四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-09-05 13:04:04 八年級數(shù)學教案 我要投稿

有關八年級數(shù)學教案范文錦集10篇

  在教學工作者實際的教學活動中,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。我們該怎么去寫教案呢?下面是小編為大家整理的八年級數(shù)學教案10篇,僅供參考,歡迎大家閱讀。

有關八年級數(shù)學教案范文錦集10篇

八年級數(shù)學教案 篇1

  一、教學目標

  1.理解一個數(shù)平方根和算術平方根的意義;

  2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術平方根;

  3.通過本節(jié)的訓練,提高學生的邏輯思維能力;

  4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關系,激發(fā)學生探索數(shù)學奧秘的興趣。

  二、教學重點和難點

  教學重點:平方根和算術平方根的概念及求法。

  教學難點:平方根與算術平方根聯(lián)系與區(qū)別。

  三、教學方法

  講練結合

  四、教學手段

  幻燈片

  五、教學過程

  (一)提問

  1、已知一正方形面積為50平方米,那么它的邊長應為多少?

  2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?

  3、一只容積為0。125立方米的正方體容器,它的棱長應為多少?

  這些問題的共同特點是:已知乘方的結果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內容所要學習的。下面作一個小練習:填空

  1、()2=9; 2、()2 =0、25;

  3、

  5、()2=0、0081

  學生在完成此練習時,最容易出現(xiàn)的錯誤是丟掉負數(shù)解,在教學時應注意糾正。

  由練習引出平方根的概念。

 。ǘ┢椒礁拍

  如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。

  用數(shù)學語言表達即為:若x2=a,則x叫做a的平方根。

  由練習知:±3是9的平方根;

  ±0.5是0。25的平方根;

  0的平方根是0;

  ±0.09是0。0081的平方根。

  由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:

 。 )2=—4

  學生思考后,得到結論此題無答案。反問學生為什么?因為正數(shù)、0、負數(shù)的平方為非負數(shù)。由此我們可以得到結論,負數(shù)是沒有平方根的.。下面總結一下平方根的性質(可由學生總結,教師整理)。

 。ㄈ┢椒礁再|

  1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。

  2.0有一個平方根,它是0本身。

  3.負數(shù)沒有平方根。

  (四)開平方

  求一個數(shù)a的平方根的運算,叫做開平方的運算。

  由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負數(shù)進行運算,而且正數(shù)的運算結果是兩個。

  (五)平方根的表示方法

  一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負根號a”。

  練習:1.用正確的符號表示下列各數(shù)的平方根:

 、26 ②247 ③0。2 ④3 ⑤

  解:①26 的平方根是

 、247的平方根是

 、0。2的平方根是

 、3的平方根是

 、 的平方根是

  由學生說出上式的讀法。

  例1。下列各數(shù)的平方根:

 。1)81; (2) ; (3) ; (4)0。49

  解:(1)∵(±9)2=81,

  ∴81的平方根為±9。即:

 。2)

  的平方根是 ,即

  (3)

  的平方根是 ,即

  (4)∵(±0。7)2=0。49,

  ∴0。49的平方根為±0。7。

  小結:讓學生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。

  六、總結

  本節(jié)課主要學習了平方根的概念、性質,以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。

  七、作業(yè)

  教材P。127練習1、2、3、4。

  八、板書設計

  平方根

 。ㄒ唬└拍 (四)表示方法 例1

 。ǘ┬再|

 。ㄈ╅_平方

  探究活動

  求平方根近似值的一種方法

  求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。

  例1。求 的值。

  解 ∵92102,

  兩邊平方并整理得

  ∵x1為純小數(shù)。

  18x1≈16,解得x1≈0。9,

  便可依次得到精確度

  為0。01,0。001,……的近似值,如:

  兩邊平方,舍去x2得19.8x2≈—1.01

八年級數(shù)學教案 篇2

  [教學分析]

  勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。

  本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。

  [教學目標]

  一、 知識與技能

  1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。

  2、應用勾股定理解決簡單的實際問題

  3學會簡單的合情推理與數(shù)學說理

  二、 過程與方法

  引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。

  三、 情感與態(tài)度目標

  通過對勾股定理歷史的'了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。

  四、 重點與難點

  1、探索和證明勾股定理

  2熟練運用勾股定理

  [教學過程]

  一、創(chuàng)設情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國最早的一部數(shù)學著作——《周髀算經》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!

  2、教師展示圖片并介紹第二情景

  畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問題

  1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

  3、你能得到什么結論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法(圖2)

  第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

  第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的

  角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。

  因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

  這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。

  五、應用舉例,拓展訓練,鞏固反饋。

  勾股定理的靈活運用勾股定理在實際的生產生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結1、內容總結:探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

  2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。

  我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。

八年級數(shù)學教案 篇3

  一、知識與技能

  1.從現(xiàn)實情境和已有的知識、經驗出發(fā)、討論兩個變量之間的相依關系,加深對函數(shù)、函數(shù)概念的理解.

  2.經歷抽象反比例函數(shù)概念的過程,領會反比例函數(shù)的意義,理解反比例函數(shù)的概念.

  二、過程與方法

  1、經歷對兩個變量之間相依關系的討論,培養(yǎng)學生的辨別唯物主義觀點.

  2、經歷抽象反比例函數(shù)概念的過程,發(fā)展學生的抽象思維能力,提高數(shù)學化意識.

  三、情感態(tài)度與價值觀

  1、經歷抽象反比例函數(shù)概念的過程,體會數(shù)學學習的重要性,提高學生的學習數(shù)學的興趣.

  2、通過分組討論,培養(yǎng)學生合作交流意識和探索精神.

  教學重點:理解和領會反比例函數(shù)的概念.

  教學難點:領悟反比例的概念.

  教學過程

  一、創(chuàng)設情境,導入新課

  活動1

  問題:下列問題中,變量間的對應關系可用怎樣的函數(shù)關系式表示?這些函數(shù)有什么共同特點?

  (1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

  (2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;

  (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

  師生行為:

  先讓學生進行小組合作交流,再進行全班性的問答或交流.學生用自己的語言說明兩個變量間的關系為什么可以看著函數(shù),了解所討論的`函數(shù)的表達形式.

  教師組織學生討論,提問學生,師生互動.

  在此活動中老師應重點關注學生:

 、倌芊穹e極主動地合作交流.

 、谀芊裼谜Z言說明兩個變量間的關系.

  ③能否了解所討論的函數(shù)表達形式,形成反比例函數(shù)概念的具體形象.

  分析及解答:(1)

 ;(2)

 ;(3)

  其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

  上面的函數(shù)關系式,都具有

  的形式,其中k是常數(shù).

  二、聯(lián)系生活,豐富聯(lián)想

  活動2

  下列問題中,變量間的對應關系可用這樣的函數(shù)式表示?

 。1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;

 。2)某立方體的體積為1000cm3,立方體的高h隨底面積S的變化而變化;

 。3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.

  師生行為

  學生先獨立思考,在進行全班交流.

  教師操作課件,提出問題,關注學生思考的過程,在此活動中,教師應重點關注學生:

  (1)能否從現(xiàn)實情境中抽象出兩個變量的函數(shù)關系;

  (2)能否積極主動地參與小組活動;

  (3)能否比較深刻地領會函數(shù)、反比例函數(shù)的概念.

  分析及解答:(1)

  ;(2)

 。唬3)

  概念:如果兩個變量x,y之間的關系可以表示成

  的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

  活動3

  做一做:

  一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

  師生行為:

  學生先進行獨立思考,再進行全班交流.教師提出問題,關注學生思考.此活動中教師應重點關注:

  ①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;

  ②學生能否順利抽象反比例函數(shù)的模型;

 、蹖W生能否積極主動地合作、交流;

  活動4

  問題1:下列哪個等式中的y是x的反比例函數(shù)?

  問題2:已知y是x的反比例函數(shù),當x=2時,y=6

  (1)寫出y與x的函數(shù)關系式:

  (2)求當x=4時,y的值.

  師生行為:

  學生獨立思考,然后小組合作交流.教師巡視,查看學生完成的情況,并給予及時引導.在此活動中教師應重點關注:

 、賹W生能否領會反比例函數(shù)的意義,理解反比例函數(shù)的概念;

 、趯W生能否積極主動地參與小組活動.

  分析及解答:

  1、只有xy=123是反比例函數(shù).

  2、分析:因為y是x的反比例函數(shù),所以

  ,再把x=2和y=6代入上式就可求出常數(shù)k的值.

  解:(1)設

  ,因為x=2時,y=6,所以有

  解得k=12

  因此

 。2)把x=4代入

  ,得

  三、鞏固提高

  活動5

  1、已知y是x的反比例函數(shù),并且當x=3時,y=8.

  (1)寫出y與x之間的函數(shù)關系式.

 。2)求y=2時x的值.

  2、y是x的反比例函數(shù),下表給出了x與y的一些值:

 。1)寫出這個反比例函數(shù)的表達式;

 。2)根據(jù)函數(shù)表達式完成上表.

  學生獨立練習,而后再與同桌交流,上講臺演示,教師要重點關注“學困生”.

  四、課時小結

  反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經驗和背景知識,注意挖掘問題中變量的相依關系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認識到理發(fā)認識一旦建立概念,即已擺脫其原型成為數(shù)學對象.反比例函數(shù)具有豐富的數(shù)學含義,通過舉例、說理、討論等活動,感知數(shù)學眼光,審視某些實際現(xiàn)象.

八年級數(shù)學教案 篇4

  活動一、創(chuàng)設情境

  引入:首先我們來看幾道練習題(幻燈片)

  (復習:平行線及三角形全等的知識)

  下面我們一起來欣賞一組圖片(幻燈片)

  [學生活動]觀看后答問題:你看到了哪些圖形?

 。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)

  [學生活動]小組合作交流,拼出圖案的類型。

  同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質。(幻燈片出示課題)

  活動二、合作交流,探求新知

  問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

  [學生活動]認真觀察、討論、思考、推理。

  鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的定義。

  學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

  并說明:平行四邊形不相鄰的.兩個頂點連成的線段叫它的對角線。

  平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

  問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?

  [學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。

  小結平行四邊形的性質:

  平行四邊形的對邊相等

  平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

  你能演示你的結論是如何得到的嗎?(學生演示)

  你能證明嗎?(幻燈片出示證明題)

  [學生活動]先分析思路尤其是輔助線,請學生上黑板證明。

  自己完成性質2的證明。

  活動三、運用新知

  性質掌握了嗎?一起來看一道題目:

  嘗試練習(幻燈片)例1

  [學生活動]作嘗試性解答。

八年級數(shù)學教案 篇5

  教材分析

  本章屬于“數(shù)與代數(shù)”領域,整式的乘除運算和因式分解是基本而重要的代數(shù)初步知識,在后續(xù)的數(shù)學學習中具有重要的意義。本章內容建立在已經學習了有理數(shù)的運算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運算等知識的基礎上,而本節(jié)課的知識是學習本章的.基礎,為后續(xù)章節(jié)的學習作鋪墊,因此,學得好壞直接關乎到后續(xù)章節(jié)的學習效果。

  學情分析

  本節(jié)課知識是學習整章的基礎,因此,教學的好壞直接影響了后續(xù)章節(jié)的學習。學生在學習本章前,已經掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關概念,并且本節(jié)課的知識相對較簡單,學生比較容易理解和掌握,但是教師在教學中要注意引導學生導出同底數(shù)冪的乘法的運算性質的過程是一個由特殊到一般的認識過程,并且注意導出這一性質的每一步的根據(jù)。

  從學生做練習和作業(yè)來看,大部分學生都已經掌握本節(jié)課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。

  教學目標

  1、知識與技能:

  掌握同底數(shù)冪乘法的運算性質,能熟練運用性質進行同底數(shù)冪乘法運算。

  2、過程與方法:

  (1)通過同底數(shù)冪乘法性質的推導過程,體會不完全歸納法的運用,進一步發(fā)展演繹推理能力;

 。2)通過性質運用幫助學生理解字母表達式所代表的數(shù)量關系,進一步積累選擇適當?shù)某绦蚝退惴ń鉀Q用符號所表達問題的經驗。

  3、情感態(tài)度與價值觀:

 。1)通過引例問題情境的創(chuàng)設,誘發(fā)學生的求知欲,進一步認識數(shù)學與生活的密切聯(lián)系;

 。2)通過性質的推導體會“特殊。

八年級數(shù)學教案 篇6

  一、教學目標:

  1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

  2、能力目標:

 、,在實踐操作過程中,逐步探索圖形之間的平移關系;

 、,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

  3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。

  二、重點與難點:

  重點:圖形連續(xù)變化的特點;

  難點:圖形的劃分。

  三、教學方法:

  講練結合。使用多媒體課件輔助教學。

  四、教具準備:

  多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

  五、教學設計:

  創(chuàng)設情景,探究新知:

  (演示課件):教材上小狗的圖案。提問:

  (1)這個圖案有什么特點?

  (2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?

  (3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?

  小組討論,派代表回答。(答案可以多種)

  讓學生充分討論,歸納總結,老師給予適當?shù)闹笇,并對每種答案都要肯定。

  看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的`平移能得到右圖?誰到黑板做做看?

  小組討論,派代表到臺上給大家講解。

  氣氛要熱烈,充分調動學生的積極性,發(fā)掘他們的想象力。

  暢所欲言,互相補充。

  課堂小結:

  在教師的引導下學生總結本節(jié)課的主要內容,并啟發(fā)學生在我們周圍尋找平移的例子。

  課堂練習:

  小組討論。

  小組討論完成。

  例子一定要和大家接觸緊密、典型。

  答案不惟一,對于每種答案,教師都要給予充分的肯定。

  六、教學反思:

  本節(jié)的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質的提高。

八年級數(shù)學教案 篇7

  數(shù)據(jù)的波動

  教學目標:

  1、經歷數(shù)據(jù)離散程度的探索過程

  2、了解刻畫數(shù)據(jù)離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數(shù)值。

  教學重點:會計算某些數(shù)據(jù)的極差、標準差和方差。

  教學難點:理解數(shù)據(jù)離散程度與三個差之間的關系。

  教學準備:計算器,投影片等

  教學過程:

  一、創(chuàng)設情境

  1、投影課本P138引例。

  (通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個量度極差)

  2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的`差,極差是用來刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。

  二、活動與探究

  如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)

  問題:1、丙廠這20只雞腿質量的平均數(shù)和極差是多少?

  2、如何刻畫丙廠這20只雞腿質量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數(shù)的差距。

  3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

  (在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數(shù)據(jù)離散程度的量度標準差和方差作鋪墊。

  三、講解概念:

  方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

  設有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為

  則s2= ,

  而s= 稱為該數(shù)據(jù)的標準差(既方差的算術平方根)

  從上面計算公式可以看出:一組數(shù)據(jù)的極差,方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定。

  四、做一做

  你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

  (通過對此問題的解決,使學生回顧了用計算器求平均數(shù)的步驟,并自由探索求方差的詳細步驟)

  五、鞏固練習:課本第172頁隨堂練習

  六、課堂小結:

  1、怎樣刻畫一組數(shù)據(jù)的離散程度?

  2、怎樣求方差和標準差?

  七、布置作業(yè):習題5.5第1、2題。

八年級數(shù)學教案 篇8

  教學建議

  知識結構

  重難點分析

  本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關系,而且給出了線段的數(shù)量關系,為平面幾何中證明線段平行和線段相等提供了新的思路.

  本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

  教法建議

  1. 對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應用講授法應好些,教師可根據(jù)學生情況參考采用

  2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

  教學設計示例

  一、教學目標

  1.掌握中位線的概念和三角形中位線定理

  2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

  3.能夠應用三角形中位線概念及定理進行有關的`論證和計算,進一步提高學生的計算能力

  4.通過定理證明及一題多解,逐步培養(yǎng)學生的分析問題和解決問題的能力

  5. 通過一題多解,培養(yǎng)學生對數(shù)學的興趣

  二、教學設計

  畫圖測量,猜想討論,啟發(fā)引導.

  三、重點、難點

  1.教學重點:三角形中位線的概論與三角形中位線性質.

  2.教學難點:三角形中位線定理的證明.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、膠片、常用畫圖工具

  六、教學步驟

  【復習提問】

  1.敘述平行線等分線段定理及推論的內容(結合學生的敘述,教師畫出草圖,結合圖形,加以說明).

  2.說明定理的證明思路.

  3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

  分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

  4.什么叫三角形中線?(以上復習用投影儀打出)

  【引入新課】

  1.三角形中位線:連結三角形兩邊中點的線段叫做三角形中位線.

  (結合三角形中線的定義,讓學生明確兩者區(qū)別,可做一練習,在 中,畫出中線、中位線)

  2.三角形中位線性質

  了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質.

  如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

  三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

  應注意的兩個問題:①為便于同學對定理能更好的掌握和應用,可引導學生分析此定理的特點,即同一個題設下有兩個結論,第一個結論是表明中位線與第三邊的位置關系,第二個結論是說明中位線與第三邊的數(shù)量關系,在應用時可根據(jù)需要來選用其中的結論(可以單獨用其中結論).②這個定理的證明方法很多,關鍵在于如何添加輔助線.可以引導學生用不同的方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

  由學生討論,說出幾種證明方法,然后教師總結如下圖所示(用投影儀演示).

  (l)延長DE到F,使 ,連結CF,由 可得AD FC.

  (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

  (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

  上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

  (證明過程略)

  例 求證:順次連結四邊形四條邊的中點,所得的四邊形是平行四邊形.

  (由學生根據(jù)命題,說出已知、求證)

  已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

  求證:四邊形EFGH是平行四邊形.‘

  分析:因為已知點分別是四邊形各邊中點,如果連結對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關系,從而證出四邊形EFGH是平行四邊形.

  證明:連結AC.

  ∴ (三角形中位線定理).

  同理,

  ∴GH EF

  ∴四邊形EFGH是平行四邊形.

  【小結】

  1.三角形中位線及三角形中位線與三角形中線的區(qū)別.

  2.三角形中位線定理及證明思路.

  七、布置作業(yè)

  教材P188中1(2)、4、7

八年級數(shù)學教案 篇9

  5 14.3.2.2 等邊三角形(二)

  教學目標

  掌握等邊三角形的性質和判定方法.

  培養(yǎng)分析問題、解決問題的能力.

  教學重點

  等邊三角形的性質和判定方法.

  教學難點

  等邊三角形性質的應用

  教學過程

  I創(chuàng)設情境,提出問題

  回顧上節(jié)課講過的等邊三角形的`有關知識

  1.等邊三角形是軸對稱圖形,它有三條對稱軸.

  2.等邊三角形每一個角相等,都等于60°

  3.三個角都相等的三角形是等邊三角形.

  4.有一個角是60°的等腰三角形是等邊三角形.

  其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.

  II例題與練習

  1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

 、僭谶匒B、AC上分別截取AD=AE.

 、谧鳌螦DE=60°,D、E分別在邊AB、AC上.

  ③過邊AB上D點作DE∥BC,交邊AC于E點.

  2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大。

  分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

  III課堂小結

  1、等腰三角形和性質

  2、等腰三角形的條件

  V布置作業(yè)

  1.教科書第147頁練習1、2

  2.選做題:

  (1)教科書第150頁習題14.3第ll題.

  (2)已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

 。3)《課堂感悟與探究》

  5

八年級數(shù)學教案 篇10

  一、教學目標

 。ㄒ唬⒅R與技能:

 。1)使學生了解因式分解的意義,理解因式分解的概念。

 。2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

  (二)、過程與方法:

  (1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。

 。2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。

  (3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。

 。ㄈ、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。

  二、教學重點和難點

  重點:因式分解的.概念及提公因式法。

  難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

  三、教學過程

  教學環(huán)節(jié):

  活動1:復習引入

  看誰算得快:用簡便方法計算:

 。1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

 。3)992–1= 。

  設計意圖:

  如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

  注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

  活動2:導入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

  設計意圖:

  引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。

  活動3:探究新知

  看誰算得準:

  計算下列式子:

 。1)3x(x-1)= ;

  (2)(a+b+c)= ;

  (3)(+4)(-4)= ;

 。4)(-3)2= ;

 。5)a(a+1)(a-1)= ;

  根據(jù)上面的算式填空:

 。1)a+b+c= ;

 。2)3x2-3x= ;

 。3)2-16= ;

 。4)a3-a= ;

  (5)2-6+9= 。

  在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。

  活動4:歸納、得出新知

  比較以下兩種運算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

八年級數(shù)學教案【薦】12-06

【薦】八年級數(shù)學教案12-03

八年級數(shù)學教案【推薦】12-04

【推薦】八年級數(shù)學教案12-05

八年級數(shù)學教案【熱門】12-03

八年級的數(shù)學教案15篇12-14

【熱】八年級數(shù)學教案12-07

人教版八年級數(shù)學教案11-04