高二數(shù)學(xué)必修四教案 (6篇)
作為一名人民教師,通常需要用到教案來輔助教學(xué),借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么什么樣的教案才是好的呢?以下是小編精心整理的 高二數(shù)學(xué)必修四教案 ,僅供參考,歡迎大家閱讀。
高二數(shù)學(xué)必修四教案 1
一、說教材:
1、地位、作用和特點:
《xxx》是高中數(shù)學(xué)課本第xx冊(x修)的第xx章“xxx”的第xx節(jié)內(nèi)容。
本節(jié)是在學(xué)習(xí)了之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對的知識進一步鞏固和深化,又可以為后面學(xué)習(xí)打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《xx》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是xx;特點之二是:xxx。
教學(xué)目標(biāo):
根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認知能力,確定以下教學(xué)目標(biāo):
。1)知識目標(biāo):A、B、C
。2)能力目標(biāo):A、B、C
(3)德育目標(biāo):A、B
教學(xué)的重點和難點:
(1)教學(xué)重點:
。2)教學(xué)難點:
二、說教法:
基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認識,結(jié)合本校學(xué)生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運用于教學(xué)過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個教學(xué)設(shè)計盡量做到注意學(xué)生的心理特點和認知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)xx真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學(xué)生充分的時間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學(xué)程序:
導(dǎo)入新課新課教學(xué)反饋發(fā)展
三、說學(xué)法:
學(xué)生學(xué)習(xí)的過程實際上就是學(xué)生主動獲取、整理、貯存、運用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進行的,是通過優(yōu)化教學(xué)程序來增強學(xué)法指導(dǎo)的目的性和實效性。在本節(jié)課的教學(xué)中主要滲透以下幾個方面的學(xué)法指導(dǎo)。
1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。
本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導(dǎo)出,這正是一個分析和推理的全過程。
2、讓學(xué)生親自經(jīng)歷運用科學(xué)方法探索的過程。主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授時,可通過演示,創(chuàng)設(shè)探索規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。
3、讓學(xué)生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點,及時總結(jié)和推廣。
4、在指導(dǎo)學(xué)生解決問題時,引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學(xué)生養(yǎng)成認真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的`能力。
四、教學(xué)過程:
(一)、課題引入:
教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例。C、講述數(shù)學(xué)科學(xué)的有關(guān)情況。)激發(fā)學(xué)生的探究xx,引導(dǎo)學(xué)生提出接下去要研究的問題。
。ǘ、新課教學(xué):
1、針對上面提出的問題,設(shè)計學(xué)生動手實踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進行交流、討論得出新知,并進一步提出下面的問題。
2、組織學(xué)生進行新問題的實驗方法設(shè)計—這時在設(shè)計上是有對比性、數(shù)學(xué)方法性的設(shè)計實驗,指導(dǎo)學(xué)生實驗、通過多媒體的輔助,顯示學(xué)生的實驗數(shù)據(jù),模擬強化出實驗情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
(三)、實施反饋:
1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學(xué)生的再次創(chuàng)新。
2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
五、板書設(shè)計:
在教學(xué)中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導(dǎo)過程,右邊實例應(yīng)用。
六、說課綜述:
以上是我對《xxx》這節(jié)教材的認識和對教學(xué)過程的設(shè)計。在整個課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的知識,并把它運用到對的認識,使學(xué)生的認知活動逐步深化,既掌握了知識,又學(xué)會了方法。
總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。
高二數(shù)學(xué)必修四教案 2
教學(xué)目標(biāo)
一、知識與技能
。1)理解并掌握弧度制的定義;
。2)領(lǐng)會弧度制定義的合理性;
。3)掌握并運用弧度制表示的弧長公式、扇形面積公式;
。4)熟練地進行角度制與弧度制的換算;
。5)角的集合與實數(shù)集 之間建立的一一對應(yīng)關(guān)系。
。6) 使學(xué)生通過弧度制的學(xué)習(xí),理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系。
二、過程與方法
創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會定義的合理性。根據(jù)弧度制的定義推導(dǎo)并運用弧長公式和扇形面積公式。以具體的實例學(xué)習(xí)角度制與弧度制的互化,能正確使用計算器。
三、情態(tài)與價值
通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制———弧度制,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系。角的概念推廣以后,在弧度制下,角的集合與實數(shù)集 之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備。
教學(xué)重難點
重點: 理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的.運用。
難點: 理解弧度制定義,弧度制的運用。
教學(xué)工具
投影儀等
教學(xué)過程
一、 創(chuàng)設(shè)情境,引入新課
師:有人問:海口到三亞有多遠時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1。6公里)
顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制。他們的長度單位是不同的,但是,他們之間可以換算:1英里=1。6公里。
在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制———弧度制。
二、講解新課
1。角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等。
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題。
2;《戎频亩x
長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫)。
(師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點。請完成表格。
我們知道,角有正負零角之分,它的弧度數(shù)也應(yīng)該有正負零之分,如—π,—2π等等,一般地, 正角的弧度數(shù)是一個正數(shù),負角的弧度數(shù)是一個負數(shù),零角的弧度數(shù)是0,角的正負主要由角的旋轉(zhuǎn)方向來決定。
角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng)。
四、課堂小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。
五、作業(yè)布置
作業(yè):習(xí)題1。1 A組第7,8,9題。
課后小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略 如:3表示3rad sinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。
高二數(shù)學(xué)必修四教案 3
一、教材分析
教材的地位和作用
期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計知識做鋪墊。同時,它在市場預(yù)測,經(jīng)濟統(tǒng)計,風(fēng)險與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠的影響。
教學(xué)重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應(yīng)用。
[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對離散性隨機變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點。此外,學(xué)生初次應(yīng)用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點。
二、教學(xué)目標(biāo)
[知識與技能目標(biāo)]
通過實例,讓學(xué)生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標(biāo)]
經(jīng)歷概念的`建構(gòu)這一過程,讓學(xué)生進一步體會從特殊到一般的思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。
通過實際應(yīng)用,培養(yǎng)學(xué)生把實際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識。
[情感與態(tài)度目標(biāo)]
通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。
三、教法選擇
引導(dǎo)發(fā)現(xiàn)法
四、學(xué)法指導(dǎo)
“授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。
高二數(shù)學(xué)必修四教案 4
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象、恰當(dāng)?shù)乩枚xxx題,許多時候能以簡馭繁、因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級的`學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情、在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率、
四、教學(xué)目標(biāo)
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用xx解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、
五、教學(xué)重點與難點:
教學(xué)重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點:
巧用圓錐曲線定義xx
高二數(shù)學(xué)必修四教案 5
一、向量的概念
1、既有又有的量叫做向量。用有向線段表示向量時,有向線段的長度表示向量的,有向線段的箭頭所指的方向表示向量的
2、叫做單位向量
3、的向量叫做平行向量,因為任一組平行向量都可以平移到同一條直線上,所以平行向量也叫做。零向量與任一向量平行
4、且的向量叫做相等向量
5、叫做相反向量
二、向量的表示方法:幾何表示法、字母表示法、坐標(biāo)表示法
三、向量的加減法及其坐標(biāo)運算
四、實數(shù)與向量的乘積
定義:實數(shù)λ與向量的積是一個向量,記作λ
五、平面向量基本定理
如果e1、e2是同一個平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2叫基底
六、向量共線/平行的充要條件
七、非零向量垂直的充要條件
八、線段的定比分點
設(shè)是上的兩點,P是上xxxxxxxxx的任意一點,則存在實數(shù),使xxxxxxxxxxxxxxx,則為點P分有向線段所成的比,同時,稱P為有向線段的定比分點
定比分點坐標(biāo)公式及向量式
九、平面向量的數(shù)量積
。1)設(shè)兩個非零向量a和b,作OA=a,OB=b,則∠AOB=θ叫a與b的夾角,其范圍是[0,π],|b|cosθ叫b在a上的投影
。2)|a||b|cosθ叫a與b的'數(shù)量積,記作a·b,即a·b=|a||b|cosθ
。3)平面向量的數(shù)量積的坐標(biāo)表示
十、平移
典例解讀
1、給出下列命題:①若|a|=|b|,則a=b;②若A,B,C,D是不共線的四點,則AB=DC是四邊形ABCD為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥c
其中,正確命題的序號是xxxxxx
2、已知a,b方向相同,且|a|=3,|b|=7,則|2a-b|=xxxx
3、若將向量a=(2,1)繞原點按逆時針方向旋轉(zhuǎn)得到向量b,則向量b的坐標(biāo)為xxxxx
4、下列算式中不正確的是()
(A)AB+BC+CA=0(B)AB-AC=BC
(C)0·AB=0(D)λ(μa)=(λμ)a
5、若向量a=(1,1),b=(1,-1),c=(-1,2),則c=()
、函數(shù)y=x2的圖象按向量a=(2,1)平移后得到的圖象的函數(shù)表達式為()
(A)y=(x-2)2-1(B)y=(x+2)2-1(C)y=(x-2)2+1(D)y=(x+2)2+1
7、平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知兩點A(3,1),B(-1,3),若點C滿足OC=αOA+βOB,其中a、β∈R,且α+β=1,則點C的軌跡方程為()
(A)3x+2y-11=0(B)(x-1)2+(y-2)2=5
(C)2x-y=0(D)x+2y-5=0
8、設(shè)P、Q是四邊形ABCD對角線AC、BD中點,BC=a,DA=b,則PQ=xxxxxxxxx
9、已知A(5,-1)B(-1,7)C(1,2),求△ABC中∠A平分線長
10、若向量a、b的坐標(biāo)滿足a+b=(-2,-1),a-b=(4,-3),則a·b等于()
(A)-5(B)5(C)7(D)-1
11、若a、b、c是非零的平面向量,其中任意兩個向量都不共線,則()
(A)(a)2·(b)2=(a·b)2(B)|a+b|>|a-b|
(C)(a·b)·c-(b·c)·a與b垂直(D)(a·b)·c-(b·c)·a=0
12、設(shè)a=(1,0),b=(1,1),且(a+λb)⊥b,則實數(shù)λ的值是()
(A)2(B)0(C)1(D)-1/2
16、利用向量證明:△ABC中,M為BC的中點,則AB2+AC2=2(AM2+MB2)
17、在三角形ABC中,=(2,3),=(1,k),且三角形ABC的一個內(nèi)角為直角,求實數(shù)k的值
18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC邊上的高為AD,求點D和向量
高二數(shù)學(xué)必修四教案 6
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
一、知識與技能
。1)理解并掌握弧度制的定義;(2)領(lǐng)會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進行角度制與弧度制的換算;(5)角的集合與實數(shù)集之間建立的一一對應(yīng)關(guān)系。(6)使學(xué)生通過弧度制的學(xué)習(xí),理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系。
二、過程與方法
創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會定義的合理性。根據(jù)弧度制的定義推導(dǎo)并運用弧長公式和扇形面積公式。以具體的實例學(xué)習(xí)角度制與弧度制的互化,能正確使用計算器。
三、情態(tài)與價值
通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系。角的概念推廣以后,在弧度制下,角的集合與實數(shù)集之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備。
教學(xué)重難點
重點:理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的運用。
難點:理解弧度制定義,弧度制的運用。
教學(xué)工具
投影儀等
教學(xué)過程
一、創(chuàng)設(shè)情境,引入新課
師:有人問:?诘饺齺営卸噙h時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)
顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制。他們的.長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里。
在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制。
二、講解新課
1、角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等。
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題。
2、弧度制的定義
長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫)。
。◣熒餐顒樱┨骄:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點。請完成表格。
我們知道,角有正負零角之分,它的弧度數(shù)也應(yīng)該有正負零之分,如-π,-2π等等,一般地,正角的弧度數(shù)是一個正數(shù),負角的弧度數(shù)是一個負數(shù),零角的弧度數(shù)是0,角的正負主要由角的旋轉(zhuǎn)方向來決定。
角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應(yīng)關(guān)系:即每一個角都有唯一的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有唯一的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng)。
四、課堂小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。
五、作業(yè)布置
作業(yè):習(xí)題1.1A組第7,8,9題。
課后小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。
課后習(xí)題
作業(yè):習(xí)題1.1A組第7,8,9題。
板書
【 高二數(shù)學(xué)必修四教案 】相關(guān)文章:
高二數(shù)學(xué)必修四教案11-03
高一數(shù)學(xué)必修四教案11-13
高二語文必修五教案08-26
數(shù)學(xué)必修4教案01-12
高二語文必修五教案5篇08-28