八年級數(shù)學(xué)教案范文集合九篇
作為一名教師,時常需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。來參考自己需要的教案吧!以下是小編幫大家整理的八年級數(shù)學(xué)教案9篇,歡迎閱讀與收藏。
八年級數(shù)學(xué)教案 篇1
【教學(xué)目標(biāo)】
知識目標(biāo):了解中心對稱的概念,了解平行四邊形是中心對稱圖形,掌握中心對稱的性質(zhì)。
能力目標(biāo):靈活運用中心對稱的性質(zhì),會作關(guān)于已知點對稱的中心對稱圖形。
情感目標(biāo):通過提問、討論、動手操作等多種教學(xué)活動,樹立自信,自強(qiáng),自主感,由此激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心。
【教學(xué)重點、難點】
重點:中心對稱圖形的概念和性質(zhì)。
難點:范例中既有新概念,分析又要仔細(xì)、透徹,是教學(xué)的難點。
關(guān)鍵:已知點A和點O,會作點Aˊ,使點Aˊ與點A關(guān)于點O成中心對稱。
【課前準(zhǔn)備】
叫一位剪紙愛好的學(xué)生,剪一幅類似書本第108頁哪樣的圖案。
【教學(xué)過程】
一.復(fù)習(xí)
回顧七下學(xué)過的軸對稱變換、平移變換、旋轉(zhuǎn)變換、相似變換。
二.創(chuàng)設(shè)情境
用剪好的圖案,讓學(xué)生欣賞。師:這剪紙有哪些變換?生:軸對稱變換。師:指出對稱軸。生:(能結(jié)合圖案講)。生:還有旋轉(zhuǎn)變換。師:指出旋轉(zhuǎn)中心、旋轉(zhuǎn)的角度?生:90°、180°、270°。
三、合作學(xué)習(xí)
1、把圖1、圖2發(fā)給每個學(xué)生,先探索圖1:同桌的兩位同學(xué),把兩個正三角形重合,然后把上面的正三角形繞點O旋轉(zhuǎn)180°,觀察旋轉(zhuǎn)180°前后原圖形和像的位置情況,請學(xué)生說出發(fā)現(xiàn)什么?生(討論后):等邊三角形旋轉(zhuǎn)180°后所得的像與原圖形不重合。
探索圖形2:把兩個平形四邊形重合,然后把上面一個平形四邊形繞點O旋轉(zhuǎn)180°,學(xué)生動手后發(fā)現(xiàn):平行四邊形ABCD旋轉(zhuǎn)180°后所得的像與原圖形重合。師:為什么重合?師:作適當(dāng)解釋或?qū)W生自己發(fā)現(xiàn):∵OA=OC,∴點A繞點O旋轉(zhuǎn)180°與點C重合。同理可得,點C繞點O旋轉(zhuǎn)180°與點A重合。點B繞點O旋轉(zhuǎn)180°與點D重合。點D繞點O旋轉(zhuǎn)180°與點B重合。
2、中心對稱圖形的概念:如果一個圖形繞一個點旋轉(zhuǎn)180°后,所得到的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱(pointsymmetry)圖形,這個點叫對稱中心。
師:等邊三角形是中心對稱圖形嗎?生:不是。
3、想一想:等邊三角形是軸對稱圖形嗎?答:是軸對稱圖形。
平形四邊形是軸對稱圖形嗎?答:不是軸對稱圖形。
4、兩個圖形關(guān)于點O成中心對稱的概念:如果一個圖形繞著一個點O旋轉(zhuǎn)180°后,能夠和另外一個圖形互相重合,我們就稱這兩個圖形關(guān)于點O成中心對稱。
中心對稱圖形與兩個圖形成中心對稱的不同點:前者是一個圖形,后者是兩個圖形。
相同點:都有旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后都會重合。
做一做: P109
5、根據(jù)中心對稱圖形的定義,得出中心對稱圖形的性質(zhì):
對稱中心平分連結(jié)兩個對稱點的.線段
通過中心對稱的概念,得到P109性質(zhì)后,主要是理解與應(yīng)用。如右圖,若A、B關(guān)于點O的成中心對稱,∴點O是A、B的對稱中心。
反之,已知點A、點O,作點B,使點A、B關(guān)于以O(shè)為對稱中心的對稱點。讓學(xué)生練習(xí),多數(shù)學(xué)生會做,若不會做,教師作適當(dāng)?shù)膯l(fā)。
做P106例2,讓學(xué)生思考1~2分鐘,然后師生共同解答。
。≒106)例2 解:∵平行四邊形是中心對稱圖形,O是對稱中心,
EF經(jīng)過點O,分別交AB、CD于E、F。
∴點E、F是關(guān)于點O的對稱點。
∴OE=OF。
四、應(yīng)用新知,拓展提高
例 如圖,已知△ABC和點O,作△A′B′C′,使△A′B′C′與△ABC關(guān)于點O成中心對稱。
分析:先讓學(xué)生作點A關(guān)于以點O為對稱中心的對稱點Aˊ,
同理:作點B關(guān)于以點O為對稱中心的對稱點Bˊ,
作點C關(guān)于以點O為對稱中心的對稱點Cˊ。
∴△AˊBˊCˊ與△ABC關(guān)于點O成中心對稱也會作。解:略。
課內(nèi)練習(xí)P110
小結(jié)
今天我們學(xué)習(xí)了些什么?
1、中心對稱圖形的概念,兩個圖形成中心對稱的概念,知道它們的相同點與不同點。
2、會作中心對稱圖形,關(guān)鍵是會作點A關(guān)于以O(shè)為對稱中心的對稱點Aˊ。
3、我們已學(xué)過的中心對稱圖形有哪些?
作業(yè)
P110 A組1、2、3、4,B組5、6必做C組7選做。
八年級數(shù)學(xué)教案 篇2
教學(xué)目標(biāo):
1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負(fù)數(shù)的算術(shù)平方根。
教學(xué)重點:
算術(shù)平方根的概念。
教學(xué)難點:
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
教學(xué)過程
一、情境導(dǎo)入
請同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少 ?如果這塊畫布的.面積是 ?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?
這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
二、導(dǎo)入新課:
1、提出問題:(書P68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)
這個問題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
一般地,如果一個正數(shù)x的平方等于a,即 =a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式 =a (x0)中,規(guī)定x = .
2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如 表示25的算術(shù)平方根。
4、例1 求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、練習(xí)
P69練習(xí) 1、2
四、探究:(課本第69頁)
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學(xué)生探究。
問題:這個大正方形的邊長應(yīng)該是多少呢?
大正方形的邊長是 ,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學(xué)生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
五、小結(jié):
1、這節(jié)課學(xué)習(xí)了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術(shù)平方根
六、課外作業(yè):
P75習(xí)題13.1活動第1、2、3題
八年級數(shù)學(xué)教案 篇3
一、教學(xué)目標(biāo)
1.理解一個數(shù)平方根和算術(shù)平方根的意義;
2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;
3.通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過學(xué)習(xí)乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點和難點
教學(xué)重點:平方根和算術(shù)平方根的概念及求法。
教學(xué)難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過程
。ㄒ唬┨釂
1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?
2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?
這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個小練習(xí):填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學(xué)生在完成此練習(xí)時,最容易出現(xiàn)的錯誤是丟掉負(fù)數(shù)解,在教學(xué)時應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
。ǘ┢椒礁拍
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語言表達(dá)即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因為正數(shù)、0、負(fù)數(shù)的.平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。
2.0有一個平方根,它是0本身。
3.負(fù)數(shù)沒有平方根。
。ㄋ模╅_平方
求一個數(shù)a的平方根的運算,叫做開平方的運算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關(guān)系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負(fù)數(shù)進(jìn)行運算,而且正數(shù)的運算結(jié)果是兩個。
。ㄎ澹┢椒礁谋硎痉椒
一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號a”。
練習(xí):1.用正確的符號表示下列各數(shù)的平方根:
、26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
、0。2的平方根是
、3的平方根是
、 的平方根是
由學(xué)生說出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
。3)
的平方根是 ,即
。4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書,鞏固所學(xué)知識。
七、作業(yè)
教材P。127練習(xí)1、2、3、4。
八、板書設(shè)計
平方根
。ㄒ唬└拍 (四)表示方法 例1
。ǘ┬再|(zhì)
。ㄈ╅_平方
探究活動
求平方根近似值的一種方法
求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級數(shù)學(xué)教案 篇4
教學(xué)目標(biāo):
(一)教學(xué)知識點:梯形的判別方法.
(二)能力訓(xùn)練要求
1.經(jīng)歷探索梯形的判別條件的過程,在簡單的操作活動中發(fā)展學(xué)生的說理意識.
2.探索并掌握“同一底上的兩個內(nèi)角相等的梯形是等腰梯形”這一判別條件.
(三)情感與價值觀要求
1.通過探索梯形的判別條件,發(fā)展學(xué)生的說理意識,主動探究的習(xí)慣
2.解決梯形問題中,滲透轉(zhuǎn)化思想
教學(xué)重點:梯形的'判別條件
教學(xué)難點:解決梯形問題的基本方法
教學(xué)過程:
一、引入課題
上節(jié)課我們研究了特殊的梯形——等腰梯形的概念及其性質(zhì),下面我們來共同回憶一下:什么樣的梯形是等腰梯形?等腰梯形有什么性質(zhì)?
1.兩腰相等的梯形是等腰梯形
2.等腰梯形同一底上的兩個內(nèi)角相等,對角線相等
怎樣判定等腰梯形呢?我們這節(jié)課就來探討等腰梯形的判定
二、講授新課
判定:同一底上的兩個內(nèi)角相等的梯形是等腰梯形
問:我們能說明這種判定方法的正確性嗎?
如圖,在梯形ABCD中,AD∥BC,∠B=∠C
求證:梯形ABCD是等腰梯形
法一:證明:把腰DC平移到AE的位置,這時,四邊形AECD是平行四邊形,則AE∥CD
AE=CD,因為AE∥CE,所以∠AEB=∠C
又因為∠B=∠C,所以∠AEB=∠B
由在一個三角形中,等角對等邊,得
AB=AE,所以AB=CD
因此梯形ABCD是等腰梯形
八年級數(shù)學(xué)教案 篇5
【教學(xué)目標(biāo)】
一、教學(xué)知識點
1.命題的組成.
2.命題真假的判斷。
二、能力訓(xùn)練要求:
1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假
2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法
三、情感與價值觀要求:
1.通過反例說明假命題,使學(xué)生認(rèn)識到任何事情都是正反兩方面對立統(tǒng)一
2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣
3.通過對《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價值
【教學(xué)重點】準(zhǔn)確的找出命題的條件和結(jié)論
【教學(xué)難點】理解判斷一個真命題需要證明
【教學(xué)方法】探討、合作交流
【教具準(zhǔn)備】投影片
【教學(xué)過程】
一、情景創(chuàng)設(shè)、引入新課
師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?
新課:
。1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。
1.如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。
2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。
3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。
4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。
5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。
師:由此可見,每個命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項,結(jié)論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。
二、例題講解:
例1:師:下列命題的條件是什么?結(jié)論是什么?
1.如果兩個角相等,那么他們是對頂角;
2.如果a>b,b>c,那么a=c;
3.兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等;
4.菱形的四條邊都相等;
5.全等三角形的面積相等。
例題教學(xué)建議:1:其中(1)、(2)請學(xué)生直接回答,(3)、(4)、(5)請學(xué)生分成小組交流然后回答。
2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴(kuò)展成這種形式,以分清條件和結(jié)論。
例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。
師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通?梢耘e一個例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。
教學(xué)建議:對于反例的要求可以采取啟發(fā)式層層遞進(jìn)方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。
三、思維拓展:
拓展1.師:如何證實一個命題是真命題呢?請同學(xué)們分小組交流一下。
教學(xué)建議:不急于解決學(xué)生怎么證實真命題的問題,可按以下程序設(shè)計教學(xué)過程
。1)首先給學(xué)生介紹歐幾里得的《原本》
。2)引出概念:公理、定理,證明
。3)啟發(fā)學(xué)生,現(xiàn)在如何證實一個命題的正確性
。4)給出本套教材所選用如下6個命題作為公理
。5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。
拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?
建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實踐驗證的,不需要再進(jìn)行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。
練習(xí)書p197習(xí)題6.31
四、問題式總結(jié)
師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?
建議:可對學(xué)生進(jìn)行提示性引導(dǎo),如:命題的.構(gòu)成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。
作業(yè):書p197習(xí)題6.32、3
板書設(shè)計:
定義與命題
課時2
條件
1.命題的結(jié)構(gòu)特征
結(jié)論
1.假命題——可以舉反例
2.命題真假的判別
2.真命題——需要證明 學(xué)生活動一——
探索命題的結(jié)構(gòu)特征
學(xué)生觀察、分組討論,得出結(jié)論:
。1)這五個命題都是用“如果……那么……”形式敘述的
。2)這五個命題都是由已知得到結(jié)論
。3)這五個命題都有條件和結(jié)論
學(xué)生活動二——
探索命題的條件和結(jié)論
生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個三角形兩角和其中一角對邊對應(yīng)相等是條件,那么這兩個三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。
學(xué)生活動三
探索命題的真假——如何判斷假命題
生:可以舉一個例子,說明命題1是不正確的,如圖:
已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角
生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c
生:由此說明:命題1、2是不正確的
生:命題3、4、5是正確的
學(xué)生活動四
探索命題的真假——如何證實一個命題是真命題
學(xué)生交流:
生:用我們以前學(xué)過的觀察、實驗、驗證特例等方法
生:這些方法往往并不可靠
生:能夠根據(jù)已知道的真命題證實呢?
生:那已經(jīng)知道的真命題又是如何證實的?
生:那可怎么辦呢?
生:可通過證明的方法
學(xué)生分小組討論得出結(jié)論
生:命題的結(jié)構(gòu)特征:條件和結(jié)論
生:命題有真假之分
生:可以通過舉反例的方法判斷假命題
生:可通過證明的方法證實真命題
八年級數(shù)學(xué)教案 篇6
1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?
2.學(xué)生觀察下面的例子,并計算:
由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,請每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:
。ā0,b0)
使學(xué)生回憶起二次根式乘法的運算方法的推導(dǎo)過程.
類似地,請每個同學(xué)再舉一個例子,
請學(xué)生們思考為什么b的取值范圍變小了?
與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.
對比二次根式的乘法推導(dǎo)出除法的運算方法
增強(qiáng)學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.
對學(xué)生進(jìn)一步強(qiáng)化被開方數(shù)的取值范圍,以及分母不能為零.
強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).
教學(xué)過程設(shè)計
問題與情境師生行為設(shè)計意圖
活動二自我檢測
活動三挑戰(zhàn)逆向思維
把反過來,就得到
。ā0,b0)
利用它就可以進(jìn)行二次根式的化簡.
例2化簡:
。1)
。2)(b≥0).
解:(1)(2)練習(xí)2化簡:
。1)(2)活動四談?wù)勀愕氖斋@
1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).
2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的.二次根式的化簡.
找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計算,然后再找學(xué)生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?
找學(xué)生口述解題過程,教師將過程寫在黑板上.
請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.
請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.
為了更快地發(fā)現(xiàn)學(xué)生的錯誤之處,以便糾正.
此處進(jìn)行簡單處理是因為有二次根式的乘法公式的逆用作基礎(chǔ)理解并不難.
讓學(xué)困生在自己做題時有一個參照.
充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.
八年級數(shù)學(xué)教案 篇7
教學(xué)目標(biāo)
。ㄒ唬┙虒W(xué)知識點
1.經(jīng)歷探索積的乘方的運算法則的過程,進(jìn)一步體會冪的意義。
2.理解積的乘方運算法則,能解決一些實際問題。
(二)能力訓(xùn)練要求
1.在探究積的乘方的運算法則的過程中,發(fā)展推理能力和有條理的表達(dá)能力。
2.學(xué)習(xí)積的乘方的運算法則,提高解決問題的能力。
。ㄈ┣楦信c價值觀要求
在發(fā)展推理能力和有條理的語言、符號表達(dá)能力的同時,進(jìn)一步體會學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)習(xí)數(shù)學(xué)的信心,感受數(shù)學(xué)的簡潔美。
教學(xué)重點
積的乘方運算法則及其應(yīng)用。
教學(xué)難點
冪的運算法則的靈活運用。
教學(xué)方法
自學(xué)─引導(dǎo)相結(jié)合的方法。
同底數(shù)冪的乘法、冪的'乘方、積的乘方成一個體系,研究方法類同,有前兩節(jié)課做基礎(chǔ),本節(jié)課可放手讓學(xué)生自學(xué),教師引導(dǎo)學(xué)生總結(jié),從而讓學(xué)生真正理解冪的運算方法,能解決一些實際問題。
教具準(zhǔn)備
投影片.
教學(xué)過程
、瘢岢鰡栴},創(chuàng)設(shè)情境
[師]還是就上節(jié)課開課提出的問題:若已知一個正方體的棱長為1.1×103cm,你能計算出它的體積是多少嗎?
[生]它的體積應(yīng)是V=(1.1×103)3cm3。
[師]這個結(jié)果是冪的乘方形式嗎?
[生]不是,底數(shù)是1.1和103的乘積,雖然103是冪,但總體來看,我認(rèn)為應(yīng)是積的乘方才有道理。
[師]你分析得很有道理,積的乘方如何運算呢?能不能找到一個運算法則?有前兩節(jié)課的探究經(jīng)驗,老師想請同學(xué)們自己探索,發(fā)現(xiàn)其中的奧秒。
、颍畬(dǎo)入新課
老師列出自學(xué)提綱,引導(dǎo)學(xué)生自主探究、討論、嘗試、歸納。
出示投影片
1.填空,看看運算過程用到哪些運算律,從運算結(jié)果看能發(fā)現(xiàn)什么規(guī)律?
。1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()
。2)(ab)3=______=_______=a()b()
。3)(ab)n=______=______=a()b()(n是正整數(shù))
2.把你發(fā)現(xiàn)的規(guī)律用文字語言表述,再用符號語言表達(dá)。
3.解決前面提到的正方體體積計算問題。
4.積的乘方的運算法則能否進(jìn)行逆運算呢?請驗證你的想法。
5.完成課本P170例3。
學(xué)生探究的經(jīng)過:
1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結(jié)合律;第③步是用同底數(shù)冪的乘法法則。同樣的方法可以算出(2)、(3)題。
八年級數(shù)學(xué)教案 篇8
課題:一元二次方程實數(shù)根錯例剖析課
【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。
【典型例題】
例1 下列方程中兩實數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯答: B
正解: C
錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯解 :B
正解:D
錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0
例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。
錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠蹋豢赡苡袃蓚實根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當(dāng)x12+x22=15時,求m的值。
錯解:由根與系數(shù)的關(guān)系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
。絒-(2m+1)]2-2(m2+1)
。2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。
正解:m = 2
例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。
錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范圍是m≠±1且m≥ -
錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。
正解:m的取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。
錯解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負(fù)數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3
正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3
【練習(xí)】
練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。
。1)求k的取值范圍;
。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的'值;如果不存在,請說明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<
∴當(dāng)k< 時,方程有兩個不相等的實數(shù)根。
。2)存在。
如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。
∴當(dāng)k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。
解:上面解法錯在如下兩個方面:
。1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實數(shù)根。
(2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)
練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?
解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=
。2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4
∴當(dāng)a≥ -4且a≠0時,方程有實數(shù)根。
又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實數(shù)根。
【小結(jié)】
以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。
1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。
2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。
3、條件多面時(如例5、例6)考慮要周全。
【布置作業(yè)】
1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。
求證:關(guān)于x的方程
。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。
考題匯編
1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
。1)若方程的一個根為1,求m的值。
。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。
3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級數(shù)學(xué)教案 篇9
教學(xué)目標(biāo):
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學(xué)重點:分式通分的理解和掌握。
教學(xué)難點:分式通分中最簡公分母的確定。
教學(xué)工具:投影儀
教學(xué)方法:啟發(fā)式、討論式
教學(xué)過程:
(一)引入
(1)如何計算:
由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分?jǐn)?shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據(jù):分式的基本性質(zhì).
3.通分的關(guān)鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.
根據(jù)分式通分和最簡公分母的定義,將分式通分:
最簡公分母為:
然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx
通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。
例1 通分:xxx
分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的`通分找最小公倍數(shù)。
解:∵ 最簡公分母是12xy2,
小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
解:∵最簡公分母是10a2b2c2,
由學(xué)生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
【精】八年級數(shù)學(xué)教案12-04
八年級數(shù)學(xué)教案【精】12-04
【熱】八年級數(shù)學(xué)教案12-07
八年級數(shù)學(xué)教案【熱】11-29
【薦】八年級數(shù)學(xué)教案12-03