四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-08-27 12:48:23 八年級(jí)數(shù)學(xué)教案 我要投稿

關(guān)于八年級(jí)數(shù)學(xué)教案范文集錦八篇

  作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,總歸要編寫教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編為大家整理的八年級(jí)數(shù)學(xué)教案8篇,歡迎閱讀,希望大家能夠喜歡。

關(guān)于八年級(jí)數(shù)學(xué)教案范文集錦八篇

八年級(jí)數(shù)學(xué)教案 篇1

  一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。

  1.平移

  2.平移的性質(zhì):⑴經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;⑵對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

  3.簡(jiǎn)單的平移作圖

  ①確定個(gè)圖形平移后的位置的條件:

 、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。

  ②作平移后的圖形的方法:

 、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);⑶將所作的對(duì)應(yīng)點(diǎn)按原來方式順次連接,所得的;

  二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。

  1.旋轉(zhuǎn)

  2.旋轉(zhuǎn)的性質(zhì)

 、判D(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

 、菩D(zhuǎn)過程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。

 、侨我庖粚(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

 、刃D(zhuǎn)前后的'兩個(gè)圖形全等。

  3.簡(jiǎn)單的旋轉(zhuǎn)作圖

 、乓阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。

  ⑵已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。

 、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

  三、分析組合圖案的形成

 、俅_定組合圖案中的“基本圖案”

  ②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

 、厶剿髟搱D案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;

 、尚D(zhuǎn)變換與軸對(duì)稱變換的組合;⑹軸對(duì)稱變換與平移變換的組合。

八年級(jí)數(shù)學(xué)教案 篇2

  一、學(xué)生起點(diǎn)分析

  通過前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長(zhǎng)都是勾股數(shù),甚至有些直角三角形的邊長(zhǎng)連有理數(shù)都不是,例如:①腰長(zhǎng)為1的等腰直角三角形的底邊長(zhǎng)不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長(zhǎng)不是有理數(shù),這為引入“新數(shù)”奠定了必要性.

  二、教學(xué)任務(wù)分析

  《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)(上)第二章《實(shí)數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個(gè)課時(shí)完成,第1課時(shí)讓學(xué)生感受無(wú)理數(shù)的存在,初步建立無(wú)理數(shù)的印象,結(jié)合勾股定理知識(shí),會(huì)根據(jù)要求畫線段;第2課時(shí)借助計(jì)算器感受無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),會(huì)判斷一個(gè)數(shù)是無(wú)理數(shù).本課是第1課時(shí),學(xué)生將在具體的實(shí)例中,通過操作、估算、分析等活動(dòng),感受無(wú)理數(shù)的客觀存在性和引入的必要性,并能判斷一個(gè)數(shù)是不是有理數(shù).

  本節(jié)課的教學(xué)目標(biāo)是:

 、偻ㄟ^拼圖活動(dòng),讓學(xué)生感受客觀世界中無(wú)理數(shù)的存在;

 、谀芘袛嗳切蔚哪尺呴L(zhǎng)是否為無(wú)理數(shù);

 、蹖W(xué)生親自動(dòng)手做拼圖活動(dòng),培養(yǎng)學(xué)生的動(dòng)手能力和探索精神;

 、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對(duì)有理數(shù)和無(wú)理數(shù)的理解;

  三、教學(xué)過程設(shè)計(jì)

  本節(jié)課設(shè)計(jì)了6個(gè)教學(xué)環(huán)節(jié):

  第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.

  第一環(huán)節(jié):質(zhì)疑

  內(nèi)容:【想一想】

  ⑴一個(gè)整數(shù)的平方一定是整數(shù)嗎?

 、埔粋(gè)分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎?

  目的:作必要的知識(shí)回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.

  效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用

  第二環(huán)節(jié):課題引入

  內(nèi)容:1.【算一算】

  已知一個(gè)直角三角形的兩條直角邊長(zhǎng)分別為1和2,算一算斜邊長(zhǎng) 的平方 ,并提出問題: 是整數(shù)(或分?jǐn)?shù))嗎?

  2.【剪剪拼拼】

  把邊長(zhǎng)為1的兩個(gè)小正方形通過剪、拼,設(shè)法拼成一個(gè)大正方形,你會(huì)嗎?

  目的:選取客觀存在的“無(wú)理數(shù)“實(shí)例,讓學(xué)生深刻感受“數(shù)不夠用了”.

  效果:巧設(shè)問題背景,順利引入本節(jié)課題.

  第三環(huán)節(jié):獲取新知

  內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

  【議一議】: 已知 ,請(qǐng)問:① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎?

  【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?

  釋2.滿足 的 為什么不是分?jǐn)?shù)?

  【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無(wú)理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)

  【找一找】:在下列正方形網(wǎng)格中,先找出長(zhǎng)度為有理數(shù)的線段,再找出長(zhǎng)度不是有理數(shù)的線段

  目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過程,讓學(xué)生充分感受“新數(shù)”(無(wú)理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣

  效果:學(xué)生感受到無(wú)理數(shù)產(chǎn)生的'過程,確定存在一種數(shù)與以往學(xué)過的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.

  第四環(huán)節(jié):應(yīng)用與鞏固

  內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

  【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:

  1.長(zhǎng)度是有理數(shù)的線段

  2.長(zhǎng)度不是有理數(shù)的線段

  【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個(gè)三角形 (右1)

  2.三邊長(zhǎng)都是有理數(shù)

  2.只有兩邊長(zhǎng)是有理數(shù)

  3.只有一邊長(zhǎng)是有理數(shù)

  4.三邊長(zhǎng)都不是有理數(shù)

  【仿一仿】:例:在數(shù)軸上表示滿足 的

  解: (右2)

  仿:在數(shù)軸上表示滿足 的

  【賽一賽】:右3是由五個(gè)單位正方形組成的紙片,請(qǐng)你把

  它剪成三塊,然后拼成一個(gè)正方形,你會(huì)嗎?試試看! (右3)

  目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上

  效果:加深了對(duì)“新知”的理解,鞏固了本課所學(xué)知識(shí).

  第五環(huán)節(jié):課堂小結(jié)

  內(nèi)容:

  1.通過本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請(qǐng)問你有什么收獲與體會(huì)?

  2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個(gè)嗎?

  3.除了本課所認(rèn)識(shí)的非有理數(shù)的數(shù)以外,你還能找到嗎?

  目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.

  效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會(huì)進(jìn)行概括總結(jié).

  第六環(huán)節(jié):布置作業(yè)

  習(xí)題2.1

  六、教學(xué)設(shè)計(jì)反思

 。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動(dòng)力

  大量事實(shí)都證明一點(diǎn),與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動(dòng)的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.

  (二)化抽象為具體

  常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動(dòng)開啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語(yǔ)言進(jìn)行解釋.正是基于這個(gè)原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.

 。ㄈ⿵(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)

  既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無(wú)理數(shù)的教學(xué)奠好基.

八年級(jí)數(shù)學(xué)教案 篇3

  知識(shí)目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識(shí)別出函數(shù)關(guān)系中的自變量和函數(shù)

  能力目標(biāo):會(huì)用變化的量描述事物

  情感目標(biāo):回用運(yùn)動(dòng)的觀點(diǎn)觀察事物,分析事物

  重點(diǎn):函數(shù)的概念

  難點(diǎn):函數(shù)的概念

  教學(xué)媒體:多媒體電腦,計(jì)算器

  教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會(huì)確定自變量的取值范圍

  教學(xué)設(shè)計(jì):

  引入:

  信息1:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?

  新課:

  問題:(1)如圖是某日的氣溫變化圖。

  ① 這張圖告訴我們哪些信息?

 、 這張圖是怎樣來展示這天各時(shí)刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

  (2)收音機(jī)上的'刻度盤的波長(zhǎng)和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對(duì)應(yīng)的數(shù):

  ① 這表告訴我們哪些信息?

 、 這張表是怎樣刻畫波長(zhǎng)和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來嗎?

  一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有惟一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

  范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

  (5) 長(zhǎng)方形的寬一定時(shí),其長(zhǎng)與面積;

  (6) 等腰三角形的底邊長(zhǎng)與面積;

  (7) 某人的年齡與身高;

  活動(dòng)1:閱讀教材7頁(yè)觀察1. 后完成教材8頁(yè)探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

  思考:自變量是否可以任意取值

  例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1) 寫出表示y與x的函數(shù)關(guān)系式.

  (2) 指出自變量x的取值范圍.

  (3) 汽車行駛200km時(shí),油箱中還有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活動(dòng)2:練習(xí)教材9頁(yè)練習(xí)

  小結(jié):(1)函數(shù)概念

  (2)自變量,函數(shù)值

  (3)自變量的取值范圍確定

  作業(yè):18頁(yè):2,3,4題

八年級(jí)數(shù)學(xué)教案 篇4

  單元(章)主題第三章 直棱柱任課教師與班級(jí)

  本課(節(jié))課題3.1 認(rèn)識(shí)直棱柱第 1 課時(shí) / 共 課時(shí)

  教學(xué)目標(biāo)(含重點(diǎn)、難點(diǎn))及

  設(shè)置依據(jù)教學(xué)目標(biāo)

  1、了解多面體、直棱柱的有關(guān)概念.

  2、會(huì)認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.

  3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長(zhǎng)方形(含正方形)等特征.

  教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):直棱柱的有關(guān)概念.

  教學(xué)難點(diǎn):本節(jié)的例題描述一個(gè)物體的形狀,把它看成怎樣的兩個(gè)幾何體的組合,都需要一定的空間想象能力和表達(dá)能力.

  教學(xué)準(zhǔn)備每個(gè)學(xué)生準(zhǔn)備一個(gè)幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長(zhǎng)方體、立方體模型

  教 學(xué) 過 程

  內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡(jiǎn)明設(shè)計(jì)意圖二度備課(即時(shí)反思與糾正)

  一、創(chuàng)設(shè)情景,引入新課

  師:在現(xiàn)實(shí)生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?

  析:學(xué)生很容易回答出更多的答案。

  師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的`艾菲爾鐵塔、美國(guó)的迪思尼樂園、德國(guó)的古堡風(fēng)光,中國(guó)北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

  二、合作交流,探求新知

  1.多面體、棱、頂點(diǎn)概念:

  師:(出示長(zhǎng)方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個(gè)平面圍成的?都有什么相同特點(diǎn)?

  析:一個(gè)同學(xué)回答,然后小結(jié)概念:由若干個(gè)平面圍成的幾何體,叫做多面體。多面體上相鄰兩個(gè)面之間的交線叫做多面體的棱,幾個(gè)面的公共頂點(diǎn)叫做多面體的頂點(diǎn)

  2.合作交流

  師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。

  學(xué)生活動(dòng):(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語(yǔ)言描

  述其特征。)

  師:同學(xué)們?cè)儆懻撘幌,能否把自己的語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言。

  學(xué)生活動(dòng):分小組討論。

  說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動(dòng)探究中發(fā)現(xiàn)知識(shí),充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

  師:請(qǐng)大家找出與長(zhǎng)方體,立方體類似的物體或模型。

  析:舉出實(shí)例。(找出區(qū)別)

  師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長(zhǎng)方形含正方形。

  長(zhǎng)方體和正方體都是直四棱柱。

  3.反饋鞏固

  完成“做一做”

  析:由第(3)小題可以得到:

  直棱柱的相鄰兩條側(cè)棱互相平行且相等。

  4.學(xué)以至用

  出示例題。(先請(qǐng)學(xué)生單獨(dú)考慮,再作講解)

  析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)

  最后完成例題中的“想一想”

  5.鞏固練習(xí)(學(xué)生練習(xí))

  完成“課內(nèi)練習(xí)”

  三、小結(jié)回顧,反思提高

  師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?

  合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。

  直棱柱有以下特征:

  有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長(zhǎng)方形含正方形。

  例題中的把首飾盒看成是由兩個(gè)直三棱柱、直四棱柱的組合,或著是兩個(gè)直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。

  板書設(shè)計(jì)

  作業(yè)布置或設(shè)計(jì)作業(yè)本及課時(shí)特訓(xùn)

八年級(jí)數(shù)學(xué)教案 篇5

  教學(xué)目標(biāo):

  1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

  2.了解開方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。

  教學(xué)重點(diǎn):

  算術(shù)平方根的概念。

  教學(xué)難點(diǎn):

  根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

  教學(xué)過程

  一、情境導(dǎo)入

  請(qǐng)同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長(zhǎng)應(yīng)取多少 ?如果這塊畫布的面積是 ?這個(gè)問題實(shí)際上是已知一個(gè)正數(shù)的平方,求這個(gè)正數(shù)的問題?

  這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

  二、導(dǎo)入新課:

  1、提出問題:(書P68頁(yè)的問題)

  你是怎樣算出畫框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)

  這個(gè)問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.

  一般地,如果一個(gè)正數(shù)x的平方等于a,即 =a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號(hào)a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

  也就是,在等式 =a (x0)中,規(guī)定x = .

  2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

  3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

  建議:求值時(shí),要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對(duì)應(yīng)的值.例如 表示25的算術(shù)平方根。

  4、例1 求下列各數(shù)的算術(shù)平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  三、練習(xí)

  P69練習(xí) 1、2

  四、探究:(課本第69頁(yè))

  怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的.大正方形?

  方法1:課本中的方法,略;

  方法2:

  可還有其他方法,鼓勵(lì)學(xué)生探究。

  問題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?

  大正方形的邊長(zhǎng)是 ,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?

  建議學(xué)生觀察圖形感受 的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.

  五、小結(jié):

  1、這節(jié)課學(xué)習(xí)了什么呢?

  2、算術(shù)平方根的具體意義是怎么樣的?

  3、怎樣求一個(gè)正數(shù)的算術(shù)平方根

  六、課外作業(yè):

  P75習(xí)題13.1活動(dòng)第1、2、3題

八年級(jí)數(shù)學(xué)教案 篇6

  教學(xué)目標(biāo):

  1、掌握一次函數(shù)解析式的特點(diǎn)及意義

  2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

  3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律

  教學(xué)重點(diǎn):

  1、 一次函數(shù)解析式特點(diǎn)

  2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

  教學(xué)難點(diǎn):

  1、一次函數(shù)與正比例函數(shù)關(guān)系

  2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

  教學(xué)過程:

  Ⅰ.提出問題,創(chuàng)設(shè)情境

  問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.

  分析 我們知道汽車距北京的路程隨著行車時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車在高速公路上行駛時(shí)間為t小時(shí),汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

  s=570-95t.

  說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.

  問題2 小張準(zhǔn)備將平時(shí)的零用錢節(jié)約一些儲(chǔ)存起來.他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.

  分析 我們?cè)O(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

  問題3 以上問題1和問題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?

 、颍畬(dǎo)入新課

  上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱

  y是x的正比例函數(shù)。

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

 、賧=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

  (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

  (2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);

  (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

  (4)汽車每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).

 。5)汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;

 。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

 。7)一棵樹現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

  (2)L=2b+16,L是b的一次函數(shù).

  (3)y=150-5x,y是x的一次函數(shù).

  (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

  (5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

 。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

 。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

  例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

  分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

  例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.

  (1)寫出y與x之間的函數(shù)關(guān)系式;

  (2)y與x之間是什么函數(shù)關(guān)系;

  (3)求x=2.5時(shí),y的值.

  解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).

  又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函數(shù).

  (3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.

  1. 2

  例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).

  (1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.

  (2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

  分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.

  (2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油庫(kù)有一沒儲(chǔ)油的儲(chǔ)油罐,在開始的.8分鐘時(shí)間內(nèi),只開進(jìn)油管,不開出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

  分析 因?yàn)樵谥淮蜷_進(jìn)油管的8分鐘內(nèi)、后又打開進(jìn)油管和出油管的16分鐘和最后的只開出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.

  解 在第一階段:y=3x(0≤x≤8);

  在第二階段:y=16+x(8≤x≤16);

  在第三階段:y=-2x+88(24≤x≤44).

  Ⅲ.隨堂練習(xí)

  根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

  2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過6米3時(shí),超過部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不

  超過6米3和超過6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

  Ⅳ.課時(shí)小結(jié)

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、能根據(jù)已知簡(jiǎn)單信息,寫出一次函數(shù)的表達(dá)式。

  Ⅴ.課后作業(yè)

  1、已知y-3與x成正比例,且x=2時(shí),y=7

  (1)寫出y與x之間的函數(shù)關(guān)系.

  (2)y與x之間是什么函數(shù)關(guān)系.

  (3)計(jì)算y=-4時(shí)x的值.

  2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.

  3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

  4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹約有多高.

  5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過800元,免交個(gè)人所得稅.超過800元不超過1300元部分需繳納5%的個(gè)人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

八年級(jí)數(shù)學(xué)教案 篇7

  教材分析

  1本節(jié)課的主題:通過一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式

  1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對(duì)可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。

  2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

  學(xué)情分析

  1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:

 、偻愴(xiàng)的定義。

 、诤喜⑼愴(xiàng)法則

 、鄱囗(xiàng)式乘以多項(xiàng)式法則。

  2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

  在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的`右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

  教學(xué)目標(biāo)

  (一)教學(xué)目標(biāo):

  1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號(hào)感和推力能力。

  2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

  (二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過程,認(rèn)識(shí)有理

  數(shù)、實(shí)數(shù)、代數(shù)式、、;掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。

  (四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評(píng)價(jià)不同方法之間的差異;通過對(duì)解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。

  (五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。

  難點(diǎn):會(huì)推導(dǎo)完全平方公式

  教學(xué)過程

  教學(xué)過程設(shè)計(jì)如下:

  〈一〉、提出問題

  [引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析問題

  1、[學(xué)生回答]分組交流、討論

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

  (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

 。1)原式的特點(diǎn)。

 。2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。

  (3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。

 。4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。

  2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

  3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、運(yùn)用公式,解決問題

  1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2、判斷:

  ( )① (a-2b)2= a2-2ab+b2

  ( )② (2m+n)2= 2m2+4mn+n2

  ( )③ (-n-3m)2= n2-6mn+9m2

  ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

  ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

  ( )⑥ (-a-2b)2=(a+2b)2

  ( )⑦ (2a-4b)2=(4a-2b)2

  ( )⑧ (-5m+n)2=(-n+5m)2

  3、一現(xiàn)身手

  ① (x+y)2 =______________;② (-y-x)2 =_______________;

  ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

 、 (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

 、 (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

  〈四〉、[學(xué)生小結(jié)]

  你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

  (1)公式右邊共有3項(xiàng)。

  (2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。

  (3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。

  (4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。

  〈五〉、探險(xiǎn)之旅

 。1)(-3a+2b)2=________________________________

 。2)(-7-2m) 2 =__________________________________

  (3)(-0.5m+2n) 2=_______________________________

 。4)(3/5a-1/2b) 2=________________________________

  (5)(mn+3) 2=__________________________________

  (6)(a2b-0.2) 2=_________________________________

 。7)(2xy2-3x2y) 2=_______________________________

 。8)(2n3-3m3) 2=________________________________

  板書設(shè)計(jì)

  完全平方公式

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

八年級(jí)數(shù)學(xué)教案 篇8

  教學(xué)目標(biāo)

 、俳(jīng)歷探索整式除法運(yùn)算法則的過程,會(huì)進(jìn)行簡(jiǎn)單的整式除法運(yùn)算(只要求單項(xiàng)式除以單項(xiàng)式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨(dú)立思考、集體協(xié)作的能力。

 、诶斫庹匠ǖ乃憷,發(fā)展有條理的思考及表達(dá)能力。

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):整式除法的運(yùn)算法則及其運(yùn)用。

  難點(diǎn):整式除法的運(yùn)算法則的推導(dǎo)和理解,尤其是單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。

  教學(xué)準(zhǔn)備

  卡片及多媒體課件。

  教學(xué)設(shè)計(jì)

  情境引入

  教科書第161頁(yè)問題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的'多少倍嗎?

  重點(diǎn)研究算式(1。90×1024)÷(5。98×1021)怎樣進(jìn)行計(jì)算,目的是給出下面兩個(gè)單項(xiàng)式相除的模型。

  注:教科書從實(shí)際問題引入單項(xiàng)式的除法運(yùn)算,學(xué)生在探索這個(gè)問題的過程中,將自然地體會(huì)到學(xué)習(xí)單項(xiàng)式的除法運(yùn)算的必要性,了解數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,同時(shí)再次經(jīng)歷感受較大數(shù)據(jù)的過程。

  探究新知

 。1)計(jì)算(1。90×1024)÷(5。98×1021),說說你計(jì)算的根據(jù)是什么?

 。2)你能利用(1)中的方法計(jì)算下列各式嗎?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

 。3)你能根據(jù)(2)說說單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?

  注:教師可以鼓勵(lì)學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運(yùn)用自己的語(yǔ)言進(jìn)行描述。

  單項(xiàng)式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進(jìn)行。探究活動(dòng)的安排,是使學(xué)生通過對(duì)具體的特例的計(jì)算,歸納出單項(xiàng)式的除法運(yùn)算性質(zhì),并能運(yùn)用乘除互逆的關(guān)系加以說明,也可類比分?jǐn)?shù)的約分進(jìn)行。在這些活動(dòng)過程中,學(xué)生的化歸、符號(hào)演算等代數(shù)推理能力和有條理的表達(dá)能力得到進(jìn)一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強(qiáng)調(diào)的。

  歸納法則

  單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。

  注:通過總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語(yǔ)言表達(dá)自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

  應(yīng)用新知

  例2計(jì)算:

 。1)28x4y2÷7x3y;

  (2)—5a5b3c÷15a4b。

  首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號(hào)。對(duì)本例可以采用學(xué)生口述,教師板書的形式完成?谑龊桶鍟紤(yīng)注意展示法則的應(yīng)用,計(jì)算過程要詳盡,使學(xué)生盡快熟悉法則。

  注:?jiǎn)雾?xiàng)式除以單項(xiàng)式,既要對(duì)系數(shù)進(jìn)行運(yùn)算,又要對(duì)相同字母進(jìn)行指數(shù)運(yùn)算,同時(shí)對(duì)只在一個(gè)單項(xiàng)式里含有的冪要加以注意,這些對(duì)剛剛接觸整式除法的學(xué)生來講,難免會(huì)出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問題。

  鞏固新知教科書第162頁(yè)練習(xí)1及練習(xí)2。

  學(xué)生自己嘗試完成計(jì)算題,同桌交流。

  注:在獨(dú)立解題和同伴的相互交流過程中讓學(xué)生自己去體會(huì)法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動(dòng)參與學(xué)習(xí)的習(xí)慣。

  作業(yè)

  1。必做題:教科書第164頁(yè)習(xí)題15。3第1題;第2題。

  2。選做題:教科書第164頁(yè)習(xí)題15。3第8題

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)數(shù)學(xué)教案06-18

八年級(jí)的數(shù)學(xué)教案15篇12-14

【薦】八年級(jí)數(shù)學(xué)教案12-03

【熱】八年級(jí)數(shù)學(xué)教案12-07

八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27

人教版八年級(jí)數(shù)學(xué)教案11-04

初中八年級(jí)數(shù)學(xué)教案11-03

八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

八年級(jí)數(shù)學(xué)教案【薦】12-06