時,圖象都經(jīng)過一、三象限;
當(dāng)k0時,圖象都經(jīng)過二、四象限
(3)、當(dāng)k0時,y隨x的增大而增大;
當(dāng)k0時,y隨x的增大而減小。
4、一次函數(shù)y=kx+b的性質(zhì)
(1)、經(jīng)過特殊點:與x軸的交點坐標(biāo)是 ,
與y軸的交點坐標(biāo)是 .
(2)、當(dāng)k0時,y隨x的增大而增大
當(dāng)k0時,y隨x的增大而減小
(3)、k值相同,圖象是互相平行
(4)、b值相同,圖象相交于同一點(0,b)
(5)、影響圖象的兩個因素是k和b
、賙的正負(fù)決定直線的方向
②b的正負(fù)決定y軸交點在原點上方或下方
5.五種類型一次函數(shù)解析式的確定
確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。
(1)、根據(jù)直線的解析式和圖像上一個點的坐標(biāo),確定函數(shù)的解析式
例1、若函數(shù)y=3x+b經(jīng)過點(2,-6),求函數(shù)的解析式。
解:把點(2,-6)代入y=3x+b,得
-6=32+b 解得:b=-12
函數(shù)的解析式為:y=3x-12
(2)、根據(jù)直線經(jīng)過兩個點的坐標(biāo),確定函數(shù)的解析式
例2、直線y=kx+b的圖像經(jīng)過A(3,4)和點B(2,7),
求函數(shù)的表達式。
解:把點A(3,4)、點B(2,7)代入y=kx+b,得
,解得:
函數(shù)的解析式為:y=-3x+13
(3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式
例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x
(小時)之間的關(guān)系.求油箱里所剩油y(升)與行駛時間x
(小時)之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。
(4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式
例4、如圖2,將直線 向上平移1個單位,得到一個一次
函數(shù)的圖像,那么這個一次函數(shù)的解析式是 .
解:直線 經(jīng)過點(0,0)、點(2,4),直線 向上平移1個單位
后,這兩點變?yōu)?0,1)、(2,5),設(shè)這個一次函數(shù)的解析式為 y=kx+b,
得 ,解得: ,函數(shù)的解析式為:y=2x+1
(5)、根據(jù)直線的對稱性,確定函數(shù)的解析式
例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對稱,求k、b的值。
例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對稱,求k、b的值。
例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點對稱,求k、b的值。
經(jīng)典訓(xùn)練:
訓(xùn)練1:
1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。
(1)梯形的面積y與上底的長x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?
(2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關(guān)系式 。
訓(xùn)練2:
1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,
一次函數(shù)有___ __;正比例函數(shù)有____________(填序號).
2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )
A.k1 B.k-1 C.k1 D.k為任意實數(shù).
3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.
訓(xùn)練3:
1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.
2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )
A.m0 B.m0 C.m0 D.m0
3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過的象限是____,它與x軸的交 點坐標(biāo)是____,與y軸的交點坐標(biāo)是____.
4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過原點,則k=_____;
若y隨x的增大而增大,則k__________.
5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )
訓(xùn)練4:
1、 正比例函數(shù)的圖象經(jīng)過點A(-3,5),寫出這正比例函數(shù)的解析式.
2、已知一次函數(shù)的圖象經(jīng)過點(2,1)和(-1,-3).求此一次函數(shù)的解析式 .
3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。
4、已知一次函數(shù)y=kx+b,在x=0時的值為4,在x=-1時的值為-2,求這個一次函數(shù)的解析式。
5、已知y-1與x成正比例,且 x=-2時,y=-4.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x=3時,求y的值.
一、填空題(每題2分,共26分)
1、已知 是整數(shù),且一次函數(shù) 的圖象不過第二象限,則 為 .
2、若直線 和直線 的交點坐標(biāo)為 ,則 .
3、一次函數(shù) 和 的圖象與 軸分別相交于 點和 點, 、 關(guān)于 軸對稱,則 .
4、已知 , 與 成正比例, 與 成反比例,當(dāng) 時 , 時, ,則當(dāng) 時, .
5、函數(shù) ,如果 ,那么 的取值范圍是 .
6、一個長 ,寬 的矩形場地要擴建成一個正方形場地,設(shè)長增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).
7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當(dāng) 取 時, 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .
8、已知一次函數(shù) 和 的圖象交點的橫坐標(biāo)為 ,則 ,一次函數(shù) 的圖象與兩坐標(biāo)軸所圍成的三角形的面積為 ,則 .
9、已知一次函數(shù) 的圖象經(jīng)過點 ,且它與 軸的交點和直線 與 軸的交點關(guān)于 軸對稱,那么這個一次函數(shù)的解析式為 .
10、一次函數(shù) 的圖象過點 和 兩點,且 ,則 , 的取值范圍是 .
11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當(dāng) 時, 是正比例函數(shù).
12、 為 時,直線 與直線 的交點在 軸上.
13、已知直線 與直線 的交點在第三象限內(nèi),則 的取值范圍是 .
二、選擇題(每題3分,共36分)
14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )
15、若直線 與 的交點在 軸上,那么 等于( )
A.4 B.-4 C. D.
16、直線 經(jīng)過一、二、四象限,則直線 的圖象只能是圖4中的( )
17、直線 如圖5,則下列條件正確的是( )
18、直線 經(jīng)過點 , ,則必有( )
A.
19、如果 , ,則直線 不通過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是
A. B. C. D.都不對
21、如圖6,兩直線 和 在同一坐標(biāo)系內(nèi)圖象的位置可能是( )
圖6
22、已知一次函數(shù) 與 的圖像都經(jīng)過 ,且與 軸分別交于點B, ,則 的'面積為( )
A.4 B.5 C.6 D.7
23、已知直線 與 軸的交點在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
24、已知 ,那么 的圖象一定不經(jīng)過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時,甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達距A站22千米處.設(shè)甲從P處出發(fā) 小時,距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )
三、解答題(1~6題每題8分,7題10分,共58分)
26、如圖8,在直角坐標(biāo)系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點,直線 與 軸交于點D,四邊形OBCD(O是坐標(biāo)原點)的面積是10,若點A的橫坐標(biāo)是 ,求這個一次函數(shù)解析式.
27、一次函數(shù) ,當(dāng) 時,函數(shù)圖象有何特征?請通過不同的取值得出結(jié)論?
28、某油庫有一大型儲油罐,在開始的8分鐘內(nèi),只開進油管,不開出油管,油罐的油進至24噸(原油罐沒儲油)后將進油管和出油管同時打開16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進油管,只開出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.
(1)試分別寫出這一段時間內(nèi)油的儲油量Q(噸)與進出油的時間t(分)的函數(shù)關(guān)系式.
(2)在同一坐標(biāo)系中,畫出這三個函數(shù)的圖象.
29、某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月不超過100度時,按每度0.57元計費;每月用電超過100度時,其中的100度按原標(biāo)準(zhǔn)收費;超過部分按每度0.50元計費.
(1)設(shè)用電 度時,應(yīng)交電費 元,當(dāng) 100和 100時,分別寫出 關(guān)于 的函數(shù)關(guān)系式.
(2)小王家第一季度交納電費情況如下:
月份 一月份 二月份 三月份 合計
交費金額 76元 63元 45元6角 184元6角
問小王家第一季度共用電多少度?
30、某地上年度電價為0.8元,年用電量為1億度.本年度計劃將電價調(diào)至0.55~0.75元之間,經(jīng)測算,若電價調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當(dāng) =0.65時, =0.8.
(1)求 與 之間的函數(shù)關(guān)系式;
(2)若每度電的成本價為0.3元,則電價調(diào)至多少時,本年度電力部門的收益將比上年度增加20%?[收益=用電量(實際電價-成本價)]
31、汽車從A站經(jīng)B站后勻速開往C站,已知離開B站9分時,汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?
32、甲乙兩個倉庫要向A、B兩地運送水泥,已知甲庫可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運費如下表(表中運費欄元/(噸、千米)表示每噸水泥運送1千米所需人民幣)
路程/千米 運費(元/噸、千米)
甲庫 乙?guī)?甲庫 乙?guī)?/p>
A地 20 15 12 12
B地 25 20 10 8
(1)設(shè)甲庫運往A地水泥 噸,求總運費 (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫出它的圖象(草圖).
(2)當(dāng)甲、乙兩庫各運往A、B兩地多少噸水泥時,總運費最省?最省的總運費是多少?
八年級數(shù)學(xué)教案 篇6
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.
2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.
(二)能力訓(xùn)練點
1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.
2.通過教學(xué),使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學(xué)生分析問題,解決問題的`能力.
(三)德育滲透點
通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣.
(四)美育滲透點
通過學(xué)習(xí),體會幾何證明的方法美.
二、學(xué)法引導(dǎo)
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點·難點·疑點及解決辦法
1.教學(xué)重點:平行四邊形的判定定理1、2、3的應(yīng)用.
2.教學(xué)難點:綜合應(yīng)用判定定理和性質(zhì)定理.
3.疑點及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理
(強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).
八年級數(shù)學(xué)教案 篇7
教學(xué)目標(biāo)
一、教學(xué)知識點:
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓(xùn)練要求:
1.通過具體實例認(rèn)識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價值觀要求
1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.
2.通過學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問題,進一步發(fā)展學(xué)生的數(shù)學(xué)觀.
教學(xué)重點:旋轉(zhuǎn)的基本性質(zhì).
教學(xué)難點:探索旋轉(zhuǎn)的基本性質(zhì).
教學(xué)方法:
1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。
2、采用多媒體課件輔助教學(xué)。
教學(xué)過程:
一.巧設(shè)情景問題,引入課題
日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動呢?
1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點轉(zhuǎn)動的.
2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.
3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn)(circumrotate).這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點同時都按相同的方式轉(zhuǎn)動相同的.角度.在物體繞著一個定點轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點,旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置.這時點A旋轉(zhuǎn)到點D的位置,點B旋轉(zhuǎn)到點E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.
(4)因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應(yīng)點.從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?
答:因為O是旋轉(zhuǎn)中心,點A與點D是對應(yīng)點,點B與點E是對應(yīng)點,且OA=OD,OB=OE,所以可以知道:對應(yīng)點與旋轉(zhuǎn)中心所連的線段的長度是相等的.
因為點A與點D、點B與點E是對應(yīng)點,且∠AOD=∠BOE,所以由此可以知道:對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角是互相相等的.
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應(yīng)點到旋轉(zhuǎn)中心的距離相等.
[例1](課本68頁例1)
。蹘熒参觯萁(jīng)演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.
解:(見課本68頁)
書上68頁做一做
三.課堂練習(xí)
課本P69隨堂練習(xí).
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時小結(jié)
五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.
六.活動與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.
整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?
過程:同樣讓學(xué)生在畫圖過程中體會圖形中每個三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的.
整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.
整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
板書設(shè)計:略
教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。
八年級數(shù)學(xué)教案 篇8
教學(xué)建議
1、平行線等分線段定理
定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。
注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。
定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。
2、平行線等分線段定理的推論
推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。
推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊。
記憶方法:“中點”+“平行”得“中點”。
推論的用途:(1)平分已知線段;(2)證明線段的倍分。
重難點分析
本節(jié)的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。
本節(jié)的難點也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學(xué)生難免會有應(yīng)接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。
教法建議
平行線等分線段定理的引入
生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:
①從生活實例引入,如刻度尺、作業(yè)本、柵欄、等等;
②可用問題式引入,開始時設(shè)計一系列與平行線等分線段定理概念相關(guān)的問題由學(xué)生進行思考、研究,然后給出平行線等分線段定理和推論。
教學(xué)設(shè)計示例
一、教學(xué)目標(biāo)
1、使學(xué)生掌握平行線等分線段定理及推論。
2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養(yǎng)學(xué)生的作圖能力。
3、通過定理的變式圖形,進一步提高學(xué)生分析問題和解決問題的能力。
4、通過本節(jié)學(xué)習(xí),體會圖形語言和符號語言的和諧美
二、教法設(shè)計
學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析
三、重點、難點
1、教學(xué)重點:平行線等分線段定理
2、教學(xué)難點:平行線等分線段定理
四、課時安排
l課時
五、教具學(xué)具
計算機、投影儀、膠片、常用畫圖工具
六、師生互動活動設(shè)計
教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)
七、教學(xué)步驟
【復(fù)習(xí)提問】
1、什么叫平行線?平行線有什么性質(zhì)。
2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?
【引入新課】
由學(xué)生動手做一實驗:每個同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?
。ㄒ龑(dǎo)學(xué)生把做實驗的條件和得到的結(jié)論寫成一個命題,教師總結(jié),由此得到平行線等分線段定理)
平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。
注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學(xué)生明確。
下面我們以三條平行線為例來證明這個定理(由學(xué)生口述已知,求證)。
已知:如圖,直線 , 。
求證: 。
分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。
。ㄒ龑(dǎo)學(xué)生找出另一種證法)
分析2:要證的`兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。
證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。
∴
∵ ,
∴
又∵ , ,
∴
∴
為使學(xué)生對定理加深理解和掌握,把知識學(xué)活,可讓學(xué)生認(rèn)識幾種定理的變式圖形,如圖(用計算機動態(tài)演示)。
引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。
推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。
再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。
推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊。
注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。
接下來講如何利用平行線等分線段定理來任意等分一條線段。
例 已知:如圖,線段 。
求作:線段 的五等分點。
作法:①作射線 。
、谠谏渚 上以任意長順次截取 。
、圻B結(jié) 。
④過點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。
、 、 、 就是所求的五等分點。
。ㄕf明略,由學(xué)生口述即可)
【總結(jié)、擴展】
小結(jié):
。╨)平行線等分線段定理及推論。
。2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。
(3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。
。4)應(yīng)用定理任意等分一條線段。
八、布置作業(yè)
教材P188中A組2、9
九、板書設(shè)計
十、隨堂練習(xí)
教材P182中1、2
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
八年級數(shù)學(xué)教案人教版01-03
八年級下冊數(shù)學(xué)教案01-01
八年級數(shù)學(xué)教案【熱】11-29
【薦】八年級數(shù)學(xué)教案12-03
八年級數(shù)學(xué)教案【薦】12-06