八年級數(shù)學教案匯總七篇
作為一位杰出的老師,時常會需要準備好教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。那么問題來了,教案應該怎么寫?下面是小編幫大家整理的八年級數(shù)學教案7篇,歡迎閱讀與收藏。
八年級數(shù)學教案 篇1
【教學目標】
一、教學知識點
1.命題的組成.
2.命題真假的判斷。
二、能力訓練要求:
1.使學生能夠分清命題的條件和結論,能判斷命題的真假
2.通過舉例判定一個命題是假命題,使學生學會反面思考問題的方法
三、情感與價值觀要求:
1.通過反例說明假命題,使學生認識到任何事情都是正反兩方面對立統(tǒng)一
2.幫助學生了解數(shù)學發(fā)展史,拓展視野,激發(fā)學習興趣
3.通過對《原本》介紹,使學生感受數(shù)學發(fā)展史和人類文明價值
【教學重點】準確的找出命題的條件和結論
【教學難點】理解判斷一個真命題需要證明
【教學方法】探討、合作交流
【教具準備】投影片
【教學過程】
一、情景創(chuàng)設、引入新課
師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?
新課:
(1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結構特征?與同伴交流。
1.如果兩個三角形的三條邊對應相等,那么這兩個三角形全等。
2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。
3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。
4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。
5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。
師:由此可見,每個命題都是由條件和結論兩部分組成的,條件是已知的`事項,結論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結論。
二、例題講解:
例1:師:下列命題的條件是什么?結論是什么?
1.如果兩個角相等,那么他們是對頂角;
2.如果a>b,b>c,那么a=c;
3.兩角和其中一角的對邊對應相等的兩個三角形全等;
4.菱形的四條邊都相等;
5.全等三角形的面積相等。
例題教學建議:1:其中(1)、(2)請學生直接回答,(3)、(4)、(5)請學生分成小組交流然后回答。
2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴展成這種形式,以分清條件和結論。
例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。
師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通常可以舉一個例子,使之具備命題的條件,卻不具備命題的結論,即反例。
教學建議:對于反例的要求可以采取啟發(fā)式層層遞進方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結論不吻合→給出如何舉反例要求。
三、思維拓展:
拓展1.師:如何證實一個命題是真命題呢?請同學們分小組交流一下。
教學建議:不急于解決學生怎么證實真命題的問題,可按以下程序設計教學過程
。1)首先給學生介紹歐幾里得的《原本》
(2)引出概念:公理、定理,證明
。3)啟發(fā)學生,現(xiàn)在如何證實一個命題的正確性
。4)給出本套教材所選用如下6個命題作為公理
。5)等式性質、不等式有關性質,等量代換也看作定理。
拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?
建議:在學生回答后歸納總結:公理是經(jīng)過長期實踐驗證的,不需要再進行推理論證都承認的真命題。定理是經(jīng)過推理論證的真命題。
練習書p197習題6.31
四、問題式總結
師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關命題的哪些知識?
建議:可對學生進行提示性引導,如:命題的構成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。
作業(yè):書p197習題6.32、3
板書設計:
定義與命題
課時2
條件
1.命題的結構特征
結論
1.假命題——可以舉反例
2.命題真假的判別
2.真命題——需要證明 學生活動一——
探索命題的結構特征
學生觀察、分組討論,得出結論:
。1)這五個命題都是用“如果……那么……”形式敘述的
。2)這五個命題都是由已知得到結論
(3)這五個命題都有條件和結論
學生活動二——
探索命題的條件和結論
生:命題1、2如果部分是條件,那么部分是結論;命題3如果兩個三角形兩角和其中一角對邊對應相等是條件,那么這兩個三角形全等是結論;命題4如果是菱形是條件,那么四條邊相等是結論;命題5如果兩三角形全等是條件,那么面積相等是結論。
學生活動三
探索命題的真假——如何判斷假命題
生:可以舉一個例子,說明命題1是不正確的,如圖:
已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角
生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c
生:由此說明:命題1、2是不正確的
生:命題3、4、5是正確的
學生活動四
探索命題的真假——如何證實一個命題是真命題
學生交流:
生:用我們以前學過的觀察、實驗、驗證特例等方法
生:這些方法往往并不可靠
生:能夠根據(jù)已知道的真命題證實呢?
生:那已經(jīng)知道的真命題又是如何證實的?
生:那可怎么辦呢?
生:可通過證明的方法
學生分小組討論得出結論
生:命題的結構特征:條件和結論
生:命題有真假之分
生:可以通過舉反例的方法判斷假命題
生:可通過證明的方法證實真命題
八年級數(shù)學教案 篇2
一、回顧交流,合作學習
【活動方略】
活動設計:教師先將學生分成四人小組,交流各自的小結,并結合課本P87的小結進行反思,教師巡視,并且不斷引導學生進入復習軌道.然后進行小組匯報,匯報時可借助投影儀,要求學生上臺匯報,最后教師歸納.
【問題探究1】(投影顯示)
飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?
思路點撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的.∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出BC的長.(3000千米)
【活動方略】
教師活動:操作投影儀,引導學生解決問題,請兩位學生上臺演示,然后講評.
學生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.
【問題探究2】(投影顯示)
一個零件的形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?
思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.
【活動方略】
教師活動:操作投影儀,關注學生的思維,請兩位學生上講臺演示之后再評講.
學生活動:思考后,完成“問題探究2”,小結方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD為直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此這個零件符合要求.
【問題探究3】
甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠?
思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
【活動方略】
教師活動:操作投影儀,巡視、關注學生訓練,并請兩位學生上講臺“板演”.
學生活動:課堂練習,與同伴交流或舉手爭取上臺演示
八年級數(shù)學教案 篇3
一、教學目標
知識與技能
1、了解立方根的概念,初步學會用根號表示一個數(shù)的立方根.
2、了解開立方與立方互為逆運算,會用立方運算求某些數(shù)的立方根.
過程與方法
1讓學生體會一個數(shù)的立方根的惟一性.
2培養(yǎng)學生用類比的思想求立方根的能力,體會立方與開立方運算的互逆性,滲透數(shù)學的轉化思想。
情感態(tài)度與價值觀
通過立方根符號的引入體會數(shù)學的簡潔美。
二、重點難點
重點
立方根的概念和求法。
難點
立方根與平方根的區(qū)別,立方根的求法
三、學情分析
前面已經(jīng)學過了平方根的知識,由于平方根與立方根的學習有很多相似之處,所以在教學設計上,主要還是采取類比的思想,在全面回顧平方根的基礎上,再來引導學生進行立方根知識的學習,讓學生感覺到其實立方根知識并不難,可以與平方根知識對比著學,這樣可以克服學生學習新知識的陌生心理。在學習方法上,提倡讓學生在反思中學習,在概念的得出,歸納性質,解題之后都要進行適當?shù)姆此,在反思中看待與理解新知識和新問題,會更理性和全面,會有更大的進步。
四、教學過程設計
教學環(huán)節(jié)問題設計師生活動備注
情境創(chuàng)設問題:要制作一種容積為27m3的`正方體形狀的包裝箱,這種包裝箱的邊長應該是多少?
設這種包裝箱的邊長為xm,則=27這就是求一個數(shù),使它的立方等于27.
因為=27,所以x=3.即這種包裝箱的邊長應為3m
歸納:
立方根的概念:
創(chuàng)設問題情境,引起學生學習的興趣,經(jīng)小組討論后引出概念。
通過具體問題得出立方根的概念
探究一:
根據(jù)立方根的意義填空,看看正數(shù)、0、負數(shù)的立方根各有什么特點?
因為(),所以0.125的立方根是()
因為(),所以-8的立方根是()
因為(),所以-0.125的立方根是()
因為(),所以0的立方根是()
一個正數(shù)有一個正的立方根
0有一個立方根,是它本身
一個負數(shù)有一個負的立方根
任何數(shù)都有唯一的立方根
【總結歸納】
一個數(shù)的立方根,記作,讀作:“三次根號”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.
探究二:
因為所以=
因為,所以=總結:
利用開立方和立方互為逆運算關系,求一個數(shù)的立方根,就可以利用這種互逆關系,檢驗其正確性,求負數(shù)的立方根,可以先求出這個負數(shù)的絕對值的立方根,再取其相反數(shù),即。
八年級數(shù)學教案 篇4
教學目標:
情意目標:培養(yǎng)學生團結協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。
教學重點、難點
重點:等腰梯形性質的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發(fā)法、
學習方法:討論法、合作法、練習法
教學過程:
。ㄒ唬⿲
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的`名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|的探究
【探究性質一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質:等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質:等腰梯形的兩條對角線相等。
【探究性質三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質:同以底上的兩個內(nèi)角相等,對角線相等
。ㄈ┵|疑反思、小結
讓學生回顧本課教學內(nèi)容,并提出尚存問題;
學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
八年級數(shù)學教案 篇5
一、教學目標
1.使學生根據(jù)分數(shù)的通分法則及分式的基本性質,分析、歸納出分式的通分法則,并能熟練掌握通分運算。
2.使學生理解和掌握分式和減法法則,并會應用法則進行分式加減的運算。
3.使學生能夠靈活運用分式的有關法則進行分式的四則混合運算。
4.引導學生不斷小結運算方法和技巧,提高運算能力。
二、教學重點和難點
1.重點:分式的加減運算。
2.難點:異分母的分式加減法運算。
三、教學方法
啟發(fā)式、分組討論。
四、教學手段
幻燈片。
五、教學過程
。ㄒ唬┮
1.如何計算:2.如何計算:3.若分母不同如何計算?如:
。ǘ┬抡n
1.類比分數(shù)的通分得到分式的通分:把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。
2.通分的依據(jù):分式的基本性質。
3.通分的關鍵:確定幾個分式的公分母。
通常取各分母的所有因式的.最高次冪的積作公分母,這樣的公分母叫做最簡公分母。
例1通分:
。1)解:∵最簡公分母是,
小結:各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù)。
。2)解:
例2通分:
。1)解:∵最簡公分母的是2x(x+1)(x—1),
小結:當分母是多項式時,應先分解因式。
(2)解:將分母分解因式:∴最簡公分母為2(x+2)(x—2),
練習:教材P,79中1、2、3。
。ㄈ┱n堂小結
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。
2.通分和約分都是依據(jù)分式的基本性質進行變形,其共同點是保持分式的值不變。
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備。
八年級數(shù)學教案 篇6
教學目標:
學會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。
教學重點:
去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的方法、
教學難點:
解分式方程的一般步驟。
教學過程:
復習引入:
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程
3、解方程(學生板演)
講授新課:
1、由上述學生的板演歸納出解分式方程的一般步驟
(1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;
。2)解這個整式方程;
(3)檢驗:將所得的解代入原方程的`最簡公分母,若最簡公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、
2、范例講解
。▽W生嘗試練習后,教師講評)
例1:解方程例2:解方程例3:解方程講評時強調:
1、怎樣確定最簡公分母?(先將各分母因式分解)
2、解分式方程的步驟、
鞏固練習:P1471t,2t、
課堂小結:解分式方程的一般步驟
布置作業(yè):見作業(yè)本。
八年級數(shù)學教案 篇7
分式方程
教學目標
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉化思想人體,培養(yǎng)學生的應用意識。
3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應用價值.
教學重點:
將實際問題中的等量 關系用分式方程表示
教學難點:
找實際問題中的等量關系
教學過程:
情境導入:
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的'產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關系嗎?(分組交流)
如果設第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
二、講授新課
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關系?
如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程_ _____________________。
學生分組探討、交流,列出方程.
三.做一做:
為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?
四.議一議:
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
五、 隨堂練習
(1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?
(2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度
(3)根據(jù)分式方程 編一道應用題,然后同組交流,看誰編得好
六、學 習小結
本節(jié)課你學到了哪些知識?有什么感想?
七.作業(yè)布置
【八年級數(shù)學教案】相關文章:
八年級的數(shù)學教案12-14
八年級數(shù)學教案06-18
初中八年級數(shù)學教案11-03
人教版八年級數(shù)學教案11-04
八年級上冊數(shù)學教案11-09
八年級的數(shù)學教案15篇12-14
八年級下冊數(shù)學教案01-01
八年級數(shù)學教案人教版01-03
八年級數(shù)學教案【熱門】12-03
【熱門】八年級數(shù)學教案11-29