七年級數(shù)學(xué)下冊教案平行線6篇
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,時(shí)常會(huì)需要準(zhǔn)備好教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。我們該怎么去寫教案呢?以下是小編幫大家整理的七年級數(shù)學(xué)下冊教案平行線,供大家參考借鑒,希望可以幫助到有需要的朋友。
七年級數(shù)學(xué)下冊教案平行線1
教學(xué)目標(biāo)
1.經(jīng)歷從性質(zhì)公理推出性質(zhì)的過程;
2.感受原命題與逆命題,從而了解平行線的性質(zhì)公理與判定公理的區(qū)別,能在推理過程正確使用.
對話探索設(shè)計(jì)
〖探索1反過來也成立嗎
過去我們學(xué)過:如果兩個(gè)數(shù)的和為0,這兩個(gè)數(shù)互為相反數(shù).反過來,如果兩個(gè)數(shù)互為相反數(shù),那么這兩個(gè)數(shù)的和為0.顯然,這兩個(gè)句子都是正確的.
現(xiàn)在換一個(gè)例子:如果一個(gè)整數(shù)個(gè)位上的數(shù)字是5,那么它一定能夠被5整除.對嗎?這句話反過來怎么說?對不對?
結(jié)論:如果一個(gè)句子是正確的,反過來說(因果對調(diào)),就未必正確.
〖探索2
上一節(jié)課,我們學(xué)過:同位角相等,兩直線平行.反過來怎么說?猜一猜:它還是對的嗎?
〖探索3
(1)用三角尺畫兩條平行線a、b.說一說:不利用第三條直線能畫出兩條平行線嗎?請畫出第三條直線(把它記為c),并說明判定這兩條直線平行的根據(jù)(公理或定理);
(2)在(1)中再畫一條直線d與直線a、b都相交,找出其中的一對同位角,用量角器量出它們的.度數(shù)驗(yàn)證你原來的猜測.
結(jié)論:兩條平行線被第三條直線所截,同位角相等.
與平行線的判定公理一樣,這個(gè)結(jié)論也是基本事實(shí),即人們在長期實(shí)踐中出來的結(jié)論,我們把它叫做平行線的性質(zhì)公理,它是平行線的第一條性質(zhì).
〖探索4
如圖,請畫直線c截兩條平行線a、b;再在圖中找出一對內(nèi)錯(cuò)角.同學(xué)們一定能從直覺判斷這對內(nèi)錯(cuò)角也是相等的.也就是說:
兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等.它是平行線的第二條性質(zhì).
現(xiàn)在我們來試一試:如何根據(jù)性質(zhì)1說出性質(zhì)2成立的道理.
如圖,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(對頂角相等),
∴∠1=∠2(___________).
以上過程說明了:由性質(zhì)1可以得出性質(zhì)2.
〖探索5
我們學(xué)過判定兩直線平行的第三種方法:
兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行.(簡單地說:同旁內(nèi)角互補(bǔ),兩直線平行.)
把這條定理反過來,可以簡單說成_____________________.
猜一猜:把這條定理反過來以后,還成立嗎?
〖練習(xí)
P22練習(xí)
說一說:求這三個(gè)角的度數(shù)分別根據(jù)平行線的哪一條性質(zhì)?
〖作業(yè)
P25.1、2、3
〖補(bǔ)充作業(yè)
如圖:直線a、b被直線c所截,
(1)若a∥b,可以得到∠1=∠2.根據(jù)什么?
(2)若∠1=∠2,可以得到a∥b.根據(jù)什么?
(注意:(1)、(2)的根據(jù)一樣嗎?)
七年級數(shù)學(xué)下冊教案平行線2
教學(xué)目標(biāo):經(jīng)歷探索兩直線平行條件的過程,理解兩直線平行的條件.
重點(diǎn):探索兩直線平行的條件
難點(diǎn):理解“同位角相等,兩條直線平行”
教學(xué)過程
一、情景導(dǎo)入.
裝修工人正在向墻上釘木條,如果木條b與墻壁邊緣垂直,那么木條a與墻壁邊緣所夾角為多少度時(shí),才能使木條a與木條b平行?
要解決這個(gè)問題,就要弄清楚平行的判定。
二、直線平行的條件
以前我們學(xué)過用直尺和三角尺畫平行線,如圖(課本P13圖5.2-5)在三角板移動(dòng)的過程中,什么沒有變?
三角板經(jīng)過點(diǎn)P的`邊與靠在直尺上的邊所成的角沒有變。
簡化圖5.2-5,得圖.
圖3
∠1與∠2是三角板經(jīng)過點(diǎn)P的邊與靠在直尺上的邊所成的角移動(dòng)前后的位置,顯然∠1與∠2是同位角并且它們相等,由此我們可以知道什么?
兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.
簡單地說:同位角相等,兩條直線平行.
符號語言:∵∠1=∠2∴AB∥CD.
如圖(課本P145.2-7),你能說出木工用圖中這種叫做角尺的工具畫平行線的道理嗎?
用角尺畫平行線,實(shí)際上是畫出了兩個(gè)直角,根據(jù)“同位角相等,兩條直線平行.”,可知這樣畫出的就是平行線。
如圖,(1)如果∠2=∠3,能得出a∥b嗎?(2)如果∠2+∠4=1800,能得出a∥b嗎?
你能用文字語言概括上面的結(jié)論嗎?
兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行.
簡單地說:內(nèi)錯(cuò)角相等,兩直線平行.
符號語言:∵∠2=∠3∴a∥b.
(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)
∴∠2=∠1(同角的補(bǔ)角相等)
∴a∥b.(同位角相等,兩條直線平行)
你能用文字語言概括上面的結(jié)論嗎?
兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩條直線平行.
簡單地說:同旁內(nèi)角互補(bǔ),兩直線平行.
符號語言:∵∠4+∠2=180°∴a∥b.
四、課堂練習(xí)
1、課本P15練習(xí)1,補(bǔ)充(3)由∠A+∠ABC=1800可以判斷哪兩條直線平行?依據(jù)是什么?
2、課本P162題。
五、課堂小結(jié):怎樣判斷兩條直線平行?
六、布置作業(yè)::P16、1、2題;P174、5、6。
平行線,三角板,同位角,數(shù)學(xué),教學(xué)
七年級數(shù)學(xué)下冊教案平行線3
教學(xué)過程
一、目標(biāo)展示
二、情景導(dǎo)入。
裝修工人正在向墻上釘木條,如果木條b與墻壁邊緣垂直,那么木條a與墻壁邊緣所夾角為多少度時(shí),才能使木條a與木條b平行?
要解決這個(gè)問題,就要弄清楚平行的判定。
三、直線平行的條件
以前我們學(xué)過用直尺和三角尺畫平行線,如圖(課本P13圖5、2—5)在三角板移動(dòng)的過程中,什么沒有變?
三角板經(jīng)過點(diǎn)P的邊與靠在直尺上的邊所成的角沒有變。
∠1與∠2是三角板經(jīng)過點(diǎn)P的邊與靠在直尺上的邊所成的'角移動(dòng)前后的位置,顯然∠1與∠2是同位角并且它們相等,由此我們可以知道什么?
兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。
簡單地說:同位角相等,兩條直線平行。
符號語言:∵∠1=∠2∴AB∥CD、
如圖(課本P145、2—7),你能說出木工用圖中這種叫做角尺的工具畫平行線的道理嗎?
用角尺畫平行線,實(shí)際上是畫出了兩個(gè)直角,根據(jù)“同位角相等,兩條直線平行!保芍@樣畫出的就是平行線。
學(xué)習(xí)目標(biāo)一:了解平行線的概念、平面內(nèi)兩條直線的兩種位置關(guān)系。
題組一:
1、叫做平行線。
如圖:a與b互相平行,記作,a。
2、在同一平面內(nèi),兩條直線的位置關(guān)系b只有與兩種。
3、下列生活實(shí)例中:
。1)交通道路上的斑馬線;
(2)天上的彩虹;
(3)閱兵隊(duì)的縱隊(duì);
(4)百米跑道線,屬于平行線的有。
學(xué)習(xí)目標(biāo)二:掌握兩個(gè)平行公理;會(huì)用三角尺和直尺過已知直線外一點(diǎn)畫這條直線的平行線。
題組二:
4、通過畫圖和觀察,可得兩個(gè)平行公理:
、佟⒔(jīng)過點(diǎn),一條直線平行于已知直線;
、、如果兩條直線都與第三條直線平行,那么這兩條直線,符號表達(dá)式:若b∥a,c∥a,則。
5、在同一平面內(nèi)直線a與b滿足下列條件,寫出其對應(yīng)的位置關(guān)系:
、、a與b沒有公共點(diǎn),則a與b;
、、a與b有且只有一個(gè)公共點(diǎn),則a與b;
③、 a與b有兩個(gè)公共點(diǎn),則a與b;
6、過一點(diǎn)畫已知直線的平行線有()
A、有且只有一條;B、有兩條;C、不存在;D、不存在或只有一條
教學(xué)設(shè)計(jì)
1、落實(shí)教學(xué)常規(guī),踐行學(xué)!督處熑粘=虒W(xué)行為要求》。
2、優(yōu)化教學(xué)策略,老師要真正尊重學(xué)生的學(xué)習(xí)主體地位,提升課堂教學(xué)的有效性。提倡“學(xué)先教后”,讓學(xué)生“先看、先想、先說、先做”,老師依學(xué)定教,點(diǎn)拔引領(lǐng),讓學(xué)生在不斷的“思考、交流、展示、應(yīng)用”中內(nèi)悟知識。提倡“當(dāng)堂訓(xùn)練”,在教學(xué)設(shè)計(jì)中,要將運(yùn)用知識解決問題形成能力的環(huán)節(jié),當(dāng)堂落實(shí)。力爭當(dāng)堂完成“雙基”任務(wù)。
七年級數(shù)學(xué)下冊教案平行線4
平行線的判定(1)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標(biāo)
1.經(jīng)歷觀察、操作、想像、推理、交流等活動(dòng),進(jìn)一步發(fā)展推理能力和有條理表達(dá)能力.
2.掌握直線平行的條件,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學(xué)思想
學(xué)習(xí)重難點(diǎn):探索并掌握直線平行的條件是本課的重點(diǎn)也是難點(diǎn).
一、探索直線平行的條件
平行線的判定方法1:
二、練一練1、判斷題
1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯(cuò)角也相等.( )
2.兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角互補(bǔ),那么同旁內(nèi)角相等.( )
2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_(dá)______,那么a∥b,理由是__________.
(2)
(3)
2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、選擇題
1.如圖3所示,下列條件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右圖,由圖和已知條件,下列判斷中正確的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關(guān)系,并說明理由.
五、作業(yè)課本15頁-16頁練習(xí)的`1、2、3、
5.2.2平行線的判定(2)
課型:新課: 備課人:韓賀敏 審核人:霍紅超
學(xué)習(xí)目標(biāo)
1.經(jīng)歷觀察、操作、想像、推理、交流等活動(dòng),進(jìn)一步發(fā)展空
間觀念,推理能力和有條理表達(dá)能力.
毛2.分析題意說理過程,能靈活地選用直線平行的方法進(jìn)行說理.
學(xué)習(xí)重點(diǎn):直線平行的條件的應(yīng)用.
學(xué)習(xí)難點(diǎn):選取適當(dāng)判定直線平行的方法進(jìn)行說理是重點(diǎn)也是難點(diǎn).
一、學(xué)習(xí)過程
平行線的判定方法有幾種?分別是什么?
二.鞏固練習(xí):
1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1題) (第2題)
2.如圖,一個(gè)合格的變形管道ABCD需要AB邊與CD邊平行,若一個(gè)拐角∠ABC=72°,則另一個(gè)拐角∠BCD=_______時(shí),這個(gè)管道符合要求.
二、選擇題.
1.如圖,下列判斷不正確的是( )
A.因?yàn)椤?=∠4,所以DE∥AB
B.因?yàn)椤?=∠3,所以AB∥EC
C.因?yàn)椤?=∠A,所以AB∥DE
D.因?yàn)椤螦DE+∠BED=180°,所以AD∥BE
2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答題.
1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.
2.已知,如圖2,點(diǎn)B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.
七年級數(shù)學(xué)下冊教案平行線5
教學(xué)目標(biāo)
1、經(jīng)歷觀察教具模式的演示和通過畫圖等操作,交流歸納與活動(dòng),進(jìn)一步發(fā)展空間觀念
2、了解平行線的概念、平面內(nèi)兩條直線的相交和平行的兩種位置關(guān)系,知道平行公理以及平行公理的推論、
3、會(huì)用符號語方表示平行公理推論,會(huì)用三角尺和直尺過已知直線外一點(diǎn)畫這條直線的平行線、
重點(diǎn):
探索和掌握平行公理及其推論、
難點(diǎn):
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)、
教學(xué)過程
一、創(chuàng)設(shè)問題情境
1、復(fù)習(xí)提問:兩條直線相交有幾個(gè)交點(diǎn)?相交的兩條直線有什么特殊的.位置關(guān)系?
學(xué)生回答后,教師把教具中木條b與c重合在一起,轉(zhuǎn)動(dòng)木條a確認(rèn)學(xué)生的回答、教師接著問:在平面內(nèi),兩條直線除了相交外,還有別的位置關(guān)系嗎?
2、教師演示教具、
順時(shí)針轉(zhuǎn)動(dòng)木條b兩圈,讓學(xué)生思考:把a(bǔ)、b想像成兩端可以無限延伸的兩條直線,順時(shí)針轉(zhuǎn)動(dòng)b時(shí),直線b與直線a的交點(diǎn)位置將發(fā)生什么變化?在這個(gè)過程中,有沒有直線b與c木相交的位置?
3、教師組織學(xué)生交流并形成共識、
轉(zhuǎn)動(dòng)b時(shí),直線b與c的交點(diǎn)從在直線a上A點(diǎn)向左邊距離A點(diǎn)很遠(yuǎn)的點(diǎn)逐步接近A點(diǎn),并垂合于A點(diǎn),然后交點(diǎn)變?yōu)樵贏點(diǎn)的右邊,逐步遠(yuǎn)離A點(diǎn)、繼續(xù)轉(zhuǎn)動(dòng)下去,b與a的交點(diǎn)就會(huì)從A點(diǎn)的左邊又轉(zhuǎn)動(dòng)A點(diǎn)的左邊……可以想象一定存在一個(gè)直線b的位置,它與直線a左右兩旁都沒有交點(diǎn)、
二、平行線定義表示法
1、結(jié)合演示的結(jié)論,師生用數(shù)學(xué)語言描述平行定義:同一平面內(nèi),存在一條直線a與直線b不相交的位置,這時(shí)直線a與b互相平行、換言之,同一平面內(nèi),不相交的兩條直線叫做平行線、
直線a與b是平行線,記作“∥”,這里“∥”是平行符號、
教師應(yīng)強(qiáng)調(diào)平行線定義的本質(zhì)屬性,第一是同一平面內(nèi)兩條直線,第二是設(shè)有交點(diǎn)的兩條直線、
2、同一平面內(nèi),兩條直線的位置關(guān)系
教師引導(dǎo)學(xué)生從同一平面內(nèi),兩條直線的交點(diǎn)情況去確定兩條直線的位置關(guān)系、
在同一平面內(nèi),兩條直線只有兩種位置關(guān)系:相交或平行,兩者必居其一、即兩條直線不相交就是平行,或者不平行就是相交、
三、畫圖、觀察、歸納概括平行公理及平行公理推論
1、在轉(zhuǎn)動(dòng)教具木條b的過程中,有幾個(gè)位置能使b與a平行?
本問題是學(xué)生直覺直線b繞直線a外一點(diǎn)B轉(zhuǎn)動(dòng)時(shí),有并且只有一個(gè)位置使a與b平行、
2、用直線和三角尺畫平行線、
已知:直線a,點(diǎn)B,點(diǎn)C、
。1)過點(diǎn)B畫直線a的平行線,能畫幾條?
。2)過點(diǎn)C畫直線a的平行線,它與過點(diǎn)B的平行線平行嗎?
3、通過觀察畫圖、歸納平行公理及推論、
(1)由學(xué)生對照垂線的第一性質(zhì)說出畫圖所得的結(jié)論、
(2)在學(xué)生充分交流后,教師板書、
平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行、
。3)比較平行公理和垂線的第一條性質(zhì)、
共同點(diǎn):都是“有且只有一條直線”,這表明與已知直線平行或垂直的直線存在并且是唯一的
不同點(diǎn):平行公理中所過的“一點(diǎn)”要在已知直線外,兩垂線性質(zhì)中對“一點(diǎn)”沒有限制,可在直線上,也可在直線外、
4、歸納平行公理推論、
(1)學(xué)生直觀判定過B點(diǎn)、C點(diǎn)的a的平行線b、c是互相平行、
。2)從直線b、c產(chǎn)生的過程說明直線b∥直線c、
。3)學(xué)生用三角尺與直尺用平推方驗(yàn)證b∥c、
。4)師生用數(shù)學(xué)語言表達(dá)這個(gè)結(jié)論,教師板書、
結(jié)果兩條直線都與第三條直線平行,那么這條直線也互相平行、
結(jié)合圖形,教師引導(dǎo)學(xué)生用符號語言表達(dá)平行公理推論:
如果b∥a,c∥a,那么b∥c、
。5)簡單應(yīng)用、
練習(xí):如果多于兩條直線,比如三條直線a、b、c與直線L都平行,那么這三條直線互相平行嗎?請說明理由、
本練習(xí)是讓學(xué)生在反復(fù)運(yùn)用平行公理推論中掌握平行公理推論以及說理規(guī)范、
四、作業(yè):課本P16、7,P17、11、
七年級數(shù)學(xué)下冊教案平行線6
在本次活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:
(1)學(xué)生從簡單的具體實(shí)物抽象出相交線、平行線的能力.
(2)學(xué)生認(rèn)識到相交線、平行線在日常生活中有著廣泛的應(yīng)用.
(3)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
教師出示剪刀圖片,提出問題.
學(xué)生獨(dú)立思考,畫出相應(yīng)的'幾何圖形,并用幾何語言描述.教師深入學(xué)生中,指導(dǎo)得出幾何圖形,并在黑板上畫出標(biāo)準(zhǔn)圖形.
教師提出問題.
學(xué)生分組討論,在具體圖形中得出兩條相交線構(gòu)成四個(gè)角,根據(jù)圖形描述鄰補(bǔ)角與對頂角的特征.學(xué)生可結(jié)合概念特征找到圖中的兩對鄰補(bǔ)角與兩對對頂角.
在本次活動(dòng)中,教師應(yīng)關(guān)注:
(1)學(xué)生畫出兩條相交線的幾何圖形,用語言準(zhǔn)確描述.
(2)學(xué)生能否從角的位置關(guān)系上對角進(jìn)行分類.
(3)學(xué)生是否能夠正確區(qū)分鄰補(bǔ)角、對頂角.
(4)學(xué)生參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的主動(dòng)性,敢于發(fā)表個(gè)人觀點(diǎn).
《相交線與平行線》單元測試題
25.如圖,直線EF∥GH,點(diǎn)B、A分別在直線EF、GH上,連接AB,在AB左側(cè)作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直線BD平分∠FBC交直線GH于D
(1)若點(diǎn)C恰在EF上,如圖1,則∠DBA=_________
(2)將A點(diǎn)向左移動(dòng),其它條件不變,如圖2,則(1)中的結(jié)論還成立嗎?若成立,證明你的結(jié)論;若不成立,說明你的理由
(3)若將題目條件“∠ACB=90°”,改為:“∠ACB=120°”,其它條件不變,那么∠DBA=_________(直接寫出結(jié)果,不必證明)
《第五章相交線與平行線》單元測試題
一、選擇題(每題3分,共30分)
1、如圖1,直線a,b相交于點(diǎn)O,若∠1等于40°,則∠2等于()
A.50°B.60°C.140°D.160°
【七年級數(shù)學(xué)下冊教案平行線】相關(guān)文章:
七年級數(shù)學(xué)下冊教案平行線(6篇)07-21
七年級數(shù)學(xué)平行線教案08-28
初中數(shù)學(xué)平行線教案12-30
初中數(shù)學(xué)平行線的性質(zhì)教案12-29