有關(guān)八年級數(shù)學(xué)教案模板合集9篇
作為一位不辭辛勞的人民教師,時常要開展教案準備工作,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。那么問題來了,教案應(yīng)該怎么寫?以下是小編整理的八年級數(shù)學(xué)教案9篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
八年級數(shù)學(xué)教案 篇1
知識技能
1.了解兩個圖形成軸對稱性的性質(zhì),了解軸對稱圖形的性質(zhì)。
2.探究線段垂直平分線的性質(zhì)。
過程方法
1.經(jīng)歷探索軸對稱圖形性質(zhì)的過程,進一步體驗軸對稱的特點,發(fā)展空間觀察。
2.探索線段垂直平分線的性質(zhì),培養(yǎng)學(xué)生認真探究、積極思考的能力。
情感態(tài)度價值觀通過對軸對稱圖形性質(zhì)的探索,促使學(xué)生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發(fā)學(xué)生學(xué)習(xí)的主動性和積極性,并使學(xué)生具有一些初步研究問題的能力。
教學(xué)重點
1.軸對稱的性質(zhì)。
2.線段垂直平分線的性質(zhì)。
教學(xué)難點體驗軸對稱的特征。
教學(xué)方法和手段多媒體教學(xué)
過程教學(xué)內(nèi)容
引入中垂線概念
引出圖形對稱的性質(zhì)第一張幻燈片
上節(jié)課我們共同探討了軸對稱圖形,知道現(xiàn)實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續(xù)來研究軸對稱的.性質(zhì)。
幻燈片二
1、圖中的對稱點有哪些?
2、點A和A的連線與直線MN有什么樣的關(guān)系?
理由?:△ABC與△ABC關(guān)于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設(shè)AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經(jīng)過線段AA、BB和CC的中點。
我們把經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
定義:經(jīng)過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。
八年級數(shù)學(xué)教案 篇2
教學(xué)目標
一、教學(xué)知識點:
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓(xùn)練要求:
1.通過具體實例認識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價值觀要求
1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.
2.通過學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問題,進一步發(fā)展學(xué)生的數(shù)學(xué)觀.
教學(xué)重點:旋轉(zhuǎn)的基本性質(zhì).
教學(xué)難點:探索旋轉(zhuǎn)的基本性質(zhì).
教學(xué)方法:
1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。
2、采用多媒體課件輔助教學(xué)。
教學(xué)過程:
一.巧設(shè)情景問題,引入課題
日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動呢?
1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點轉(zhuǎn)動的.
2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.
3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學(xué)們觀察得很仔細,我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn)(circumrotate).這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點同時都按相同的方式轉(zhuǎn)動相同的角度.在物體繞著一個定點轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點,旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置.這時點A旋轉(zhuǎn)到點D的'位置,點B旋轉(zhuǎn)到點E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.
(4)因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應(yīng)點.從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?
答:因為O是旋轉(zhuǎn)中心,點A與點D是對應(yīng)點,點B與點E是對應(yīng)點,且OA=OD,OB=OE,所以可以知道:對應(yīng)點與旋轉(zhuǎn)中心所連的線段的長度是相等的.
因為點A與點D、點B與點E是對應(yīng)點,且∠AOD=∠BOE,所以由此可以知道:對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角是互相相等的.
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應(yīng)點到旋轉(zhuǎn)中心的距離相等.
。劾1](課本68頁例1)
[師生共析]經(jīng)演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針所轉(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.
解:(見課本68頁)
書上68頁做一做
三.課堂練習(xí)
課本P69隨堂練習(xí).
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時小結(jié)
五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.
六.活動與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.
整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?
過程:同樣讓學(xué)生在畫圖過程中體會圖形中每個三角形之間的關(guān)系;或讓學(xué)生仔細觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的.
整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.
整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
板書設(shè)計:略
教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。
八年級數(shù)學(xué)教案 篇3
教學(xué)目標
1、知識與技能目標
學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力.
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.
(2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.
教學(xué)重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.
教學(xué)難點:
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.
教學(xué)準備:
多媒體
教學(xué)過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
情景:
如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算.
學(xué)生匯總了四種方案:
。ǎ保 (2) (3)(4)
學(xué)生很容易算出:情形(1)中A→B的.路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.
學(xué)生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短.
如圖:
。ǎ保┲蠥→B的路線長為:AA’+d;
(2)中A→B的路線長為:AA’+A’B>AB;
。ǎ常┲蠥→B的路線長為:AO+OB>AB;
(4)中A→B的路線長為:AB.
得出結(jié)論:利用展開圖中兩點之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學(xué)生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.
第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
(1)你能替他想辦法完成任務(wù)嗎?
(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨立完成)
1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?
2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?
第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:
1、如何利用勾股定理及逆定理解決最短路程問題?
第六 環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
內(nèi)容:
作業(yè):1.課本習(xí)題1.5第1,2,3題.
要求:A組(學(xué)優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
板書設(shè)計:
教學(xué)反思:
八年級數(shù)學(xué)教案 篇4
教學(xué)建議
知識結(jié)構(gòu)
重難點分析
本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.
本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.
教法建議
1. 對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測量、論證,實際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用
2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解
教學(xué)設(shè)計示例
一、教學(xué)目標
1.掌握中位線的概念和三角形中位線定理
2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”
3.能夠應(yīng)用三角形中位線概念及定理進行有關(guān)的論證和計算,進一步提高學(xué)生的計算能力
4.通過定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問題和解決問題的能力
5. 通過一題多解,培養(yǎng)學(xué)生對數(shù)學(xué)的興趣
二、教學(xué)設(shè)計
畫圖測量,猜想討論,啟發(fā)引導(dǎo).
三、重點、難點
1.教學(xué)重點:三角形中位線的.概論與三角形中位線性質(zhì).
2.教學(xué)難點:三角形中位線定理的證明.
四、課時安排
1課時
五、教具學(xué)具準備
投影儀、膠片、常用畫圖工具
六、教學(xué)步驟
【復(fù)習(xí)提問】
1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).
2.說明定理的證明思路.
3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?
分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.
4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)
【引入新課】
1.三角形中位線:連結(jié)三角形兩邊中點的線段叫做三角形中位線.
(結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫出中線、中位線)
2.三角形中位線性質(zhì)
了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).
如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.
三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.
應(yīng)注意的兩個問題:①為便于同學(xué)對定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點,即同一個題設(shè)下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時可根據(jù)需要來選用其中的結(jié)論(可以單獨用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的方法來證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.
由學(xué)生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).
(l)延長DE到F,使 ,連結(jié)CF,由 可得AD FC.
(2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.
(3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.
上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .
(證明過程略)
例 求證:順次連結(jié)四邊形四條邊的中點,所得的四邊形是平行四邊形.
(由學(xué)生根據(jù)命題,說出已知、求證)
已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.
求證:四邊形EFGH是平行四邊形.‘
分析:因為已知點分別是四邊形各邊中點,如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.
證明:連結(jié)AC.
∴ (三角形中位線定理).
同理,
∴GH EF
∴四邊形EFGH是平行四邊形.
【小結(jié)】
1.三角形中位線及三角形中位線與三角形中線的區(qū)別.
2.三角形中位線定理及證明思路.
七、布置作業(yè)
教材P188中1(2)、4、7
八年級數(shù)學(xué)教案 篇5
活動一、創(chuàng)設(shè)情境
引入:首先我們來看幾道練習(xí)題(幻燈片)
。◤(fù)習(xí):平行線及三角形全等的知識)
下面我們一起來欣賞一組圖片(幻燈片)
[學(xué)生活動]觀看后答問題:你看到了哪些圖形?
。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)
[學(xué)生活動]小組合作交流,拼出圖案的類型。
同學(xué)們所拼的圖形中,除了有我們學(xué)過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)
活動二、合作交流,探求新知
問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)
[學(xué)生活動]認真觀察、討論、思考、推理。
鼓勵學(xué)生交流,并是試著用自己的語言概括出平行四邊形的定義。
學(xué)生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。
并說明:平行四邊形不相鄰的兩個頂點連成的線段叫它的`對角線。
平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)
問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?
[學(xué)生活動]動手操作,小組演示交流。鼓勵學(xué)生用多種方法探究。
小結(jié)平行四邊形的性質(zhì):
平行四邊形的對邊相等
平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)
你能演示你的結(jié)論是如何得到的嗎?(學(xué)生演示)
你能證明嗎?(幻燈片出示證明題)
[學(xué)生活動]先分析思路尤其是輔助線,請學(xué)生上黑板證明。
自己完成性質(zhì)2的證明。
活動三、運用新知
性質(zhì)掌握了嗎?一起來看一道題目:
嘗試練習(xí)(幻燈片)例1
[學(xué)生活動]作嘗試性解答。
八年級數(shù)學(xué)教案 篇6
教材分析
因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的`,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。
學(xué)情分析
通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
教學(xué)目標
1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
2、通過公式a -b =(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。
3、能運用提公因式法、公式法進行綜合運用。
4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
教學(xué)重點和難點
重點: 靈活運用平方差公式進行分解因式。
難點:平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
八年級數(shù)學(xué)教案 篇7
教材分析
本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運算和因式分解是基本而重要的代數(shù)初步知識,在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運算等知識的基礎(chǔ)上,而本節(jié)課的知識是學(xué)習(xí)本章的基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的學(xué)習(xí)效果。
學(xué)情分析
本節(jié)課知識是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的知識相對較簡單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的運算性質(zhì)的過程是一個由特殊到一般的認識過程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。
從學(xué)生做練習(xí)和作業(yè)來看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。
教學(xué)目標
1、知識與技能:
掌握同底數(shù)冪乘法的.運算性質(zhì),能熟練運用性質(zhì)進行同底數(shù)冪乘法運算。
2、過程與方法:
(1)通過同底數(shù)冪乘法性質(zhì)的推導(dǎo)過程,體會不完全歸納法的運用,進一步發(fā)展演繹推理能力;
(2)通過性質(zhì)運用幫助學(xué)生理解字母表達式所代表的數(shù)量關(guān)系,進一步積累選擇適當?shù)某绦蚝退惴ń鉀Q用符號所表達問題的經(jīng)驗。
3、情感態(tài)度與價值觀:
。1)通過引例問題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進一步認識數(shù)學(xué)與生活的密切聯(lián)系;
(2)通過性質(zhì)的推導(dǎo)體會“特殊。
八年級數(shù)學(xué)教案 篇8
一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過平移,對應(yīng)點所連的線段平行且相等;⑵對應(yīng)線段平行且相等,對應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡單的平移作圖
①確定個圖形平移后的位置的條件:
、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應(yīng)點的位置。
、谧髌揭坪蟮膱D形的方法:
⑴找出關(guān)鍵點;⑵作出這些點平移后的對應(yīng)點;⑶將所作的對應(yīng)點按原來方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
⑴旋轉(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
⑵旋轉(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的'角度。
、侨我庖粚(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
、刃D(zhuǎn)前后的兩個圖形全等。
3.簡單的旋轉(zhuǎn)作圖
、乓阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。
、埔阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
①確定組合圖案中的“基本圖案”
、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
、尚D(zhuǎn)變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。
八年級數(shù)學(xué)教案 篇9
一、知識與技能
1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā)、討論兩個變量之間的相依關(guān)系,加深對函數(shù)、函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
二、過程與方法
1、經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點.
2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識.
三、情感態(tài)度與價值觀
1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.
2、通過分組討論,培養(yǎng)學(xué)生合作交流意識和探索精神.
教學(xué)重點:理解和領(lǐng)會反比例函數(shù)的概念.
教學(xué)難點:領(lǐng)悟反比例的概念.
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
活動1
問題:下列問題中,變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點?
(1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;
(2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;
(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.
師生行為:
先讓學(xué)生進行小組合作交流,再進行全班性的問答或交流.學(xué)生用自己的語言說明兩個變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達形式.
教師組織學(xué)生討論,提問學(xué)生,師生互動.
在此活動中老師應(yīng)重點關(guān)注學(xué)生:
、倌芊穹e極主動地合作交流.
②能否用語言說明兩個變量間的關(guān)系.
、勰芊窳私馑懻摰暮瘮(shù)表達形式,形成反比例函數(shù)概念的具體形象.
分析及解答:(1)
。唬2)
。唬3)
其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);
上面的函數(shù)關(guān)系式,都具有
的形式,其中k是常數(shù).
二、聯(lián)系生活,豐富聯(lián)想
活動2
下列問題中,變量間的對應(yīng)關(guān)系可用這樣的函數(shù)式表示?
。1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;
。2)某立方體的體積為1000cm3,立方體的高h隨底面積S的變化而變化;
(3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.
師生行為
學(xué)生先獨立思考,在進行全班交流.
教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動中,教師應(yīng)重點關(guān)注學(xué)生:
(1)能否從現(xiàn)實情境中抽象出兩個變量的函數(shù)關(guān)系;
(2)能否積極主動地參與小組活動;
(3)能否比較深刻地領(lǐng)會函數(shù)、反比例函數(shù)的概念.
分析及解答:(1)
;(2)
;(3)
概念:如果兩個變量x,y之間的關(guān)系可以表示成
的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.
活動3
做一做:
一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
師生行為:
學(xué)生先進行獨立思考,再進行全班交流.教師提出問題,關(guān)注學(xué)生思考.此活動中教師應(yīng)重點關(guān)注:
、偕芊窭斫夥幢壤瘮(shù)的意義,理解反比例函數(shù)的'概念;
②學(xué)生能否順利抽象反比例函數(shù)的模型;
③學(xué)生能否積極主動地合作、交流;
活動4
問題1:下列哪個等式中的y是x的反比例函數(shù)?
問題2:已知y是x的反比例函數(shù),當x=2時,y=6
(1)寫出y與x的函數(shù)關(guān)系式:
(2)求當x=4時,y的值.
師生行為:
學(xué)生獨立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時引導(dǎo).在此活動中教師應(yīng)重點關(guān)注:
①學(xué)生能否領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念;
、趯W(xué)生能否積極主動地參與小組活動.
分析及解答:
1、只有xy=123是反比例函數(shù).
2、分析:因為y是x的反比例函數(shù),所以
,再把x=2和y=6代入上式就可求出常數(shù)k的值.
解:(1)設(shè)
,因為x=2時,y=6,所以有
解得k=12
因此
(2)把x=4代入
,得
三、鞏固提高
活動5
1、已知y是x的反比例函數(shù),并且當x=3時,y=8.
。1)寫出y與x之間的函數(shù)關(guān)系式.
。2)求y=2時x的值.
2、y是x的反比例函數(shù),下表給出了x與y的一些值:
(1)寫出這個反比例函數(shù)的表達式;
(2)根據(jù)函數(shù)表達式完成上表.
學(xué)生獨立練習(xí),而后再與同桌交流,上講臺演示,教師要重點關(guān)注“學(xué)困生”.
四、課時小結(jié)
反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗和背景知識,注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認識到理發(fā)認識一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動,感知數(shù)學(xué)眼光,審視某些實際現(xiàn)象.
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
八年級下冊數(shù)學(xué)教案01-01
人教版八年級數(shù)學(xué)教案11-04
初中八年級數(shù)學(xué)教案11-03
【精】八年級數(shù)學(xué)教案12-04
八年級數(shù)學(xué)教案【精】12-04
八年級數(shù)學(xué)教案【薦】12-06