高一數(shù)學教案
作為一名專為他人授業(yè)解惑的人民教師,通常會被要求編寫教案,教案是教學活動的依據(jù),有著重要的地位。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編幫大家整理的高一數(shù)學教案,希望能夠幫助到大家。
高一數(shù)學教案1
[三維目標]
一、知識與技能:
1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系
2、了解集合的運算包含了集合表示法之間的轉化及數(shù)學解題的一般思想
3、了解集合元素個數(shù)問題的討論說明
二、過程與方法
通過提問匯總練習提煉的形式來發(fā)掘學生學習方法
三、情感態(tài)度與價值觀
培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維
[教學重點、難點]:會正確應用其概念和性質做題 [教 具]:多媒體、實物投影儀
[教學方法]:講練結合法
[授課類型]:復習課
[課時安排]:1課時
[教學過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉化
3,集合的基本運算
一,集合的'含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數(shù)分為:有限集和無窮集兩類
高一數(shù)學教案2
一、指導思想:
(1)隨著素質教育的深入展開,《課程方案》提出了教育要面向世界,面向未來,面向現(xiàn)代化和教育必須為社會主義現(xiàn)代化建設服務,必須與生產(chǎn)勞動相結合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設者和接班人的指導思想和課程理念和改革要點。使學生掌握從事社會主義現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術所需要的數(shù)學知識和基本技能。
(2)培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數(shù)學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3) 根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。
(4) 使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養(yǎng),又要滲透有關高考的思想方法,為三年的學習做好準備。
二、學生狀況分析
本學期擔任高一(1)班和(5)班的數(shù)學教學工作,學生共有111人,其中(1)班學生是名校直通班,學生思維活躍,(5)班是火箭班,學生基本素質不錯,一些基本知識掌握不是很好,學習積極性需要教師提高,成績以中等為主,中上不多。兩個班中,從軍訓一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。
教材簡析
使用人教版《普通高中課程標準實驗教科書數(shù)學(A版)》,教材在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關系,體現(xiàn)基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。
必修1,主要涉及兩章內容:
第一章 集合
通過本章學習,使學生感受到用集合表示數(shù)學內容時的簡潔性、準確性,幫助學生學會用集合語言表示數(shù)學對象,為以后的學習奠定基礎。
1.了解集合的含義,體會元素與集合的屬于關系,并初步掌握集合的表示方法;新-課-標-第-一-網(wǎng)
2.理解集合間的包含與相等關系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數(shù)形結合、分類討論等數(shù)學思想方法;
6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關系等數(shù)學知識的過程中,培養(yǎng)學生的思維能力。
第二章 函數(shù)的概念與基本初等函數(shù)Ⅰ
教學本章時應立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照問題情境數(shù)學活動意義建構數(shù)學理論數(shù)學應用回顧反思的順序結構,引導學生通過實驗、觀察、歸納、抽象、概括,數(shù)學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學會用函數(shù)的思想、變化的觀點分析和解決問題,達到培養(yǎng)學生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學習和掌握函數(shù)的概念和性質,能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;X|k |b| 1 . c|o |m
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質;掌握指數(shù)函數(shù)的概念、圖象和性質;理解對數(shù)的概念,掌握對數(shù)的運算性質,掌握對數(shù)函數(shù)的概念、圖象和性質;了解冪函數(shù)的概念和性質,知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學模型;
3.了解函數(shù)與方程之間的關系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;
4.培養(yǎng)學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學建模能力以及數(shù)學交流的能力。
必修4,主要涉及三章內容:
第一章 三角函數(shù)
通過本章學習,有助于學生認識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應用,從中感受數(shù)學的價值,學會用數(shù)學的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學科學習中的問題,發(fā)展數(shù)學應用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關系及誘導公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質。
第二章 平面向量
在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運算;
3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;
4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關角度和垂直的問題。
第三章 三角恒等變換
通過推導兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學生在經(jīng)歷和參與數(shù)學發(fā)現(xiàn)活動的基礎上,體會向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式 ;
3.能正確運用三角公式進行簡單的三角函數(shù)式的化簡、求值和恒等式證明。
三、教學任務
本期授課內容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。
四、教學質量目標新 課 標
1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,體會數(shù)學思想和方法。
2.提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高學生提出、分析和解決問題(包括簡單的實際問題)的'能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數(shù)學新課標精神,樹立新的教學理念,以雙基教學為主要內容,堅持抓兩頭、帶中間、整體推進,使每個學生的數(shù)學能力都得到提高和發(fā)展。
分層推進措施
1、重視學生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學生,增強學生學習數(shù)學興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學活動、故事、提問、師生交流等方式激發(fā)學生學習興趣,注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、培養(yǎng)能力是數(shù)學教學的落腳點。能力是在獲得和運用知識的過程中逐步培養(yǎng)起來的。在銜接教學中,首先要加強基本概念和基本規(guī)律的教學。
加強培養(yǎng)學生的邏輯思維能力和解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、講清講透數(shù)學概念和規(guī)律,使學生掌握完整的基礎知識,培養(yǎng)學生數(shù)學思維能力 ,抓住公式的推導和內在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內容選擇不同教法,提倡創(chuàng)新教學方法,把學生被動接受知識轉化主動學習知識。
6、重視數(shù)學應用意識及應用能力的培養(yǎng)。
7、加強學生良好學習習慣的培養(yǎng)
六、教學時間大致安排
集合與函數(shù)概念 13 課時
基本初等函數(shù) 15
課時
函數(shù)的應用 8
課時
三角函數(shù) 24
課時
平面向量 14
課時
三角恒等變換 9
課時
高一數(shù)學教案3
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);
(2)理解任意角的三角函數(shù)不同的定義方法;
(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).
2、過程與方法
初中學過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數(shù).講解例題,總結方法,鞏固練習.
3、情態(tài)與價值
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導學生從自己已有認知基礎出發(fā)學習三角函數(shù),但它對準確把握三角函數(shù)的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學生對三角函數(shù)概念的理解.
本節(jié)利用單位圓上點的坐標定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的.對應關系,也表明了這兩個函數(shù)之間的關系.
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.
高一數(shù)學教案4
教學目標 :
、僬莆諏(shù)函數(shù)的性質。
、趹脤(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復
合函數(shù)的定義域、值 域及單調性。
、 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高
解題能力。
教學重點與難點:對數(shù)函數(shù)的性質的應用。
教學過程 設計:
、睆土曁釂枺簩(shù)函數(shù)的概念及性質。
、查_始正課
1、比較數(shù)的大小
例 1:比較下列各組數(shù)的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
、苐og0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調性取決于底的大小:當0
調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞
增,所以loga5.1
板書:
∵5.1<5.9 loga5.1="">loga5.9
、颍┊攁>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大。
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:
、贅嬙鞂(shù)函數(shù),直接利用對數(shù)函數(shù) 的單調性比大小
、诮栌谩爸虚g量”間接比大小
、劾脤(shù)函數(shù)圖象的位置關系來比大小。
2、函數(shù)的定義域, 值 域及單調性。
例 2:
、徘蠛瘮(shù)y=的定義域。
、平獠坏仁絣og0.2(x2+2x—3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)
生:分母2x—1≠0且偶次根式的被開方式log0.8x—1≥0,且真數(shù)x>0。
板書:
解:∵ 2x—1≠0 x≠0.5
log0.8x—1≥0 , x≤0.8x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,再根據(jù)對數(shù)函數(shù)的單調性求解。
師:請你寫一下這道題的解題過程。
生:<板書>
解: x2+2x—3>0 x<—3 x="">1
。3x+3)>0 , x>—1
x2+2x—3<(3x+3) —2
不等式的解為:1
例 3:求下列函數(shù)的值域和單調區(qū)間。
⑴y=log0.5(x— x2)
、苰=loga(x2+2x—3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調區(qū)間要用及復合函數(shù)的思想方法。
下面請同學們來解⑴。
生:此函數(shù)可看作是由y=log0。5u, u=x— x2復合而成。
板書:
解:⑴∵u=x— x2>0, ∴0
u=x— x2=—(x—0.5)2+0.25, ∴0
∴y=log0.5u≥log0.50..25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u=x— x2
y=log0.5u
y=log0.5(x— x2)
函數(shù)y=log0.5(x— x2)的單調遞減區(qū)間(0,0.5],單調遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的性質時,都應該首先保證這個函數(shù)有意義,否則函數(shù)都不存在,性質就無從談起。
師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區(qū)別?
生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
、承〗Y
這堂課主要講解如何應用對數(shù)函數(shù)的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。
⒋作業(yè)
、沤獠坏仁
、賚g(x2—3x—4)≥lg(2x+10);②loga(x2—x)≥loga(x+1),(a為常數(shù))
、埔阎瘮(shù)y=loga(x2—2x),(a>0,a≠1)
、且阎瘮(shù)y=loga (a>0, b>0, 且 a≠1)
、偾笏亩x域;②討論它的奇偶性; ③討論它的單調性。
⑷已知函數(shù)y=loga(ax—1) (a>0,a≠1),
①求它的定義域;②當x為何值時,函數(shù)值大于1;③討論它的單調性。
5、課堂教學設計說明
這節(jié)課是安排為習題課,主要利用對數(shù)函數(shù)的性質解決一些問題,整個一堂課分兩個部分:
一 、比較數(shù)的大小,想通過這一部分的.練習,培養(yǎng)同學們構造函數(shù)的思想和分類討論、數(shù)形結合的思想。
二、函數(shù)的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數(shù)的定義域。因為學生在求函數(shù)的值域和單調區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。
高一數(shù)學教案5
教學目標:①掌握對數(shù)函數(shù)的性質。
、趹脤(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復
合函數(shù)的定義域、值 域及單調性。
、 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高
解題能力。
教學重點與難點:對數(shù)函數(shù)的性質的應用。
教學過程設計:
、睆土曁釂枺簩(shù)函數(shù)的概念及性質。
⒉開始正課
1 比較數(shù)的.大小
例 1 比較下列各組數(shù)的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
、苐og0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調性取決于底的大。寒0
調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞
增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1<5.9 loga5.1="">loga5.9
、)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:①構造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關系來比大小。
2 函數(shù)的定義域, 值 域及單調性。
高一數(shù)學教案6
一、學習目標:
知識與技能:理解直線與平面、平面與平面平行的性質定理的含義, 并會應用性質解決問題
過程與方法:能應用文字語言、符號語言、圖形語言準確地描述直線與平面、平面與平面的性質定理
情感態(tài)度與價值觀:通過自主學習、主動參與、積極探究的學習過程,激發(fā)學生學習數(shù)學的自信心和積極性,培養(yǎng)學生良好的思維習慣,滲透化歸與轉化的數(shù)學思想,體會事物之間相互轉化和理論聯(lián)系實際的辯證唯物主義思想方法
二、學習重、難點
學習重點: 直線與平面、平面與平面平行的性質及其應用
學習難點: 將空間問題轉化為平面問題的方法,
三、學法指導及要求:
1、限定45分鐘完成,注意逐字逐句仔細審題,認真思考、獨立規(guī)范作答,不會的先繞過,做好記號。
2、把學案中自己易忘、易出錯的知識點和疑難問題以及解題方法規(guī)律,及時整理在解題本,多復習記憶。3、A:自主學習;B:合作探究;C:能力提升4、小班、重點班完成全部,平行班完成A.B類題
四、知識鏈接:
1.空間直線與直線的`位置關系
2.直線與平面的位置關系
3.平面與平面的位置關系
4.直線與平面平行的判定定理的符號表示
5.平面與平面平行的判定定理的符號表示
五、學習過程:
A問題1:
1)如果一條直線與一個平面平行,那么這條直線與這個平面內的直線有哪些位置關系?
(觀察長方體)
2)如果一條直線和一個平面平行,如何在這個平面內做一條直線與已知直線平行?
(可觀察教室內燈管和地面)
A問題2: 一條直線與平面平行,這條直線和這個平面內直線的位置關系有幾種可能?
A問題3:如果一條直線 與平面平行,在什么條件下直線 與平面內的直線平行呢?
由于直線 與平面內的任何直線無公共點,所以過直線 的某一平面,若與平面相交,則直線 就平行于這條交線
B自主探究1:已知: ∥, ,=b。求證: ∥b。
直線與平面平行的性質定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行
符號語言:
線面平行性質定理作用:證明兩直線平行
思想:線面平行 線線平行
例1:有一塊木料如圖,已知棱BC平行于面AC(1)要經(jīng)過木料表面ABCD 內的一點P和棱BC將木料鋸開,應怎樣畫線?(2)所畫的線和面AC有什么關系?
例2:已知平面外的兩條平行直線中的一條平行于這個平面,求證:另一條也平行于這個平面。
問題5:兩個平面平行,那么其中一個平面內的直線與另一平面有什么樣的關系?兩個平面平行,那么其中一個平面內的直線與另一平面內的直線有何關系?
自主探究2:如圖,平面,,滿足∥,=a,=b,求證:a∥b
平面與平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行
符號語言:
面面平行性質定理作用:證明兩直線平行
思想:面面平行 線線平行
例3 求證:夾在兩個平行平面間的平行線段相等
六、達標檢測:
A1.61頁練習
A2.下列判斷正確的是( )
A. ∥, ,則 ∥b B. =P,b ,則 與b不平行
C. ,則a∥ D. ∥,b∥,則 ∥b
B3.直線 ∥平面,P,過點P平行于 的直線( )
A.只有一條,不在平面內 B.有無數(shù)條,不一定在內
C.只有一條,且在平面內 D.有無數(shù)條,一定在內
B4.下列命題錯誤的是 ( )
A. 平行于同一條直線的兩個平面平行或相交
B. 平行于同一個平面的兩個平面平行
C. 平行于同一條直線的兩條直線平行
D. 平行于同一個平面的兩條直線平行或相交
B5. 平行四邊形EFGH的四個頂點E、F、G、H、分別在空間四邊形ABCD的四條邊AB、BC、CD、AD、上,又EF∥BD,則 ( )
A. EH∥BD,BD不平行與FG
B. FG∥BD,EH不平行于BD
C. EH∥BD,F(xiàn)G∥BD
D. 以上都不對
B6.若直線 ∥b, ∥平面,則直線b與平面的位置關系是
B7一個平面上有兩點到另一個平面的距離相等,則這兩個平面
七、小結與反思:
高一數(shù)學教案7
一、教材分析
(一)地位與作用
數(shù)列是高中數(shù)學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學習數(shù)列也為進一步學習數(shù)列的極限等內容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數(shù)學問題的合作探究能力。
(4)學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯(lián)系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發(fā),根據(jù)____在教材內容中的地位與作用,結合學情分析,本節(jié)課教學應實現(xiàn)如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解函數(shù)單調性的概念,初步掌握判別函數(shù)單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數(shù)、單調減函數(shù)等概念;能運用函數(shù)單調性概念解決簡單的問題;使學生領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
(3)情感態(tài)度與價值觀
在函數(shù)單調性的學習過程中,使學生體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。
(二)重點難點
本節(jié)課的教學重點是________________________,教學難點是_____________________。
三、教法、學法分析
(一)教法
基于本節(jié)課的內容特點和高二學生的年齡特征,按照臨沂市高中數(shù)學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現(xiàn)本節(jié)課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹?shù)耐评,并順利地完成書面表達.
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
四、教學過程分析
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發(fā)生、發(fā)展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創(chuàng)設情境,提出問題。
新課標指出:“應該讓學生在具體生動的.情境中學習數(shù)學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統(tǒng)目的明確的設計方式,給學生的思考空間,充分體現(xiàn)學生主體地位。
(2)引導探究,建構概念。
數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷“數(shù)學化”、“再創(chuàng)造”的活動過過程.
(3)自我嘗試,初步應用。
有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現(xiàn)對知識識的再次深化。
(5)小結歸納,回顧反思。
小結歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結。我設計了三個問題:(1)通過本節(jié)課的學習,你學到了哪些知識?(2)通過本節(jié)課的學習,你的體驗是什么?(3)通過本節(jié)課的學習,你掌握了哪些技能?
(二)作業(yè)設計
作業(yè)分為必做題和選做題,必做題對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成.
高一數(shù)學教案8
1.掌握對數(shù)函數(shù)的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。
。1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關系正確描繪對數(shù)函數(shù)的圖象。
。2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質去研究認識對數(shù)函數(shù)的性質,初步學會用對數(shù)函數(shù)的性質解決簡單的問題。
2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉化的觀點,通過對數(shù)函數(shù)圖象和性質的學習,滲透數(shù)形結合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數(shù)學的積極性。
高一數(shù)學對數(shù)函數(shù)教案:教材分析
。1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的。故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎。
(2) 本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質。難點是利用指數(shù)函數(shù)的圖象和性質得到對數(shù)函數(shù)的圖象和性質。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,故應成為教學的重點。
。3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開。而通過互為反函數(shù)的'兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點。
高一數(shù)學對數(shù)函數(shù)教案:教法建議
(1) 對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
(2) 在本節(jié)課中結合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。
高一數(shù)學教案9
1、教材(教學內容)
本課時主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數(shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進一步研究三角函數(shù)的性質及圖象特征,并體會三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領會數(shù)學在其它領域中的重要應用、
2、設計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發(fā)揮學生的主體作用,又體現(xiàn)了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運動等具周期性規(guī)律運動可以建立函數(shù)模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發(fā)認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習,將任意角三角函數(shù)的'定義,內化為學生新的認識結構,從而達成教學目標、
3、教學目標
知識與技能目標:形成并掌握任意角三角函數(shù)的定義,并學會運用這一定義,解決相關問題、
過程與方法目標:體會數(shù)學建模思想、類比思想和化歸思想在數(shù)學新概念形成中的重要作用、
情感態(tài)度與價值觀目標:引導學生學會閱讀數(shù)學教材,學會發(fā)現(xiàn)和欣賞數(shù)學的理性之美、
4、重點難點
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學情分析
學生已有的認知結構:函數(shù)的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學生形成新的認知結構、
6、教法分析
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構、這種教學模式能較好地體現(xiàn)課堂上老師的主導作用,也能充分發(fā)揮課堂上學生的主體作用、
7、學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數(shù)的定義”,最后引導學生運用類比學習法,來研究三角函數(shù)一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標、
8、教學設計(過程)
一、引入
問題1:我們已經(jīng)學過了任意角和弧度制,你對“角”這一概念印象最深的是什么?
問題2:研究“任意角”這一概念時,我們引進了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?
問題3:當角clipXimage002的終邊在繞頂點O轉動時,終邊上的一個點P(x,y)必定隨著終邊繞頂點O作圓周運動,在這圓周運動中,有哪些數(shù)量?圓周運動的這些量之間的關系能用一個函數(shù)模型來刻畫嗎?
二、原有認知結構的改造和重構
問題4:當角clipXimage002[1]是銳角時,clipXimage004,線段OP的長度clipXimage006這幾個量之間有何關系?
學生回答,分析結論,指出這種關系就是我們在初中學習過的銳角三角函數(shù)
學生閱讀教材,并思考:
問題5:銳角三角函數(shù)是我們高中意義上的函數(shù)嗎?如何利用函數(shù)的定義來理解它?
學生討論并回答
三、新概念的形成
問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數(shù)的定義嗎?
學生回答,并閱讀教材,得到任意角三角函數(shù)的定義、并思考:
問題7:任意角三角函數(shù)的定義符合我們高中所學的函數(shù)定義嗎?
展示任意角三角函數(shù)的定義,并指出它是如何刻劃圓周運動的
并類比函數(shù)的研究方法,得出任意角三角函數(shù)的定義域和值域。
四、概念的運用
1、基礎練習
①口算clipXimage008的值、
、诜謩e求clipXimage010的值
小結:ⅰ)畫終邊,求終邊與單位圓交點的坐標,算比值
ⅱ)誘導公式(一)
、廴鬰lipXimage012,試寫出角clipXimage002[2]的值。
、苋鬰lipXimage015,不求值,試判斷clipXimage017的符號
⑤若clipXimage019,則clipXimage021為第象限的角、
例1、已知角clipXimage002[3]的終邊過點clipXimage024,求clipXimage026之值
若P點的坐標變?yōu)閏lipXimage028,求clipXimage030的值
小結:任意角三角函數(shù)的等價定義(終邊定義法)
例2、一物體A從點clipXimage032出發(fā),在單位圓上沿逆時針方向作勻速圓周運動,若經(jīng)過的弧長為clipXimage034,試用clipXimage034[1]表示物體A所在位置的坐標。若該物體作圓周運動的圓的半徑變?yōu)閏lipXimage006[1],如何用clipXimage034[2]來表示物體A所在位置的坐標?
小結:可以采用三角函數(shù)模型來刻畫圓周運動
五、拓展探究
問題8:當角clipXimage002[4]的終邊繞頂點O作圓周運動時,角clipXimage002[5]的終邊與單位圓的交點clipXimage039的坐標clipXimage041clipXimage043與角clipXimage002[6]之間還可以建立其它函數(shù)模型嗎?
思考:引入平面直角坐標系后,我們可以把圓周運動用數(shù)來刻畫,這是將“形”轉化成為“數(shù)”;角clipXimage002[7]正弦值是一個數(shù),你能借助平面直角坐標系和單位圓,用“形”來表示這個“數(shù)”嗎?角clipXimage002[8]余弦值、正切值呢?
六、課堂小結
問題9:請你談談本節(jié)課的收獲有哪些?
七、課后作業(yè)
教材P21第6、7、8題
高一數(shù)學教案10
案例背景:
對數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的.故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎.
案例敘述:
(一).創(chuàng)設情境
(師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實質是研究兩個函數(shù)的關系,所以自然我們應從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).
(提問):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
(學生): 是指數(shù)函數(shù),它是存在反函數(shù)的.
(師):求反函數(shù)的步驟
(由一個學生口答求反函數(shù)的過程):
由 得 .又 的`值域為 ,
所求反函數(shù)為 .
(師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
(二)新課
1.(板書) 定義:函數(shù) 的反函數(shù) 叫做對數(shù)函數(shù).
(師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質嗎?最初步的認識是什么?
(教師提示學生從反函數(shù)的三定與三反去認識,學生自主探究,合作交流)
(學生)對數(shù)函數(shù)的定義域為 ,對數(shù)函數(shù)的值域為 ,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .
(在此基礎上,我們將一起來研究對數(shù)函數(shù)的圖像與性質.)
2.研究對數(shù)函數(shù)的圖像與性質
(提問)用什么方法來畫函數(shù)圖像?
(學生1)利用互為反函數(shù)的兩個函數(shù)圖像之間的關系,利用圖像變換法畫圖.
(學生2)用列表描點法也是可以的。
請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.
(師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.
具體操作時,要求學生做到:
(1) 指數(shù)函數(shù) 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).
(2) 畫出直線 .
(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.
學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出
和 的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內)如圖:
教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標系內,如圖:
然后提出讓學生根據(jù)圖像說出對數(shù)函數(shù)的性質(要求從幾何與代數(shù)兩個角度說明)
3. 性質
(1) 定義域:
(2) 值域:
由以上兩條可說明圖像位于 軸的右側.
(3)圖像恒過(1,0)
(4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關于原點對稱,也不關于 軸對稱.
(5) 單調性:與 有關.當 時,在 上是增函數(shù).即圖像是上升的
當 時,在 上是減函數(shù),即圖像是下降的.
之后可以追問學生有沒有最大值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學生看著圖可以答出應有兩種情況:
當 時,有 ;當 時,有 .
學生回答后教師可指導學生巧記這個結論的方法:當?shù)讛?shù)與真數(shù)在1的同側時函數(shù)值為正,當?shù)讛?shù)與真數(shù)在1的兩側時,函數(shù)值為負,并把它當作第(6)條性質板書記下來.
最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數(shù)函數(shù)的性質對比記憶.(特別強調它們單調性的一致性)
對圖像和性質有了一定的了解后,一起來看看它們的應用.
(三).簡單應用
1. 研究相關函數(shù)的性質
例1. 求下列函數(shù)的定義域:
(1) (2) (3)
先由學生依次列出相應的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.
2. 利用單調性比較大小
例2. 比較下列各組數(shù)的大小
(1) 與 ; (2) 與 ;
(3) 與 ; (4) 與 .
讓學生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構造對數(shù)函數(shù)利用單調性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.
三.拓展練習
練習:若 ,求 的取值范圍.
四.小結及作業(yè)
案例反思:
本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質.難點是利用指數(shù)函數(shù)的圖象和性質得到對數(shù)函數(shù)的圖象和性質.由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數(shù)這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
高一數(shù)學教案11
一、教學目標
1.知識與技能
。1)解二分法求解方程的近似解的思想方法,會用二分法求解具體方程的近似解;
(2)體會程序化解決問題的思想,為算法的學習作準備。
2.過程與方法
。1)讓學生在求解方程近似解的實例中感知二分發(fā)思想;
。2)讓學生歸納整理本節(jié)所學的知識。
3.情感、態(tài)度與價值觀
、袤w會二分法的程序化解決問題的思想,認識二分法的價值所在,使學生更加熱愛數(shù)學;
、谂囵B(yǎng)學生認真、耐心、嚴謹?shù)臄?shù)學品質。
二、 教學重點、難點
重點:用二分法求解函數(shù)f(x)的零點近似值的步驟。
難點:為何由︱a - b ︳< 便可判斷零點的近似值為a(或b)?
三、 學法與教學用具
1.想-想。
2.教學用具:計算器。
四、教學設想
。ㄒ唬、創(chuàng)設情景,揭示課題
提出問題:
。1)一元二次方程可以用公式求根,但是沒有公式可以用來求解放程 ㏑x+2x-6=0的根;聯(lián)系函數(shù)的零點與相應方程根的關系,能否利用函數(shù)的有關知識來求她的根呢?
。2)通過前面一節(jié)課的學習,函數(shù)f(x)=㏑x+2x-6在區(qū)間內有零點;進一步的問題是,如何找到這個零點呢?
(二)、研討新知
一個直觀的想法是:如果能夠將零點所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點的近似值;為了方便,我們通過“取中點”的方法逐步縮小零點所在的范圍。
取區(qū)間(2,3)的中點2.5,用計算器算得f(2.5)≈-0.084,因為f(2.5)xf(3)<0,所以零點在區(qū)間(2.5,3)內;
再取區(qū)間(2.5,3)的中點2.75,用計算器算得f(2.75)≈0.512,因為f(2.75)xf(2.5)<0,所以零點在(2.5,2.75)內;
由于(2,3),(2.5,3),(2.5,2.75)越來越小,所以零點所在范圍確實越來越小了;重復上述步驟,那么零點所在范圍會越來越小,這樣在有限次重復相同的步驟后,在一定的`精確度下,將所得到的零點所在區(qū)間上任意的一點作為零點的近似值,特別地可以將區(qū)間的端點作為零點的近似值。例如,當精確度為0.01時,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數(shù)f(x)=㏑x+2x-6零點的近似值,也就是方程㏑x+2x-6=0近似值。
這種求零點近似值的方法叫做二分法。
1.師:引導學生仔細體會上邊的這段文字,結合課本上的相關部分,感悟其中的思想方法.
生:認真理解二分法的函數(shù)思想,并根據(jù)課本上二分法的一般步驟,探索其求法。
2.為什么由︱a - b ︳<便可判斷零點的近似值為a(或b)?
先由學生思考幾分鐘,然后作如下說明:
設函數(shù)零點為x0,則a<x0<b,則:
0<x0-a<b-a,a-b<x0-b<0;
由于︱a - b ︳<,所以
︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,
即a或b 作為零點x0的近似值都達到了給定的精確度。
(三)、鞏固深化,發(fā)展思維
1.學生在老師引導啟發(fā)下完成下面的例題
例2.借助計算器用二分法求方程2x+3x=7的近似解(精確到0.01)
問題:原方程的近似解和哪個函數(shù)的零點是等價的?
師:引導學生在方程右邊的常數(shù)移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點。
生:借助計算機或計算器畫出函數(shù)的圖象,結合圖象確定零點所在的區(qū)間,然后利用二分法求解.
。ㄋ模、歸納整理,整體認識
在師生的互動中,讓學生了解或體會下列問題:
。1)本節(jié)我們學過哪些知識內容?
。2)你認為學習“二分法”有什么意義?
。3)在本節(jié)課的學習過程中,還有哪些不明白的地方?
。ㄎ澹⒉贾米鳂I(yè)
P92習題3.1A組第四題,第五題。
高一數(shù)學教案12
教學目標:
1、掌握對數(shù)的運算性質,并能理解推導這些法則的依據(jù)和過程;
2、能較熟練地運用法則解決問題;
教學重點:
對數(shù)的運算性質
教學過程:
一、問題情境:
1、指數(shù)冪的運算性質;
2、問題:對數(shù)運算也有相應的運算性質嗎?
二、學生活動:
1、觀察教材P59的表2—3—1,驗證對數(shù)運算性質、
2、理解對數(shù)的運算性質、
3、證明對數(shù)性質、
三、建構數(shù)學:
1)引導學生驗證對數(shù)的運算性質、
2)推導和證明對數(shù)運算性質、
3)運用對數(shù)運算性質解題、
探究:
①簡易語言表達:“積的對數(shù)=對數(shù)的和”……
、谟袝r逆向運用公式運算:如
③真數(shù)的.取值范圍必須是:不成立;不成立、
④注意:,
四、數(shù)學運用:
1、例題:
例1、(教材P60例4)求下列各式的值:
。1);(2)125;(3)(補充)lg、
例2、(教材P60例4)已知,,求下列各式的值(結果保留4位小數(shù))
。1);(2)、
例3、用,,表示下列各式:
例4、計算:
。1);(2);(3)
2、練習:
P60(練習)1,2,4,5、
五、回顧小結:
本節(jié)課學習了以下內容:對數(shù)的運算法則,公式的逆向使用、
六、課外作業(yè):
P63習題5
補充:
1、求下列各式的值:
。1)6—3;(2)lg5+lg2;(3)3+、
2、用lgx,lgy,lgz表示下列各式:
(1)lg(xyz);(2)lg;(3);(4)、
3、已知lg2=0、3010,lg3=0、4771,求下列各對數(shù)的值(精確到小數(shù)點后第四位)
。1)lg6;(2)lg;(3)lg;(4)lg32、
高一數(shù)學教案13
本文題目:高一數(shù)學教案:對數(shù)函數(shù)及其性質
2.2.2 對數(shù)函數(shù)及其性質(二)
內容與解析
(一) 內容:對數(shù)函數(shù)及其性質(二)。
(二) 解析:從近幾年高考試題看,主要考查對數(shù)函數(shù)的性質,一般綜合在對數(shù)函數(shù)中考查.題型主要是選擇題和填空題,命題靈活.學習本部分時,要重點掌握對數(shù)的運算性質和技巧,并熟練應用.
一、 目標及其解析:
(一) 教學目標
(1) 了解對數(shù)函數(shù)在生產(chǎn)實際中的簡單應用.進一步理解對數(shù)函數(shù)的圖象和性質;
(2) 學習反函數(shù)的概念,理解對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標上看出互為反函數(shù)的兩個函數(shù)的圖象性質..
(二) 解析
(1)在對數(shù)函數(shù) 中,底數(shù) 且 ,自變量 ,函數(shù)值 .作為對數(shù)函數(shù)的三個要點,要做到道理明白、記憶牢固、運用準確.
(2)反函數(shù)求法:①確定原函數(shù)的值域即新函數(shù)的定義域.②把原函數(shù)y=f(x)視為方程,用y表示出x.③把x、y互換,同時標明反函數(shù)的定義域.
二、 問題診斷分析
在本節(jié)課的教學中,學生可能遇到的問題是不易理解反函數(shù),熟練掌握其轉化關系是學好對數(shù)函數(shù)與反函數(shù)的基礎。
三、 教學支持條件分析
在本節(jié)課一次遞推的教學中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學生順利抓住老師上課思路,節(jié)省老師板書時間,讓學生盡快地進入對問題的分析當中。
四、 教學過程
問題一. 對數(shù)函數(shù)模型思想及應用:
、 出示例題:溶液酸堿度的測量問題:溶液酸堿度pH的'計算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升.
(Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關系?
(Ⅱ)純凈水 摩爾/升,計算純凈水的酸堿度.
②討論:抽象出的函數(shù)模型? 如何應用函數(shù)模型解決問題? 強調數(shù)學應用思想
問題二.反函數(shù):
、 引言:當一個函數(shù)是一一映射時, 可以把這個函數(shù)的因變量作為一個新函數(shù)的自變量, 而把這個函數(shù)的自變量新的函數(shù)的因變量. 我們稱這兩個函數(shù)為反函數(shù)(inverse function)
、 探究:如何由 求出x?
、 分析:函數(shù) 由 解出,是把指數(shù)函數(shù) 中的自變量與因變量對調位置而得出的. 習慣上我們通常用x表示自變量,y表示函數(shù),即寫為 .
那么我們就說指數(shù)函數(shù) 與對數(shù)函數(shù) 互為反函數(shù)
、 在同一平面直角坐標系中,畫出指數(shù)函數(shù) 及其反函數(shù) 圖象,發(fā)現(xiàn)什么性質?
、 分析:取 圖象上的幾個點,說出它們關于直線 的對稱點的坐標,并判斷它們是否在 的圖象上,為什么?
、 探究:如果 在函數(shù) 的圖象上,那么P0關于直線 的對稱點在函數(shù) 的圖象上嗎,為什么?
由上述過程可以得到什么結論?(互為反函數(shù)的兩個函數(shù)的圖象關于直線 對稱)
、呔毩暎呵笙铝泻瘮(shù)的反函數(shù): ;
(師生共練 小結步驟:解x ;習慣表示;定義域)
(二)小結:函數(shù)模型應用思想;反函數(shù)概念;閱讀P84材料
五、 目標檢測
1.(20xx全國卷Ⅱ文)函數(shù)y= (x 0)的反函數(shù)是
A. (x 0) B. (x 0) C. (x 0) D. (x 0)
1.B 解析:本題考查反函數(shù)概念及求法,由原函數(shù)x 0可知A、C錯,原函數(shù)y 0可知D錯,選B.
2. (20xx廣東卷理)若函數(shù) 是函數(shù) 的反函數(shù),其圖像經(jīng)過點 ,則 ( )
A. B. C. D.
2. B 解析: ,代入 ,解得 ,所以 ,選B.
3. 求函數(shù) 的反函數(shù)
3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數(shù)的反函數(shù)為 .
【總結】20xx年已經(jīng)到來,新的一年數(shù)學網(wǎng)會為您整理更多更好的文章,希望本文高一數(shù)學教案:對數(shù)函數(shù)及其性質能給您帶來幫助!
高一數(shù)學教案14
教學目標
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質及運算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問題;
4、掌握向量垂直的條件、
教學重難點
教學重點:平面向量的數(shù)量積定義
教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用
教學過程
1、平面向量數(shù)量積(內積)的定義:已知兩個非零向量a與b,它們的'夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、
并規(guī)定0向量與任何向量的數(shù)量積為0、
×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定、
(2)兩個向量的數(shù)量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴格區(qū)分、符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替、
(3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因為其中cosq有可能為0、
高一數(shù)學教案15
學習目標 1.函數(shù)奇偶性的概念
2.由函數(shù)圖象研究函數(shù)的奇偶性
3.函數(shù)奇偶性的判斷
重點:能運用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性
難點:理解函數(shù)的奇偶性
知識梳理:
1.軸對稱圖形:
2中心對稱圖形:
【概念探究】
1、 畫出函數(shù) ,與 的圖像;并觀察兩個函數(shù)圖像的對稱性。
2、 求出 , 時的函數(shù)值,寫出 , 。
結論: 。
3、 奇函數(shù):___________________________________________________
4、 偶函數(shù):______________________________________________________
【概念深化】
(1)、強調定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質。
(2)、奇函數(shù)偶函數(shù)的定義域關于原點對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數(shù)是___________。
如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以 軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關于 軸對稱,則這個函數(shù)是___________。
6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________.
題型一:判定函數(shù)的奇偶性。
例1、判斷下列函數(shù)的奇偶性:
(1) (2) (3)
(4) (5)
練習:教材第49頁,練習A第1題
總結:根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式
例2:若f(x)是定義在R上的奇函數(shù),當x0時,f(x)=x(1-x),求當 時f(x)的解析式。
練習:若f(x)是定義在R上的奇函數(shù),當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。
已知定義在實數(shù)集 上的奇函數(shù) 滿足:當x0時, ,求 的表達式
題型三:利用奇偶性作函數(shù)圖像
例3 研究函數(shù) 的.性質并作出它的圖像
練習:教材第49練習A第3,4,5題,練習B第1,2題
當堂檢測
1 已知 是定義在R上的奇函數(shù),則( D )
A. B. C. D.
2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )
A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7
C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7
3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )
A. B. C. D.
4 已知函數(shù) 為奇函數(shù),若 ,則 -1
5 若 是偶函數(shù),則 的單調增區(qū)間是
6 下列函數(shù)中不是偶函數(shù)的是(D )
A B C D
7 設f(x)是R上的偶函數(shù),切在 上單調遞減,則f(-2),f(- ),f(3)的大小關系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函數(shù) 的圖像必經(jīng)過點( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( A )
A 0 B 1 C 2 D 4
10 設f(x)是定義在R上的奇函數(shù),且x0時,f(x)= ,則f(-2)=_-5__
11若f(x)在 上是奇函數(shù),且f(3)_f(-1)
12.解答題
用定義判斷函數(shù) 的奇偶性。
13定義證明函數(shù)的奇偶性
已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)
14利用函數(shù)的奇偶性求函數(shù)的解析式:
已知分段函數(shù) 是奇函數(shù),當 時的解析式為 ,求這個函數(shù)在區(qū)間 上的解析表達式。
【高一數(shù)學教案】相關文章:
高一優(yōu)秀數(shù)學教案09-28
高一數(shù)學教案數(shù)列12-29
【薦】高一數(shù)學教案11-27
【熱】高一數(shù)學教案12-05
【熱門】高一數(shù)學教案11-26
高一數(shù)學教案【薦】12-02
高一數(shù)學教案【熱門】11-28
高一數(shù)學教案【熱】12-03
高一數(shù)學教案【推薦】11-30