小學(xué)六年級數(shù)學(xué)《反比例》教案
作為一無名無私奉獻(xiàn)的教育工作者,通常會被要求編寫教案,借助教案可以有效提升自己的教學(xué)能力。來參考自己需要的教案吧!以下是小編為大家收集的小學(xué)六年級數(shù)學(xué)《反比例》教案,歡迎大家借鑒與參考,希望對大家有所幫助。
小學(xué)六年級數(shù)學(xué)《反比例》教案1
教學(xué)內(nèi)容:
教材第106、107頁例1,例2。
教學(xué)要求:
1.使學(xué)生認(rèn)識正、反比例應(yīng)用題的特點,理解、掌握用比例知識解答應(yīng)用題的解題思路和解題方法,學(xué)會正確地解答基本的正、反比例應(yīng)用題。
2.進(jìn)一步培養(yǎng)學(xué)生應(yīng)用知識進(jìn)行分析、推理的能力,發(fā)展學(xué)生思維。
教學(xué)重點:
認(rèn)識正、反比例應(yīng)用題的特點。
教學(xué)難點:
掌握用比例知識解答應(yīng)用題的解題思路。
教學(xué)過程:
一、鋪墊孕伏:
1.判斷下面的量各成什么比例。
(1)工作效率一定,工作總量和工作時間。
(2)路程一定,行駛的速度和時間。
讓學(xué)生先分別說出數(shù)量關(guān)系式,再判斷。
2.根據(jù)條件說出數(shù)量關(guān)系式,再說出兩種相關(guān)聯(lián)的量成什么比例,并列出相應(yīng)的等式。
(1)一臺機床5小時加工40個零件,照這樣計算,8小時加工64個。
(2)一列火車行駛360千米。每小時行90千米,要行4小時;每小時行80千米,要行x小時。
指名學(xué)生口答,老師板書。
3.引入新課。
從上面可以看出,生產(chǎn)、生活中的一些實際問題,應(yīng)用比例的知識,也可以根據(jù)題意列一個等式。所以,我們以前學(xué)過的一些應(yīng)用題,還可以應(yīng)用比例的知識來解答。這節(jié)課,就學(xué)習(xí)正、反比例應(yīng)用題。(板書課題)
二、自主探究:
1.教學(xué)例1。
(1)出示例1,讓學(xué)生讀題。
提問:以前我們是怎樣解答的?(板書算式)先求什么,是按怎樣的數(shù)量關(guān)系式來求的?這道題里哪個數(shù)量是不變的量?
(2)說明:這道題還可以用比例知識解答。
提問:題里再買幾個同樣的籃球說明什么一定?數(shù)量之間有怎樣的關(guān)系式,兩種相關(guān)聯(lián)的量成什么比例關(guān)系?題里兩次籃球個數(shù)與總價對應(yīng)數(shù)值各是多少?這兩次對應(yīng)數(shù)值的什么相等?你能根據(jù)對應(yīng)數(shù)值的比值相等,列出等式來解答嗎?請大家自己試一試(啟發(fā)弄清要設(shè)未知數(shù)x)。學(xué)生練習(xí)解題,然后口答,老師板書。追問:按過去的方法是先求什么再解答的?先求單一量的應(yīng)用題現(xiàn)在用什么比例關(guān)系解答的?
(3)小結(jié):
提問:誰來說一說,用正比例知識解答這道應(yīng)用題要怎樣想?怎樣做?指出:先按題意列關(guān)系式判斷成正比例,再找出兩種相關(guān)聯(lián)量里相對應(yīng)的數(shù)值,然后根據(jù)正比例關(guān)系里比值一定,也就是兩次籃球個數(shù)與總價對應(yīng)數(shù)值比的比值相等,列等式解答。
2.教學(xué)改編題。
出示改變的問題,讓學(xué)生說一說題意。請同學(xué)們按照例1的方法自己在練習(xí)本上解答。同時指名一人板演,然后集體訂正。指名說一說是怎樣想的,列等式的依據(jù)是什么。
3.教學(xué)例2。
(1)出示例2,學(xué)生讀題。
提問:以前我們是怎樣解答的?(板書算式)這樣解答先求什么?是按怎樣的數(shù)量關(guān)系式來求的`?(板書:效率時間=總量)這道題里哪個數(shù)量是不變的量?
(2)誰能仿照例l的解題過程,用比例知識來解答例2?請同學(xué)們自己來試一試。指名板演,其余學(xué)生做在練習(xí)本上。學(xué)生練習(xí)后提問是怎樣想的。效率和時間的對應(yīng)關(guān)系怎樣,檢查列式解答過程,結(jié)合提問弄清為什么列成積相等的等式解答。
(3)提問:按過去的方法是先求什么再解答的?先求總量的應(yīng)用題現(xiàn)在用什么比例關(guān)系解答的?誰來說一說,用反比例關(guān)系解答這道應(yīng)用題是怎樣想,怎樣做的?指出;解答例2要先按題意列出關(guān)系式,判斷成反比例,再找出兩種相關(guān)聯(lián)量里相對應(yīng)的數(shù)值,然后根據(jù)反比例關(guān)系里積一定,也就是兩次修地下管道相對應(yīng)數(shù)值的乘積相等,列等式解答。
4.小結(jié)解題思路。
請同學(xué)們看一下黑板上例1、例2的解題過程,想一想,應(yīng)用比例知識解答應(yīng)用題,是怎樣想怎樣做的?同學(xué)們可以相互討論一下,然后告訴大家。指名學(xué)生說解題思路。指出:應(yīng)用比例知識解答應(yīng)用題,先要判斷兩種相關(guān)聯(lián)的量成什么比例關(guān)系,(板書:判斷比例關(guān)系)再找出相關(guān)聯(lián)量的對應(yīng)數(shù)值,(板書:找出對應(yīng)數(shù)值)再根據(jù)正、反比例的意義列出等式解答。(板書:列出等式解答)追問:你認(rèn)為解題時關(guān)鍵是什么?(正確判斷成什么比例)怎樣來列出等式?(正比例比值相等,反比例乘積相等)
三、鞏固練習(xí)
1.做練一練。
指名兩人板演,其余學(xué)生做在練習(xí)本上。集體訂正,讓學(xué)生說說為什么列出的等式不一樣。指出:只有先正確判斷成什么比例關(guān)系,才能根據(jù)正比例或反比例的意義正確列式。
2.做練習(xí)十三第1題。
先自己判斷,小組交流,再集體訂正。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了什么內(nèi)容?正、反比例應(yīng)用題要怎樣解答?你還認(rèn)識了些什么?
五、布置作業(yè)
完成練習(xí)十三第2~6題的解答。
小學(xué)六年級數(shù)學(xué)《反比例》教案2
教學(xué)目的:通過混合練習(xí),加深學(xué)生對正比例和反比例的意義的理解,提高判斷能力。
教學(xué)過程:
一、引入
教師:前面我們學(xué)習(xí)了正比例和反比例的意義.上節(jié)課我們又把它們進(jìn)行了比較,你們會根據(jù)正比例和反比例的意義,比較熟練地判斷兩種相關(guān)聯(lián)的量是成正比例還是成反比例嗎?
二、課堂練習(xí)
1.分析、研究第3題。
讓學(xué)生先說出長方形的長、寬、面積三個量中.其中一個量與另外兩個量的關(guān)系,教師板書出來:長寬=面積
= 長 =寬
提問:
當(dāng)面積一定時,長和寬成什么比例關(guān)系?
當(dāng)長一定時,面積和寬成什么比例關(guān)系?
當(dāng)寬一定時,面積和長成什么比例關(guān)系?
教師:通過上面的分析,我們知道:要判斷三種相關(guān)聯(lián)的量在什么條件下組成哪種比例關(guān)系,我們可以先寫出它們中的'一種量與另外兩種量的關(guān)系,再進(jìn)行分析,。
2.第4題,讓學(xué)生仿照第3題的方法做。訂正后,教師板書如下:
每次運貨噸數(shù)運貨次數(shù)=運貨的總噸數(shù)(一定) 每次運貨噸數(shù) 與運貨次數(shù) =運貨次數(shù)(一定) 成反比例關(guān) 系。
運貨的總噸 =每次運貨噸數(shù)(一定) 數(shù)與運貨次 數(shù)成正比例 關(guān)系
3.第5題,讓學(xué)生獨立做,教師巡視,注意個別輔導(dǎo)。
4.第6題,先讓學(xué)生自己判斷,然后指名回答,第(1)小題成反比例,第(2)、(4)、(6)小題成正比例,第(3)、(5)小題不成比例。
5.第7題,學(xué)生獨立解答后,選一題說說是怎樣解的。
6.學(xué)有余力的學(xué)生做第8題。
小學(xué)六年級數(shù)學(xué)《反比例》教案3
教學(xué)內(nèi)容:
成反比例的量。
教學(xué)目的:
使學(xué)生理解反比例的意義,會正確判斷兩種相關(guān)聯(lián)的量是否成反比例,培養(yǎng)學(xué)生判斷能力。
教學(xué)重點、難點:
反比例的意義和正確判斷成反比例的量。
教具準(zhǔn)備:
小黑板、投影片。
教學(xué)過程
一、 復(fù)習(xí)
1、 口答正比例的意義。
。、 怎樣判斷兩種量成正比例?
3、 寫出下面各題的數(shù)量關(guān)系,并判斷在什么條件下,其中哪兩種量成正比例?
(1) 已知每小時加工零件數(shù)和加工時間,求加工零件總數(shù)。
。ǎ玻 已知每本書的價錢和購買的本數(shù),求應(yīng)付的錢。
。ǎ常 已知每公畝產(chǎn)量和公畝數(shù),求總產(chǎn)量。
二、引新
在上面的數(shù)量部系式中,如果加工零件總數(shù)一定,每小時加工零件和加工時間是什么關(guān)系?如果應(yīng)付的總錢數(shù)一定,每本書的價錢和本數(shù)是什么關(guān)系?如果總產(chǎn)量一定,每公畝產(chǎn)量和公畝數(shù)是什么關(guān)系?這就是今天我們學(xué)習(xí)的內(nèi)容:反比例的意義(板書)
三、 新授
。、 教學(xué)例4。
。ǎ保┏鍪纠。
引導(dǎo)學(xué)生觀察上表內(nèi)數(shù)據(jù),然后回答下面的問題:
。、表中有哪兩種量?這兩種量相關(guān)聯(lián)嗎?為什么?
。隆⒓庸さ臅r間是否隨著每小時加工的個數(shù)的變化而變化?怎樣變化?
。谩⒈碇袃蓚相的數(shù)的比值是多少?一定嗎?兩個相對應(yīng)的數(shù)的積各是多少?你能從中發(fā)現(xiàn)什么規(guī)律?
。、這個積表示什么?寫出表示它們之間的數(shù)量關(guān)系式。
學(xué)生口答,師板書
小結(jié):
。病⒔虒W(xué)例5
用600頁紙裝訂成同樣的練習(xí)本,每本的頁數(shù)和裝訂的本數(shù)有什么關(guān)系?請你先填寫下表。
每本的頁數(shù) 15 20 25 30 40 60
裝訂的本數(shù) 40
。ǎ保 先填表,然后觀察上表,回答下列問題:
表中有哪兩種量?
裝訂的本數(shù)是怎樣隨著每本的頁數(shù)變化而變化的?
表中相對應(yīng)的每兩個數(shù)的乘積各是多少?
你從中發(fā)現(xiàn)什么規(guī)律?寫出它們的數(shù)量關(guān)系式?
學(xué)生回答,教師板書如下:
每本頁數(shù)裝訂的本數(shù)=紙的總頁數(shù)(一定)
(2) 小結(jié):
從上表可以看出:每本的頁數(shù)和裝訂的本數(shù)也是兩種相關(guān)聯(lián)的量,裝訂的本數(shù)是隨著本頁數(shù)的變化的。每本的頁數(shù)擴大,裝訂的本數(shù)反而縮。幻勘镜捻摂(shù)縮小,裝訂的本數(shù)反而擴大。它們擴大、縮小的規(guī)律是:每本的頁數(shù)和裝訂的本數(shù)的積總是一定的。
(3) 歸納反比例的意義及關(guān)系式。
(1)請你比較一下上面的例4、例5,它們有什么共同特點?(教師引導(dǎo)學(xué)生歸納概括出反比例的'意義)
。ǎ玻┡袛喑煞幢壤康姆椒ǎ焊鶕(jù)反比例的意義判斷兩種量是否面反比例的量要具備的條件:
a兩種相關(guān)聯(lián)的量。
b一種量變化,另一種也隨著變化。
C兩種量中相對應(yīng)的兩個數(shù)的積一定。
。ǎ常├粗校庸さ臅r間隨著每小時加工數(shù)量的變化,每小時加工的數(shù)量和加工的時間的積(零件總數(shù))是一定的,我們就說每小時加工的數(shù)量和加工的時間是成反比例的量。想一想:在例5中,有哪兩種相關(guān)聯(lián)的量?它們是不是成反比例的量?為什么?(指名幾個學(xué)生口述,教師幫助糾正)
。ǎ矗 概括關(guān)系式。
如果用字母X和Y表示兩種相關(guān)聯(lián)的量,用R表示它們的積(一定),反比例關(guān)系可以用下面的式子表示:
XY=R(一定)
。常虒W(xué)例6。
播種的總公頃數(shù)一定,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?
師:大家能不能根據(jù)反比例的意義判斷一下?
指名口述,師講評。
。刻觳シN的公頃數(shù)和要用的天數(shù)是兩6種相關(guān)聯(lián)的量,每天播種的公頃數(shù)天數(shù)=播種的總公頃數(shù),已知播種的總公頃數(shù)一定,也就是每天播種的公頃數(shù)和天數(shù)的積是一定的,所以每天播種的公頃數(shù)和要用的天數(shù)成反比例。)
四、小結(jié)
判斷兩種相關(guān)聯(lián)的量是否成反比例,關(guān)鍵是看兩種相關(guān)聯(lián)的量中相對應(yīng)的兩個數(shù)的積是否一定,積一定這兩種量成反比例。
討論:想一想:播種總公頃數(shù)一定,已經(jīng)播種的公頃數(shù)和剩下的公頃數(shù)是不是成反比例?為什么?
五、鞏固練習(xí)
課本第16頁的做一做練后講評。
六、課內(nèi)外作業(yè)
完成練習(xí)三的第4――7題。
小學(xué)六年級數(shù)學(xué)《反比例》教案4
教學(xué)內(nèi)容:教材第99~102頁例1~例3。
教學(xué)要求:
1.使學(xué)生認(rèn)識反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關(guān)系。
2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學(xué)生判斷、推理的能力。
教學(xué)重點:認(rèn)識反比例關(guān)系的意義。
教學(xué)難點:掌握成反比例量的變化規(guī)律及其特征。
教學(xué)過程:
一、鋪墊孕伏:
1.正比例關(guān)
系的意義是什么?怎樣用字母表示這種關(guān)系?
判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?
2.下面哪兩種量成正比例關(guān)系?為什么?
(1)時間一定,行駛的速度和路程。
(2)數(shù)量一定,單價和總價。
3.說一說工作效率、工作時間和工作總量之間的數(shù)量關(guān)系。(學(xué)生回答后老師板書)在什么條件下,其中兩種量成正比例?
4.引入新課。
如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學(xué)習(xí)的反比例關(guān)系。(板書課題)
二、自主探究:
1.教學(xué)例2。
出示例2某運輸公司要運一批300噸的貨物。讓學(xué)生計算并完成填表任務(wù)。
每天運的數(shù)量(噸)1020304050
所需的天數(shù)
在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學(xué)生按學(xué)習(xí)正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。
指名學(xué)生口答討論的結(jié)果,得出:
(1)每天運的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。
(2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。
(3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)
2.教學(xué)例1
出示例1。
請同學(xué)們按照剛才學(xué)習(xí)例4的方法,自己學(xué)習(xí)例1,仔細(xì)想想你發(fā)現(xiàn)了些什么?學(xué)生觀察思考后,小組討論:長方形的面積比變,當(dāng)長發(fā)生變化時,長方形的寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?
3.概括反比例的意義。
(1)綜合例1、例2的共同點。
提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?
(2)概括反比例意義。
例1、例2里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?請同學(xué)們看第101頁1~3自然段。說明:像例1、例2里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應(yīng)的兩個數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的`量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用xy=k(一定)來表示。
4.具體認(rèn)識。
(1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,
例2里的兩種量成反比例關(guān)系嗎?為什么?
(2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?
(3)判斷。
現(xiàn)在回過來看開始寫的關(guān)系式:工作效率工作時間=工作總量,當(dāng)工作總量一定時,工作效率和工作時間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。
5.教學(xué)例3。
出示例3,看書自學(xué),小組討論,集體交流。追問:判斷兩種量成不成反比例要怎樣想?其中關(guān)鍵是看什么?
三、鞏固練習(xí)
用剛才我們說的判斷方法來做幾道題。
1.做練一練。
指名學(xué)生口答,說明理由。(可以寫出數(shù)量關(guān)系式看一看)
2.下題兩種相關(guān)聯(lián)量成不成反比例?為什么?
一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做練習(xí)十二第1題。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)的是什么內(nèi)容?反比例關(guān)系的意義是什么?用怎樣的式子表示x和y這兩種相關(guān)聯(lián)的量成反比例?判斷兩種量是不是成反比例,關(guān)鍵是什么?
五、課堂作業(yè)
練習(xí)十二第2~4題。
小學(xué)六年級數(shù)學(xué)《反比例》教案5
教學(xué)目標(biāo)
1.使學(xué)生理解正、反比例的意義,能夠初步判斷兩種相關(guān)聯(lián)的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學(xué)生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點,進(jìn)行運用變化觀點的啟蒙教育.
教學(xué)重難點
理解正反比例的意義,掌握正反比例的變化的規(guī)律.
教學(xué)過程
一、導(dǎo)入新課
。ㄒ唬┳蛱炖蠋熧I了一些蘋果,吃了一部分,你能想到什么?
(二)教師提問
1.你為什么馬上能想到還剩多少呢?
2.是不是因為吃了的和剩下的是兩種相關(guān)聯(lián)的`量?
教師板書:兩種相關(guān)聯(lián)的量
。ㄈ┙處熣勗
在實際生活中兩種相關(guān)的量是很多的,例如總價和單價是兩種相關(guān)聯(lián)的量,總價和
數(shù)量也是兩種相關(guān)聯(lián)的量.你還能舉出一些例子嗎?
二、新授教學(xué)
。ㄒ唬┏烧壤牧
例1.一列火車行駛的時間和所行的路程如下表:
時間(時):路程(千米)
1 :90
2 :180
3 :270
4 :360
5 :450
6 :540
7 :630
8 :720
1.寫出路程和時間的比并計算比值.
。1) 2表示什么?180呢?比值呢?
(2) 這個比值表示什么意義?
。3) 360比5可以嗎?為什么?
2.思考
(1)180千米對應(yīng)的時間是多少?4小時對應(yīng)的路程又是多少?
(2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?
教師板書:時間、路程、速度
(3)速度是怎樣得到的?
教師板書:
。4)路程比時間得到了速度,速度也就是比值,比值相當(dāng)于除法中的什么?
。5)在這組題中誰與誰是兩種相關(guān)聯(lián)的量?它們是如何相關(guān)聯(lián)的?舉例說明變化規(guī)律.
3.小結(jié):有什么規(guī)律?
小學(xué)六年級數(shù)學(xué)《反比例》教案6
教學(xué)內(nèi)容:教材第53~54頁練習(xí)十第4~13題,練習(xí)十后的思考題。
教學(xué)要求:使學(xué)生進(jìn)一步掌握正、反比例關(guān)系的意義,能正確應(yīng)用比例知識解答基本的正、反比例應(yīng)用題,并溝通不同解法之間的聯(lián)系,進(jìn)一步提高學(xué)生判斷、分析和推理等思維能力。
教學(xué)重點:進(jìn)一步掌握正、反比例關(guān)系的意義。
教學(xué)難點:正確應(yīng)用比例知識解答基本的正、反比例應(yīng)用題。
教學(xué)過程:
一、基本訓(xùn)練
1.揭示課題。
我們已經(jīng)學(xué)習(xí)了正、反比例關(guān)系的意義和正、反比例應(yīng)用題,根據(jù)成正、反比例量的關(guān)系,可以應(yīng)用比例的知識解答相應(yīng)的應(yīng)用題。這節(jié)課,我們練習(xí)正、反比例應(yīng)用題。(板書課題)
2.基本訓(xùn)練。
小黑板出示練習(xí)十第4題,讓學(xué)生口答并說明理由。結(jié)合第(1)題判斷說明:在一個乘法表示的式子里(板書:ab=c),如果積一定,另兩個量就成反比例;如果一個因數(shù)一定,根據(jù)乘、除法的關(guān)系,另兩個量就成正比例。
二、基本題練習(xí)
1.做練習(xí)十第5題。
。1)學(xué)生讀題。
提問:按過去的算術(shù)解法,第(1)題要先求什么數(shù)量,第(2)題要先求什么數(shù)量?用比例的知識怎樣解答呢,請大家自己做一做。指名兩人板演,其余學(xué)生做在練習(xí)本上。集體訂正。
。2)提問:第(1)題是怎樣想的?第(2)題是怎樣想的,提問:正、反比例應(yīng)用題解題過程有什么相同的地方?解題方法有什么不同?為什么?
2.練習(xí)小結(jié)。
解答正、反比例應(yīng)用題,都要先判斷兩種相關(guān)聯(lián)的量成什么比例,找出兩種相關(guān)聯(lián)量的對應(yīng)數(shù)值,再列等式解答。解題時,正比例應(yīng)用題要根據(jù)比值一定列等式解答;反比例應(yīng)用題要根據(jù)乘積一定列等式解答。
三、綜合練習(xí)
1.做練習(xí)十第11題。
讓學(xué)生默讀題目。提問:第一個圓柱的高是第二個圓柱高的 還可以怎樣說?(第一個圓柱的高和第二個圓柱高的比是4 :5,或者第一個圓柱的高看做4份,第二個圓柱的高就是這樣的5份)請大家思考兩個問題,當(dāng)兩個圓柱底面積相等時,(1)圓柱體積與高成什么比例?(2)兩個圓柱體積的比與對應(yīng)高的比有怎樣的關(guān)系?為什么?想一想,你能用幾種方法解答,自己在練習(xí)本上列出式子.指名學(xué)生口答式子,老師板書(包括用分?jǐn)?shù)應(yīng)用題的`方法解答)。讓學(xué)生根據(jù)不同的式子,說說各是怎樣想的。說明:按照分?jǐn)?shù)與比之間的聯(lián)系,有些應(yīng)用題可以 根據(jù)數(shù)量之間的聯(lián)系,用分?jǐn)?shù)和比例知識,采用不同的方法解答。
2.做練習(xí)十第13題。
。1)提問:這是一道什么應(yīng)用題?可以怎樣列式解答?(老師板書)這樣解答是怎樣想的?(把樹苗總棵數(shù)看做單位1,單位1的94%是470棵,所以列方程解)
。2)把樹苗總數(shù)看做單位l,成活棵數(shù)是94%,你還能用比例知識解答嗎?指名一人板演,其余學(xué)生做在練習(xí)本上。集體訂正,讓學(xué)生說明列式理由。
四、講解思考題
學(xué)生默讀題目。提問:增加鉛以后,鉛與錫的比是5 :3,有怎樣的關(guān)系式?根據(jù)這樣的關(guān)系式可以怎樣解答呢?請大家課后想一想、做一做。
五、課堂小結(jié)
通過練習(xí),你進(jìn)一步明確了哪些內(nèi)容? 指出:過去我們學(xué)過的先求單一量和先求總數(shù)量的應(yīng)用題,可以用比例知識來解答。解答正、反比例應(yīng)用題,要先判斷成什么比例,找出數(shù)量之間對應(yīng)數(shù)值,然后根據(jù)比值相等或乘積相等的等量關(guān)系,列等式解答。解答應(yīng)用題,還可以根據(jù)數(shù)量之間的聯(lián)系,用不同的方法做。
六、布置作業(yè)
課堂作業(yè):練習(xí)十第8、9、10題
家庭作業(yè):練習(xí)十第6、7、12題。
小學(xué)六年級數(shù)學(xué)《反比例》教案7
設(shè)計說明
“反比例”是在學(xué)生學(xué)習(xí)了“比和比例”和“正比例”的基礎(chǔ)上進(jìn)行教學(xué)的。本著“學(xué)生是學(xué)習(xí)的主體”的理念,在本節(jié)課的教學(xué)中,最大限度地為學(xué)生提供了自主探究的機會。
1.借助定義、實例,滲透函數(shù)思想。
教學(xué)伊始,借助正比例的意義和生活實例,使學(xué)生進(jìn)一步體會函數(shù)思想,充分理解成正比例關(guān)系的兩種量的比值不變的特點,為學(xué)生探究成反比例關(guān)系的兩種量之間的關(guān)系以及理解反比例的意義和特點奠定良好的基礎(chǔ)。
2.借助具體情境,在觀察、討論中發(fā)現(xiàn)規(guī)律。
教學(xué)中,通過具體情境,引導(dǎo)學(xué)生在觀察、討論中發(fā)現(xiàn)“把相同體積的水倒入底面積不同的杯子中,水面的高度不同”及“杯子的底面積×水的高度=水的體積”這一規(guī)律,使學(xué)生通過自己的努力,歸納、概括出反比例的意義及特點。
3.借助已有的學(xué)習(xí)經(jīng)驗總結(jié)反比例關(guān)系式。
因為正、反比例體現(xiàn)的都是兩種相關(guān)聯(lián)的量之間的關(guān)系,且正比例關(guān)系表達(dá)式學(xué)生已經(jīng)掌握,所以在總結(jié)反比例關(guān)系表達(dá)式時,教師要引導(dǎo)學(xué)生根據(jù)已有的經(jīng)驗自己總結(jié)出反比例關(guān)系表達(dá)式,體驗成功的喜悅。
課前準(zhǔn)備
教師準(zhǔn)備 PPT課件
學(xué)生準(zhǔn)備 玻璃杯 直尺 水 實驗記錄單
教學(xué)過程
⊙復(fù)習(xí)引入
1.復(fù)習(xí)。
課件出示:一個圓柱形水箱,底面積是0.78平方米,高是1.2米,這個水箱能裝水多少立方米?
(1)引導(dǎo)學(xué)生獨立解決問題。
(2)提問:你是根據(jù)什么公式進(jìn)行計算的?
預(yù)設(shè)
生:圓柱的體積=底面積×高。
(3)師追問:圓柱的體積、底面積和高之間還有怎樣的數(shù)量關(guān)系呢?在什么情況下其中的兩種量成正比例關(guān)系?
預(yù)設(shè)
生1:底面積=圓柱的體積÷高,高=圓柱的體積÷底面積。
生2:如果底面積一定,圓柱的體積與高就成正比例;如果高一定,圓柱的體積與底面積就成正比例。
2.引入課題。
如果圓柱的體積一定,那么底面積與高又成怎樣的關(guān)系呢?這就是本節(jié)課我們要學(xué)習(xí)的內(nèi)容。(板書課題:反比例)
設(shè)計意圖:通過復(fù)習(xí)有關(guān)圓柱的體積問題以及列舉圓柱的體積、底面積和高之間的關(guān)系,在培養(yǎng)學(xué)生思維完整性的同時,為新知的學(xué)習(xí)作鋪墊。
⊙探究新知
1.在具體情境中初步感知成反比例關(guān)系的量。
(1)課件出示教材47頁例2,引導(dǎo)學(xué)生結(jié)合問題進(jìn)行觀察。
師:觀察情境圖,理解圖意后,觀察下表,先一行一行地觀察,再一列一列地觀察,并思考下面的問題。
杯子的底面積與水的高度的變化情況如下表。
杯子的底面積/cm2 | 10 | 15 | 20 | 30 | 60 | … |
水的高度/cm | 30 | 20 | 15 | 10 | 5 | … |
、俦碇杏心膬煞N量?
②水的高度是怎樣隨著杯子底面積的大小變化而變化的?
③相對應(yīng)的杯子的底面積與水的高度的乘積分別是多少?
(2)學(xué)生思考后在小組內(nèi)交流。
(3)全班交流。
預(yù)設(shè)
生1:有杯子的`底面積和水的高度這兩種量。
生2:杯子的底面積增大,水的高度降低;杯子的底面積減小,水的高度升高。
生3:相對應(yīng)的杯子的底面積與水的高度的乘積都是300,是一定的,也就是杯子的底面積×水的高度=水的體積(一定)。
(4)明確什么是成反比例的量。
因為水的體積一定,所以水的高度隨著杯子的底面積的變化而變化。杯子的底面積增大,水的高度反而降低;杯子的底面積減小,水的高度反而升高。但是無論怎樣變化,杯子的底面積和水的高度的乘積總是一定的,所以我們就把杯子的底面積和水的高度這兩種量叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
小學(xué)六年級數(shù)學(xué)《反比例》教案8
教學(xué)目標(biāo):
1、理解反比例的意義。
2、能根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
3、培養(yǎng)學(xué)生的抽象概括能力和判斷推理能力。
教學(xué)重點:
引導(dǎo)學(xué)生理解反比例的意義。
教學(xué)難點:
利用反比例的意義,正確判斷兩種量是否成反比例。
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1、成正比例的量有什么特征?
2、下表中的兩種量是不是成正比例?為什么?
二、自主探究
(一)教學(xué)例1
1.出示例1,提出觀察思考要求:
從表中你發(fā)現(xiàn)了什么?這個表同復(fù)習(xí)的表相比,有什么不同?
(1)表中的兩種量是每小時加工的數(shù)量和所需的加工時間。
教師板書:每小時加工數(shù)和加工時間
(2)每小時加工的數(shù)量擴大,所需的加工時間反而縮小;每小時加工的數(shù)量縮小,所需的加工時間反而擴大。
教師追問:這是兩種相關(guān)聯(lián)的量嗎?為什么?
(3)每兩個相對應(yīng)的數(shù)的乘積都是600.
2.這個600實際上就是什么?每小時加工數(shù)、加工時間和零件總數(shù),怎樣用式子表示它們之間的關(guān)系?
教師板書:零件總數(shù)
每小時加工數(shù)×加工時間=零件總數(shù)
3.小結(jié)
通過剛才的研究,我們知道,每小時加工數(shù)和加工時間是兩種相關(guān)聯(lián)的量,每小時加工數(shù)變化,加工時間也隨著變化,每小時加工數(shù)乘以加工時間等于零件總數(shù),這里的零件總數(shù)是一定的。
(二)教學(xué)例2
1.出示例2,根據(jù)題意,學(xué)生口述填表。
2.教師提問:
(1)表中有哪兩種量?是相關(guān)聯(lián)的量嗎?
教師板書:每本張數(shù)和裝訂本數(shù)
(2)裝訂的本數(shù)是怎樣隨著每本的張數(shù)變化的?
(3)表中的兩種量有什么變化規(guī)律?
(三)比較例1和例2,概括反比例的意義。
1.請你比較例1和例2,它們有什么相同點?
(1)都有兩種相關(guān)聯(lián)的量。
(2)都是一種量變化,另一種量也隨著變化。
(3)都是兩種量中相對應(yīng)的兩個數(shù)的.積一定。
2.教師小結(jié)
像這樣的兩種量,我們就把它們叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
3.如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的積一定,反比例關(guān)系可以用一個什么樣的式子表示?
教師板書:xy =k(一定)
三、課堂小結(jié)
1、這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學(xué)會了怎樣判斷兩種量是不是成反比例。在判斷時,同學(xué)們要按照反比例的意義,認(rèn)真分析,做出正確的判斷。
2、通過今天的學(xué)習(xí),正比例關(guān)系和反比例關(guān)系有什么相同點和不同點?
四、課堂練習(xí)
完成教材43頁做一做
五、課后作業(yè)
練習(xí)七6、7、8、9題。
六、板書設(shè)計
成反比例的量xy=k(一定)
每小時加工數(shù)×加工時間=零件總數(shù)(一定)
每本頁數(shù)×裝訂本數(shù)=紙的總頁數(shù)(一定)
【小學(xué)六年級數(shù)學(xué)《反比例》教案】相關(guān)文章:
數(shù)學(xué)反比例教案03-25
小學(xué)數(shù)學(xué)六年級下冊反比例教案08-26
《反比例》數(shù)學(xué)教案12-07
《反比例》數(shù)學(xué)教案02-17
小學(xué)六年級數(shù)學(xué)《反比例》教案8篇06-10