數(shù)學(xué)初二教案15篇
作為一名為他人授業(yè)解惑的教育工作者,時(shí)常需要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。那么你有了解過教案嗎?以下是小編收集整理的數(shù)學(xué)初二教案,僅供參考,大家一起來看看吧。
數(shù)學(xué)初二教案1
教學(xué)設(shè)計(jì)思想:
本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動(dòng)性。
教學(xué)目標(biāo)
知識與技能:
1.總結(jié)出平行四邊形的三種判定方法;
2.應(yīng)用平行四邊形的判定解決實(shí)際問題;
3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;
4.總結(jié)三角形與平行四邊形的相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。
過程與方法:
1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的`基本方法。
2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。
情感態(tài)度價(jià)值觀:
1.在探究活動(dòng)中,發(fā)展合情推理意識,養(yǎng)成主動(dòng)探究的習(xí)慣;
2.通過探索式證明法開拓思路,發(fā)展思維能力;
3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。
教學(xué)重難點(diǎn)
重點(diǎn):1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。
難點(diǎn):1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。
教學(xué)方法
小組討論、合作探究
課時(shí)安排
3課時(shí)
教學(xué)媒體
課件、
教學(xué)過程
第一課時(shí)
(一)引入
師:上節(jié)課我們已經(jīng)知道了平行四邊形的邊、角及對角線所具有的性質(zhì),請同學(xué)們回憶一下都有哪些?
數(shù)學(xué)初二教案2
一、教學(xué)目標(biāo)
1.了解分式、有理式的概念。
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件,分式的值為零的條件。
2.難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件。
3。認(rèn)知難點(diǎn)與突破方法
難點(diǎn)是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點(diǎn)的方法是利用分式與分?jǐn)?shù)有許多類似之處,從分?jǐn)?shù)入手,研究出分式的有關(guān)概念,同時(shí)還要講清分式與分?jǐn)?shù)的聯(lián)系與區(qū)別。
三、例、習(xí)題的意圖分析
本章從實(shí)際問題引出分式方程=,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時(shí)耽誤時(shí)間,列方程在這節(jié)課里不是重點(diǎn),也不要求解這個(gè)方程。
1.本節(jié)進(jìn)一步提出P4[思考]讓學(xué)生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是(即A÷B)的形式。分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。
P5[歸納]順理成章地給出了分式的定義。分式與分?jǐn)?shù)有許多類似之處,研究分式往往要類比分?jǐn)?shù)的有關(guān)概念,所以要引導(dǎo)學(xué)生了解分式與分?jǐn)?shù)的聯(lián)系與區(qū)別。
希望老師注意:分式比分?jǐn)?shù)更具有一般性,例如分式可以表示為兩個(gè)整式相除的商(除式不能為零),其中包括所有的分?jǐn)?shù)。
2.P5[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的.方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義。即當(dāng)B≠0時(shí),分式才有意義。
3.P5例1填空是應(yīng)用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學(xué)生比較全面地理解分式及有關(guān)的概念,也為今后求函數(shù)的自變量的取值范圍,打下良好的基礎(chǔ)。
4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補(bǔ)充的例2為了學(xué)生更全面地體驗(yàn)分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:1分母不能為零;2分子為零。這兩個(gè)條件得到的解集的公共部分才是這一類題目的解。
四、課堂引入
1.讓學(xué)生填寫P4[思考],學(xué)生自己依次填出:
2.學(xué)生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?
請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程。
設(shè)江水的流速為x千米/時(shí)。
數(shù)學(xué)初二教案3
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老師點(diǎn)評:(1)配方法將方程兩邊同除以2后,x前面的系數(shù)應(yīng)為12,12的一半應(yīng)為14,因此,應(yīng)加上(14)2,同時(shí)減去(14)2.(2)直接用公式求解.
二、探索新知
(學(xué)生活動(dòng))請同學(xué)們口答下面各題.
(老師提問)(1)上面兩個(gè)方程中有沒有常數(shù)項(xiàng)?
(2)等式左邊的.各項(xiàng)有沒有共同因式?
(學(xué)生先答,老師解答)上面兩個(gè)方程中都沒有常數(shù)項(xiàng);左邊都可以因式分解.
因此,上面兩個(gè)方程都可以寫成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因?yàn)閮蓚(gè)因式乘積要等于0,至少其中一個(gè)因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實(shí)現(xiàn)降次的?)
因此,我們可以發(fā)現(xiàn),上述兩個(gè)方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種解法叫做因式分解法.
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的條件是什么?
解:略 (方程一邊為0,另一邊可分解為兩個(gè)一次因式乘積.)
練習(xí):下面一元二次方程解法中,正確的是( )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,兩邊同除以x,得x=1
三、鞏固練習(xí)
教材第14頁 練習(xí)1,2.
四、課堂小結(jié)
本節(jié)課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應(yīng)用.
(2)因式分解法要使方程一邊為兩個(gè)一次因式相乘,另一邊為0,再分別使各一次因式等于0.
五、作業(yè)布置
教材第17頁習(xí)題6,8,10,11
數(shù)學(xué)初二教案4
知識與技能
(1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2) 掌握二元一 次方程組和對應(yīng)的兩條直線之間的 關(guān)系;
(3) 掌握二元一次方程組的圖像解法.
過程與方法
(1) 教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;
(2) 通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.
情感與態(tài)度
(1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.
(2) 在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.
教學(xué)重點(diǎn)
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.
教學(xué)難點(diǎn)
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
教學(xué)準(zhǔn)備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.
教學(xué)過程
第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識)
內(nèi)容:
1.方程x+y=5的解有多少個(gè)? 是這個(gè)方程的解嗎?
2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?
3.在一次函數(shù)y= 的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y= 的圖像相同嗎?
由此得到本節(jié)課的第一個(gè)知識點(diǎn):
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程 .
第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué) 生解決)
內(nèi)容:
1.解方程組
2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y= 和y=2x ,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù) 的圖像.
3.方程組的解和這兩個(gè)函數(shù)的圖像的交點(diǎn)坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個(gè)知識點(diǎn):二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;
(1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2) 求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.
(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.
第三環(huán)節(jié) 典型例題 (10分鐘,學(xué)生獨(dú)立解決)
探究方程與函數(shù)的相互轉(zhuǎn)化
內(nèi)容:
例1 用作圖像的方法解方程組
例2 如圖,直線 與 的交點(diǎn)坐標(biāo)是 .
第四環(huán)節(jié) 反饋練習(xí)(10分鐘,學(xué)生解決全班交流)
內(nèi)容:
1.已知一次函數(shù) 與 的圖像的交點(diǎn)為 ,則 .
2.已知一次函數(shù) 與 的圖像都經(jīng)過點(diǎn)A(—2, 0),且與 軸分別交于B,C兩點(diǎn),則 的面積為.
(A)4 (B)5 (C)6 (D)7
3.求兩條直線 與 和 軸所圍成的三角形面積.
4.如圖,兩條直線 與 的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?
第五環(huán)節(jié) 課堂小結(jié)(5分鐘,師生共同總結(jié))
內(nèi)容:以“問題串”的'形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
1.二元一次方程和一 次函數(shù)的圖像的關(guān)系;
(1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上 的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.
2.方程組和對應(yīng)的兩條直線的關(guān)系:
(1) 方程組的解是對應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2) 兩條直線的交 點(diǎn)坐標(biāo)是對應(yīng)的方程組的解;
3.解二元一次 方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法. 要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.
第六環(huán)節(jié) 作業(yè)布置
習(xí)題7.7A組(優(yōu)等生)1、 2、3 B組(中等生)1、2 C組1、2
數(shù)學(xué)初二教案5
教學(xué)目標(biāo)
1。知識與技能
能應(yīng)用所學(xué)的函數(shù)知識解決現(xiàn)實(shí)生活中的問題,會建構(gòu)函數(shù)“模型”。
2。過程與方法
經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維。
3。情感、態(tài)度與價(jià)值觀
培養(yǎng)變量與對應(yīng)的思想,形成良好的函數(shù)觀點(diǎn),體會一次函數(shù)的應(yīng)用價(jià)值。
重、難點(diǎn)與關(guān)鍵
1。重點(diǎn):一次函數(shù)的.應(yīng)用。
2。難點(diǎn):一次函數(shù)的應(yīng)用。
3。關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維。
教學(xué)方法
采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用。
教學(xué)過程
一、范例點(diǎn)擊,應(yīng)用所學(xué)
例5、小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時(shí)間里她的跑步速度y(單位:米/分)隨跑步時(shí)間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象。
y=
例6、A城有肥料200噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運(yùn)往C、D兩鄉(xiāng)。從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運(yùn)總運(yùn)費(fèi)最少?
解:設(shè)總運(yùn)費(fèi)為y元,A城往運(yùn)C鄉(xiāng)的肥料量為x噸,則運(yùn)往D鄉(xiāng)的肥料量為(200—x)噸。B城運(yùn)往C、D鄉(xiāng)的肥料量分別為(240—x)噸與(60+x)噸。y與x的關(guān)系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由圖象可看出:當(dāng)x=0時(shí),y有最小值10040,因此,從A城運(yùn)往C鄉(xiāng)0噸,運(yùn)往D鄉(xiāng)200噸;從B城運(yùn)往C鄉(xiāng)240噸,運(yùn)往D鄉(xiāng)60噸,此時(shí)總運(yùn)費(fèi)最少,總運(yùn)費(fèi)最小值為10040元。
拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應(yīng)怎樣調(diào)運(yùn)?
二、隨堂練習(xí),鞏固深化
課本P119練習(xí)。
三、課堂總結(jié),發(fā)展?jié)撃?/p>
由學(xué)生自我評價(jià)本節(jié)課的表現(xiàn)。
四、布置作業(yè),專題突破
課本P120習(xí)題14。2第9,10,11題。
數(shù)學(xué)初二教案6
教學(xué)目標(biāo)
1、理解用配方法解一元二次方程的基本步驟。
2、會用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。
3、進(jìn)一步體會化歸的思想方法。
重點(diǎn)難點(diǎn)
重點(diǎn):會用配方法解一元二次方程.
難點(diǎn):使一元二次方程中含未知數(shù)的項(xiàng)在一個(gè)完全平方式里。
教學(xué)過程
(一)復(fù)習(xí)引入
1、用配方法解方程x2+x-1=0,學(xué)生練習(xí)后再完成課本P.13的“做一做”.
2、用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的基本步驟是什么?
(二)創(chuàng)設(shè)情境
現(xiàn)在我們已經(jīng)會用配方法解二次項(xiàng)系數(shù)為1的一元二次方程,而對于二次項(xiàng)系數(shù)不為1的一元二次方程能不能用配方法解?
怎樣解這類方程:2x2-4x-6=0
(三)探究新知
讓學(xué)生議一議解方程2x2-4x-6=0的方法,然后總結(jié)得出:對于二次項(xiàng)系數(shù)不為1的一元二次方程,可將方程兩邊同除以二次項(xiàng)的系數(shù),把二次項(xiàng)系數(shù)化為1,然后按上一節(jié)課所學(xué)的方法來解。讓學(xué)生進(jìn)一步體會化歸的思想。
(四)講解例題
1、展示課本P.14例8,按課本方式講解。
2、引導(dǎo)學(xué)生完成課本P.14例9的填空。
3、歸納用配方法解一元二次方程的基本步驟:首先將方程化為二次項(xiàng)系數(shù)是1的一般形式;其次加上一次項(xiàng)系數(shù)的一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里;最后將配方后的一元二次方程用因式分解法或直接開平方法來解。
(五)應(yīng)用新知
課本P.15,練習(xí)。
(六)課堂小結(jié)
1、用配方法解一元二次方程的基本步驟是什么?
2、配方法是一種重要的數(shù)學(xué)方法,它的重要性不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),高中學(xué)習(xí)二次曲線時(shí)都要經(jīng)常用到。
3、配方法是解一元二次方程的'通法,但是由于配方的過程要進(jìn)行較繁瑣的運(yùn)算,在解一元二次方程時(shí),實(shí)際運(yùn)用較少。
4、按圖1—l的框圖小結(jié)前面所學(xué)解
一元二次方程的算法。
(七)思考與拓展
不解方程,只通過配方判定下列方程解的
情況。
(1)4x2+4x+1=0;(2)x2-2x-5=0;
(3)–x2+2x-5=0;
[解]把各方程分別配方得
(1)(x+)2=0;
(2)(x-1)2=6;
(3)(x-1)2=-4
由此可得方程(1)有兩個(gè)相等的實(shí)數(shù)根,方程(2)有兩個(gè)不相等的實(shí)數(shù)根,方程(3)沒有實(shí)數(shù)根。
點(diǎn)評:通過解答這三個(gè)問題,使學(xué)生能靈活運(yùn)用“配方法”,并強(qiáng)化學(xué)生對一元二次方程解的三種情況的認(rèn)識。
數(shù)學(xué)初二教案7
教學(xué)目標(biāo)
1、理解“配方”是一種常用的數(shù)學(xué)方法,在用配方法將一元二次方程變形的過程中,讓學(xué)生進(jìn)一步體會化歸的思想方法。
2、會用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。
重點(diǎn)難點(diǎn)
重點(diǎn):會用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。
難點(diǎn):用配方法將一元二次方程變形成可用因式分解法或直接開平方法解的方程。
教學(xué)過程
(一)復(fù)習(xí)引入
1、a2±2ab+b2=?
2、用兩種方法解方程(x+3)2-5=0。
如何解方程x2+6x+4=0呢?
(二)創(chuàng)設(shè)情境
如何解方程x2+6x+4=0呢?
(三)探究新知
1、利用“復(fù)習(xí)引入”中的內(nèi)容引導(dǎo)學(xué)生思考,得知:反過來把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所學(xué)的因式分解法或直接開平方法解。
2、怎樣把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?讓學(xué)生完成課本P.10的“做一做”并引導(dǎo)學(xué)生歸納:當(dāng)二次項(xiàng)系數(shù)為“1”時(shí),只要在二次項(xiàng)和一次項(xiàng)之后加上一次項(xiàng)系數(shù)一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里,這種做法叫作配方.將方程一邊化為0,另一邊配方后就可以用因式分解法或直接開平方法解了,這樣解一元二次方程的方法叫作配方法。
(四)講解例題
例1(課本P.11,例5)
[解](1)x2+2x-3(觀察二次項(xiàng)系數(shù)是否為“l(fā)”)
=x2+2x+12-12-3(在一次項(xiàng)和二次項(xiàng)之后加上一次項(xiàng)系數(shù)一半的'平方,再減去這個(gè)數(shù),使它與原式相等)
=(x+1)2-4。(使含未知數(shù)的項(xiàng)在一個(gè)完全平方式里)
用同樣的方法講解(2),讓學(xué)生熟悉上述過程,進(jìn)一步明確“配方”的意義。
例2引導(dǎo)學(xué)生完成P.11~P.12例6的填空。
(五)應(yīng)用新知
1、課本P.12,練習(xí)。
2、學(xué)生相互交流解題經(jīng)驗(yàn)。
(六)課堂小結(jié)
1、怎樣將二次項(xiàng)系數(shù)為“1”的一元二次方程配方?
2、用配方法解一元二次方程的基本步驟是什么?
(七)思考與拓展
解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。
說一說一元二次方程解的情況。
[解](1)將方程的左邊配方,得(x-3)2+1=0,移項(xiàng),得(x-3)2=-1,所以原方程無解。
(2)用配方法可解得x1=x2=-。
(3)用配方法可解得x1=,x2=
一元二次方程解的情況有三種:無實(shí)數(shù)解,如方程(1);有兩個(gè)相等的實(shí)數(shù)解,如方程(2);有兩個(gè)不相等的實(shí)數(shù)解,如方程(3)。
課后作業(yè)
課本習(xí)題
教學(xué)后記:
數(shù)學(xué)初二教案8
教學(xué)內(nèi)容:與三角形有關(guān)的角
教學(xué)目標(biāo):
1、知識與技能:
(1)掌握三角形內(nèi)角和定理證明及其簡單應(yīng)用;
(2)掌握三角形的外角的定義、三角形外角性質(zhì)定理及其推論的證明和靈活運(yùn)用。
2、過程與方法:通過動(dòng)手操作探索三角形三個(gè)內(nèi)角的和,運(yùn)用三角形內(nèi)角和定理解決實(shí)際問題;探究三角形外角的性質(zhì)定理,能夠運(yùn)用三角形的外角性質(zhì)定理解決實(shí)際問題;經(jīng)歷小組協(xié)作討論,進(jìn)一步發(fā)展合作交流的能力和數(shù)學(xué)表達(dá)能力。
3、情感、態(tài)度與價(jià)值觀:養(yǎng)成獨(dú)立觀察思考的習(xí)慣,感受數(shù)學(xué)學(xué)習(xí)中轉(zhuǎn)化的巧妙。
教學(xué)重點(diǎn):
(1)三角形內(nèi)角和定理;
(2)三角形的外角的定義,三角形外角的性質(zhì)定理及其推論。
教學(xué)難點(diǎn):
(1)三角形內(nèi)角和定理的證明;
(2)三角形外角性質(zhì)定理和推論及其應(yīng)用。
教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、嘗試探究法。
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課:
前面我們學(xué)習(xí)了三角形的邊,今天這節(jié)課我們將學(xué)習(xí)與三角形有關(guān)的角。 我們已經(jīng)知道,任意一個(gè)三角形的三個(gè)內(nèi)角和等于180°。雖然度量的方法可以驗(yàn)證一些具體的三角形的內(nèi)角和等于180°,但是形狀不同的三角形有無數(shù)個(gè),我們不可能用度量的方法一一驗(yàn)證。接下來我們將一起探索并證明三角形的三個(gè)內(nèi)角和是180°。
二、合作交流,解讀探究:
1、拼圖實(shí)驗(yàn):
(1)教師展示圖(1)的拼法,并利用此拼圖證明三角形內(nèi)角和定理。
(2)分析拼圖:在圖(1)中,由內(nèi)錯(cuò)角相等可得,移動(dòng)后∠B的一條邊平行于邊BC;同理,移動(dòng)后∠C的一條邊平行于邊BC。由“經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行”可得,移動(dòng)后∠B的一條邊和移動(dòng)后∠C的一條邊在同一條直線上,并且這條直線平行于邊BC。
(3)提問:通過上面的分析,你能想出證明“三角形內(nèi)角和等于180°”的方法嗎?
由上面的分析,啟發(fā)學(xué)生過△ABC的頂點(diǎn)A作直線?∥BC,即可實(shí)現(xiàn)“角的拼合”,再利用平行線的性質(zhì)與平角的定義進(jìn)行證明。
(4)指導(dǎo)學(xué)生寫出已知、求證、證明過程,規(guī)范證明格式。
已知:如圖,△ABC 求證:∠A+∠B+∠C=180° 證明:過A點(diǎn)作直線DE∥BC ∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(兩直線平行,內(nèi)錯(cuò)角相等) ∵∠DAB+∠BAC+∠EAC=180°(平角的定義) ∴∠BAC+∠B+∠C=180°(等量代換)
應(yīng)指出輔助線通常畫為虛線,并在證明前交代說明。
(5)每個(gè)學(xué)生把課前準(zhǔn)備好的三角形紙片的兩個(gè)內(nèi)角剪下,和第三個(gè)內(nèi)角拼在一起。
讓學(xué)生展示自己的拼法。
(6)學(xué)生口述利用圖(2)證明的過程。
已知:如圖,△ABC 求證:∠A+∠B+∠C=180°
證明:作BC的延長線CD,過點(diǎn)C作射線CE∥BA ∵CE∥BA
∴∠B=∠ECD(兩直線平行,同位角相等) ∠A=∠ACE(兩直線平行,內(nèi)錯(cuò)角相等) ∵∠BCA+∠ACE+∠ECD=180°(平角的定義) ∴∠A+∠B+∠ACB=180°(等量代換)
C
D
C
D
A
E
2、小結(jié)證明思路:通過作平行線“搬兩個(gè)角”,運(yùn)用平行線的性質(zhì)和平角的定義證明。
3、發(fā)散思考:在證明三角形內(nèi)角和定理時(shí),可以“搬兩個(gè)角”來說理。如果只“搬一個(gè)角”行嗎? “搬三個(gè)角”呢?這個(gè)問題留給同學(xué)們在課后研討。
4、三角形內(nèi)角和定理:三角形內(nèi)角和等于180°。
5、鞏固練習(xí):
說出下列圖形中∠1的度數(shù):
(2)
6、外角:
(1)定義:三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。
如圖,∠ACD是△ABC的一個(gè)外角。
問題:①一個(gè)三角形一共有幾個(gè)外角?
、谂袛嘞旅鎴D形中∠1是不是三角形的外角?
(2)性質(zhì)定理及其推論:
(1)
B
(2)
推導(dǎo):由∠A+∠B+∠ACB=180°,可得∠ACB=180°-∠A-∠B 由∠ACB+∠ACD=180°,可得∠ACD=180°-∠ACB
所以 ∠ACD=180°-∠ACB=180°-(180°-∠A-∠B)=∠A+∠B 性質(zhì)定理:三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和。 推論:三角形的`一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角。 (3)鞏固練習(xí):說出下列圖形中∠1和∠2的度數(shù):
D
北
(2)
(1)
三、應(yīng)用舉例:
例1 如圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島的北偏西40°方向。從C島看A,B兩島的視角∠ACB是多少度?
解:由題意可知 ∠1=50°,∠1+∠2=80°,∠4=40°
所以 ∠2=30°
由AD∥BE,可得∠1 +∠2+∠3+∠4=180°。
所以∠3=180°-∠1-∠2-∠4=180°-50°-30°-40°=60°
在⊿ABC中,∠ACB=180°-∠2-∠3=180°-60°-30 °=90° 答:從C島看A,B兩島的視角∠ACB是90°。 提問:你還能想出其他的解法嗎?其他解題思路:
(1)如圖1,過點(diǎn)C作AD的垂線,交直線AD于點(diǎn)M,交直線BE于點(diǎn)N。 (2)如圖2,過點(diǎn)C作CF∥AD。
圖1
北
F
D
北例2 如圖,∠BAE,∠CBF,∠ACD是△ABC的三個(gè)外角,它們的和是多少?
解:如圖,因?yàn)椤螧AE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,
(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和) 所以∠BAE +∠CBF+∠ACD=2(∠1+∠2+∠3), 因?yàn)?∠1+∠2+∠3=180°,
所以 ∠BAE +∠CBF+∠ACD=360°。
提問:你還能想出其他的解法嗎?(利用平角的定義) 歸納結(jié)論:三角形的外角和等于360°。
四、課堂小結(jié):通過本節(jié)課的學(xué)習(xí),你有哪些收獲?
五、布置作業(yè):1、必做題:教材P76 習(xí)題7.2 第1、4、7題。 2、選做題:
(1)已知:P是△ABC內(nèi)一點(diǎn)。
求證:∠BPC>∠BAC
(2)已知:在△ABC中,AD是BC邊上的高,E
是AC邊上一點(diǎn),BE與AD交于點(diǎn)F,∠ABC=45°,∠BAC=75°,∠AFB=120°。
求證:BE⊥AC
B
數(shù)學(xué)初二教案9
考標(biāo)要求:
1體會因式分解法適用于解一邊為0,另一邊可分解為兩個(gè)一次因式的乘積的一元二次方程;
2會用因式分解法解某些一元二次方程。
重點(diǎn):用因式分解法解一元二次方程。
難點(diǎn):用因式分解把一元二次方程化為左邊是兩個(gè)一次二項(xiàng)式相乘右邊是零的形式。
一填空題(每小題5分,共25分)
1解方程(2+x)(x-3)=0,就相當(dāng)于解方程()
A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0
2用因式分解法解一元二次方程的思路是降次,下面是甲、乙兩位同學(xué)解方程的過程:
(1)解方程:,小明的解法是:解:兩邊同除以x得:x=2;
(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0
其中正確的是()
A小明B小亮C都正確D都不正確
3下面方程不適合用因式分解法求解的是()
A2-32=0,B2(2x-3)-=0,,D
4方程2x(x-3)=5(x-3)的根是()
Ax=,Bx=3C=,=3Dx=
5定義一種運(yùn)算“※”,其規(guī)則為:a※b=(a+1)(b+1),根據(jù)這個(gè)規(guī)則,方程x※(x+1)=0的解是()
Ax=0Bx=-1C=0,=-1,D=-1=-2
二填空題(每小題5分,共25分)
6方程(1+)-(1-)x=0解是=XXXXX,=XXXXXXXXXX
7當(dāng)x=XXXXXXXXXX時(shí),分式值為零。
8若代數(shù)式與代數(shù)式4(x-3)的值相等,則x=XXXXXXXXXXXXXXXXX
9已知方程(x-4)(x-9)=0的解是等腰三角形的兩邊長,則這個(gè)等腰三角形的周長=XXXXXXX.
10如果,則關(guān)于x的一元二次方程a+bx=0的`解是XXXXXXXXX
三解答題(每小題10分,共50分)
11解方程
(1)+2x+1=0(2)4-12x+9=0
(3)25=9(4)7x(2x-3)=4(3-2x)
12解方程=(a-2)(3a-4)
13已知k是關(guān)于x的方程4k-8x-k=0的一個(gè)根,求k的值。?
14解方程:-2+1=0
15對于向上拋的物體,在沒有空氣阻力的情況下,有如下關(guān)系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(為方便起見,本題中g(shù)取10米/),t是拋出后所經(jīng)過的時(shí)間。
如果將一物體以每秒25米的初速向上拋,物體多少秒后落到地面
數(shù)學(xué)初二教案10
1。教材分析
。1)知識結(jié)構(gòu):
。2)重點(diǎn)和難點(diǎn)分析:
重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。
難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。
2。教法建議
。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
。2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
。3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個(gè)三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
。4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點(diǎn)
1。使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。
2。了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用。
(二)能力訓(xùn)練點(diǎn)
1。通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。
2。通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸思想。
3。會根據(jù)比較簡單的條件畫出指定的四邊形。
4。講解四邊形外角概念和外角定理時(shí),聯(lián)系三角形的有關(guān)概念對學(xué)生滲透類比思想。
。ㄈ┑掠凉B透點(diǎn)
使學(xué)生認(rèn)識到這些四邊形都是常見的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識的興趣。
。ㄋ模┟烙凉B透點(diǎn)
通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。
二、學(xué)法引導(dǎo)
類比、觀察、引導(dǎo)、講解
三、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法
1。教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問題。
2。教學(xué)難點(diǎn):理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。
3。疑點(diǎn)及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個(gè)角。
四、課時(shí)安排
2課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師引入新課,學(xué)生觀察圖形,類比三角形知識導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。
第一課時(shí)
七、教學(xué)步驟
【復(fù)習(xí)引入】
在小學(xué)里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一
章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的.關(guān)系,并運(yùn)用有關(guān)四邊形的知識解決一些新問題。
【引入新課】
用投影儀打出課前畫好的教材中P119的圖。
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個(gè)圖形)。
【講解新課】
1。四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對角線(同時(shí)學(xué)生在書上畫出上述概念),講解這些概念時(shí):
。1)要結(jié)合圖形。
。2)要與三角形類比。
。3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個(gè)頂點(diǎn)一定在同一平面內(nèi),而四個(gè)點(diǎn)有可能不在同一平面內(nèi),如圖42中的點(diǎn) 。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。
。4)強(qiáng)調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關(guān)系。
。5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖41。
(6)在判斷一個(gè)四邊形是不是凸四邊形時(shí),一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4—4,圖4—5。
2。四邊形內(nèi)角和定理
教師問:
(1)在圖4—3中對角線AC把四邊形ABCD分成幾個(gè)三角形?
。2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個(gè)三角形?
(3)若在四邊形ABCD如圖4—7內(nèi)任取一點(diǎn)O,從O向四個(gè)頂點(diǎn)作連線,把四邊形分成幾個(gè)三角形。
我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:
、2180=360如圖4
、4180—360=360如圖4—7。
例1 已知:如圖48,直線 于B、 于C。
求證:(1) (2) 。
本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個(gè)角相等或互補(bǔ)的關(guān)系,何時(shí)用相等,何時(shí)用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出。
【總結(jié)、擴(kuò)展】
1。四邊形的有關(guān)概念。
2。四邊形對角線的作用。
3。四邊形內(nèi)角和定理。
八、布置作業(yè)
教材P128中1(1)、2、 3。
九、板書設(shè)計(jì)
四邊形(一)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習(xí)
教材P122中1、2、3。
數(shù)學(xué)初二教案11
教學(xué)目標(biāo)
1知識與技能目標(biāo)
(1)通過拼圖活動(dòng),讓學(xué)生感受無理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性.
。2)能判斷給出的數(shù)是否為無理數(shù),并能說出理由.
2過程與方法目標(biāo)
(1)學(xué)生親自動(dòng)手做拼圖活動(dòng),感受無理數(shù)存在的必要性和合理性,培養(yǎng)學(xué)生的動(dòng)手能力和合作精神.
。2)通過回顧有理數(shù)的有關(guān)知識,能正確地進(jìn)行推理和判斷識別某些數(shù)是否為有理數(shù)、無理數(shù),訓(xùn)練他們的思維判斷力.
(3)借助計(jì)算器進(jìn)行估算,培養(yǎng)學(xué)生的估算能力,發(fā)展學(xué)生的抽象概括能力,并在活動(dòng)中進(jìn)一步發(fā)展學(xué)生獨(dú)立思考、合作交流的意識和能力.
3情感與態(tài)度目標(biāo)
。1)激勵(lì)學(xué)生積極參與教學(xué)活動(dòng),提高大家學(xué)習(xí)數(shù)學(xué)的熱情.
。2)引導(dǎo)學(xué)生充分進(jìn)行交流,討論與探索等教學(xué)活動(dòng),培養(yǎng)他們的合作精神與鉆研精神,借助計(jì)算器進(jìn)行估算.
。3)了解有關(guān)無理數(shù)發(fā)現(xiàn)的知識,鼓勵(lì)學(xué)生大膽質(zhì)疑,培養(yǎng)他們?yōu)檎胬矶鴬^半的獻(xiàn)身精神.
教學(xué)重點(diǎn)
1讓學(xué)生經(jīng)歷無理數(shù)發(fā)現(xiàn)的過程,感知生活中確實(shí)存在著不同于有理數(shù)的數(shù).
2會判斷一個(gè)數(shù)是否為有理數(shù),是否不是有理數(shù).
3用計(jì)算器進(jìn)行無理數(shù)的估算.
教學(xué)難點(diǎn)
1把兩個(gè)邊長為1的正方形拼成一個(gè)大正方形的動(dòng)手操作過程.
2無理數(shù)概念的建立及估算.
3判斷一個(gè)數(shù)是否為有理數(shù).
教學(xué)準(zhǔn)備:多媒體,兩個(gè)邊長為1的正方形,剪刀,短繩.
教學(xué)過程:
第一環(huán)節(jié):章節(jié)引入(2分鐘,學(xué)生閱讀感受)
內(nèi)容:.小紅是剛升入八年級的新生,一個(gè)周末的上午,當(dāng)工程師的爸爸給小紅出了兩個(gè)數(shù)學(xué)題:
。1)兩個(gè)數(shù)3.252525……與3.252252225……一樣嗎?它們有什么不同?
。2)一個(gè)邊長為6cm的正方形木板,按如圖的痕跡鋸掉四個(gè)一樣的直角三角形.請計(jì)算剩下的正方形木板的面積是多少?剩下的正方形木板的邊長又是多少厘米呢?你能幫小紅解決這個(gè)問題嗎?
b.你能求出面積為2的正方形的邊長嗎?你知道圓周率的精確值嗎?它們能用整數(shù)或分?jǐn)?shù)(即有理數(shù))來表示嗎?
第二環(huán)節(jié):復(fù)習(xí)引入(3分鐘,學(xué)生口答)
內(nèi)容:閱讀下面的資料,在數(shù)學(xué)中,有理數(shù)的定義為:形如的數(shù)(p、q為互質(zhì)的整數(shù),且p≠0)叫做有理數(shù),當(dāng)p=1,q為任意整數(shù)時(shí),有理數(shù)就是指所有的整數(shù),如:=-2等,當(dāng)p≠1時(shí),由p、q互質(zhì)可知,有理數(shù)就是指所有的分?jǐn)?shù),如,-,-等,綜上所述,有理數(shù)就是整數(shù)和分?jǐn)?shù)的統(tǒng)稱.
請用上述材料中所涉及的知識證明下面的問題:
a.直角邊長分別為3和1的直角三角形的斜邊長是不是有理數(shù)?
b.復(fù)習(xí)前面學(xué)過的數(shù),有理數(shù)包括整數(shù)和分?jǐn)?shù),有理數(shù)范圍是否滿足實(shí)際生活的需要呢?
第三環(huán)節(jié):活動(dòng)探究(15分鐘,學(xué)生動(dòng)手操作,小組合作探究)
。ㄒ唬┌l(fā)現(xiàn)新數(shù)
內(nèi)容:將課前已準(zhǔn)備好的兩個(gè)邊長為1的小正方形剪一剪,拼一拼,設(shè)法得到一個(gè)大正方形.
在學(xué)生活動(dòng)的基礎(chǔ)上,教師利用多媒體展示其中一種剪拼過程,并拋出下面的議一議:
。1)設(shè)大正方形的邊長為,應(yīng)滿足什么條件?
。2)滿足:2=2的數(shù)是一個(gè)什么樣的數(shù)?可能是整數(shù)嗎?說明你的理由?
。3)可能是分?jǐn)?shù)嗎?說說你的理由?
引出課題《數(shù)怎么又不夠用了》
。ǘ└惺苄聰(shù)的廣泛性
內(nèi)容:面積為5的'正方形,它的邊長b可能是有理數(shù)嗎?說說你的理由。
。ㄈ╈柟舔(yàn)證,應(yīng)用拓展
內(nèi)容:aB,C是一個(gè)生活小區(qū)的兩個(gè)路口,BC長為2千米,A處是一個(gè)花園,從A到B,C兩路口的距離都是2千米,現(xiàn)要從花園到生活小區(qū)修一條最短的路,這條路的長可能是整數(shù)嗎?可能是分?jǐn)?shù)嗎?說明理由.
b如圖(1)是由16個(gè)邊長為1的小正方形拼成的,試從連接這些
小正方形的兩個(gè)頂點(diǎn)所得的線段中,分別找出兩條長度是有理數(shù)的線段,兩條長度不是有理數(shù)的線段
第四環(huán)節(jié):介紹歷史,開闊視野(3分鐘,學(xué)生閱讀)
內(nèi)容:早在公元前,古希臘數(shù)學(xué)家畢達(dá)哥拉斯認(rèn)為萬物皆“數(shù)”,即“宇宙間的一切現(xiàn)象都能歸結(jié)為整數(shù)或整數(shù)之比”,也就是一切現(xiàn)象都可用有理數(shù)去描述.后來,這個(gè)學(xué)派中的一個(gè)叫希伯索斯的成員發(fā)現(xiàn)邊長為1的正方形的對角線的長不能用整數(shù)或整數(shù)之比來表示,這個(gè)發(fā)現(xiàn)動(dòng)搖了畢達(dá)哥拉斯學(xué)派的信條,據(jù)說,為此希伯斯被投進(jìn)了大海,他為真理而獻(xiàn)出了寶貴的生命,但真理是不可戰(zhàn)勝的,后來,古希臘人終于正視了希伯索斯的發(fā)現(xiàn).
第五環(huán)節(jié):課時(shí)小結(jié)(2分鐘,全班交流)
內(nèi)容談?wù)劚竟?jié)課你有什么收獲與體會?有哪些困難需要?jiǎng)e人幫你解決?
b感受數(shù)不夠用了,會確定一個(gè)數(shù)是有理數(shù)或不是有理數(shù).
c本節(jié)課用到基本方法:動(dòng)手、操作、觀察、思考,猜想驗(yàn)證,推理,歸納等過程,獲取數(shù)學(xué)知識.
第六環(huán)節(jié):布置作業(yè)
數(shù)學(xué)初二教案12
教學(xué)目標(biāo)
1.掌握正方形的定義、性質(zhì)和判定及它們初步應(yīng)用.
2.理解正方形與平行四邊形、矩形、菱形的內(nèi)在聯(lián)系.
3.通過正方形與平行四邊形、矩形、菱形的聯(lián)系的教學(xué)來提高學(xué)生的邏輯思維能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn)是正方形的定義及正方形與矩形、菱形的聯(lián)系;
難點(diǎn)是正方形與矩形、菱形的關(guān)系及正方形的性質(zhì)、判定的靈活運(yùn)用.
教學(xué)過程設(shè)計(jì)
一、通過知識結(jié)構(gòu)的教學(xué),學(xué)習(xí)正方形的知識.
1.復(fù)習(xí)平行四邊形、矩形、菱形的定義.
學(xué)生邊回答,教師邊用活動(dòng)教具演示平行四邊形演變成矩形、菱形的過程,并畫出它們之間的內(nèi)在聯(lián)系圖.(畫出圖4-50(a)中的四邊形,平行四邊形、矩形、菱形及箭頭)
2.類比聯(lián)想,用運(yùn)動(dòng)方式得出正方形的定義.
問:既然矩形、菱形都能由平行四邊形運(yùn)動(dòng)變化得到,那么正方形呢?
啟發(fā)學(xué)生將小學(xué)熟悉的正方形與平行四邊形作比較,用教具演示出平行四邊形形成正方形的過程,同時(shí)歸納出正方形的定義.教師板書定義并畫出圖4-50中的正方形及箭頭①.
3.完善特殊的平行四邊形的知識結(jié)構(gòu).
(1)師生共同分析正方形定義的三個(gè)要點(diǎn):①是平行四邊形;②有一個(gè)角是直角;③有一組鄰邊相等.
(2)對比正方形與矩形、菱形的定義,得出它們的聯(lián)系:
①由正方形定義①,②條件可知正方形是特殊的.矩形.(畫出圖中的箭頭②及正方形集合A5和矩形集合A1)
、谟烧叫味x的①,③條件可知正方形是特殊的菱形.(畫出圖4-50中的箭頭③及菱形集合A2)
、塾烧叫蔚亩x的所有條件可知,正方形又是特殊的平行四邊形.(畫出圖4-50中的集合A3)
、芷叫兴倪呅、矩形、菱形、正方形都是特殊的四邊形.(畫出圖4-50(b)中四邊形集合A4)
而且從以上過程可知,正方形既是矩形又是菱形.(集合A2與A1的公共部分)
4.從整體知識結(jié)構(gòu)出發(fā),研究正方形的性質(zhì)和判定.
(1)正方形的性質(zhì).
引導(dǎo)學(xué)生由正方形與矩形、菱形的關(guān)系得知:正方形具有矩形和菱形的一切性質(zhì).讓學(xué)生復(fù)習(xí)矩形和菱形的性質(zhì),從而得到正方形的性質(zhì).
、龠叄核倪叾枷嗟.(性質(zhì)定理1)
、诮牵核膫(gè)角都是直角.
③對角線:相等、互相垂直平分,每條對角線平分一組對角.(性質(zhì)定理2)
(2)正方形的判定.
引導(dǎo)學(xué)生根據(jù)正方形與平行四邊形、矩形、菱形之間的關(guān)系,總結(jié)出正方形的三類判定方法:
①先判定四邊形是平行四邊形,再判定它是正方形;(圖4-50(a)中箭頭①)
、谙扰卸ㄋ倪呅问蔷匦,再判定這個(gè)矩形又是菱形;(圖4-50(a)中箭頭②)
、巯扰卸ㄋ倪呅问橇庑,再判定這個(gè)菱形又是矩形.(圖4-50(a)中箭頭③)
(3)鞏固練習(xí):判斷下列命題是否正確,不是正方形的補(bǔ)充什么條件能讓它成為正方形?
、偎膫(gè)角都相等的四邊形是正方形;(×)
②四條邊都相等的四邊形是正方形;(×)
、蹖蔷相等的菱形是正方形;(√)
、軐蔷互相垂直的矩形是正方形;(√)
、輰
數(shù)學(xué)初二教案13
教學(xué)目標(biāo)
1.會解簡易方程,并能用簡易方程解簡單的應(yīng)用題;
2.通過代數(shù)法解簡易方程進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力,發(fā)展學(xué)生的應(yīng)用意識;
3.通過解決問題的實(shí)踐,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的鉆研精神。
教學(xué)建議
一、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):簡易方程的解法;
難點(diǎn):根據(jù)實(shí)際問題中的數(shù)量關(guān)系正確地列出方程并求解。
二、重點(diǎn)、難點(diǎn)分析
解簡易方程的基本方法是:將方程兩邊同時(shí)加上(或減去)同一個(gè)適當(dāng)?shù)臄?shù);將方程兩邊同時(shí)乘以(或除以)同一個(gè)適當(dāng)?shù)臄?shù)。最終求出問題的解。
判斷方程求解過程中兩邊加上(或減去)以及乘以(或除以)的同一個(gè)數(shù)是否“適當(dāng)”,關(guān)鍵是看運(yùn)算的第一步能否使方程的一邊只含有帶有未知數(shù)的那個(gè)數(shù),第二步能否使方程的一邊只剩下未知數(shù),即求出結(jié)果。
列簡易方程解應(yīng)用題是以列代數(shù)式為基礎(chǔ)的,關(guān)鍵是在弄清楚題目語句中各種數(shù)量的.意義及相互關(guān)系的基礎(chǔ)上,選取適當(dāng)?shù)奈粗獢?shù),然后把與數(shù)量有關(guān)的語句用代數(shù)式表示出來,最后利用題中的相等關(guān)系列出方程并求解。
三、知識結(jié)構(gòu)
導(dǎo)入方程的概念解簡易方程利用簡易方程解應(yīng)用題。
四、教法建議
(1)在本節(jié)的導(dǎo)入部分,須使學(xué)生理解的是算術(shù)運(yùn)算只對已知數(shù)進(jìn)行加、減、乘、除,而代數(shù)運(yùn)算的優(yōu)越性體現(xiàn)在未知數(shù)獲得與已知數(shù)平等的地位,即同樣可以和已知數(shù)進(jìn)行加、減、乘、除運(yùn)算。對于方程、方程的解、解方程的概念讓學(xué)生了解即可。
(2)解簡易方程,要在學(xué)生積極參與的基礎(chǔ)上,理解何種形式的方程在求解過程中方程兩邊選擇加上(或減去)同一個(gè)數(shù),以及何種形式的方程在求解過程中兩邊選擇乘以(或除以)同一個(gè)數(shù)。另一個(gè)重要的問題就是“適當(dāng)?shù)臄?shù)”的選擇了。通常,整式方程并不需要檢驗(yàn),但為了學(xué)生從一開始就養(yǎng)成自我檢查的好習(xí)慣,可以讓學(xué)生在草稿紙上檢驗(yàn),同時(shí)也是對前面學(xué)過的求代數(shù)式的值的復(fù)習(xí)。
(3)教材給出了三道應(yīng)用題,其中例4是一道有關(guān)公式應(yīng)用的方程問題。列簡易方程解應(yīng)用題,關(guān)鍵在引導(dǎo)學(xué)生加深對代數(shù)式的理解基礎(chǔ)上,認(rèn)真讀懂題意,弄清楚題目中的關(guān)鍵語句所包含的各種數(shù)量的意義及相互關(guān)系。恰當(dāng)?shù)卦O(shè)未知數(shù),用代數(shù)式表示數(shù)學(xué)語句,依據(jù)相等關(guān)系正確的列出方程并求解。
(4)教學(xué)過程中,應(yīng)充分發(fā)揮多媒體技術(shù)的輔助教學(xué)作用,可以參考運(yùn)用相關(guān)課件提高學(xué)生的學(xué)習(xí)興趣,加深對列簡易方程解簡單的應(yīng)用題的整個(gè)分析、解決問題過程的理解。此外,通過應(yīng)用投影儀、幻燈片可以提高課堂效率,有利于對知識點(diǎn)的掌握。
五、列簡易方程解應(yīng)用題
列簡易方程解應(yīng)用題的一般步驟
(1)弄清題意和題目中的已知數(shù)、未知數(shù),用字母(如x)表示題目中的一個(gè)未知數(shù).
(2)找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.
(3)根據(jù)這個(gè)相等關(guān)系列出需要的代數(shù)式,從而列出方程.
(4)解這個(gè)方程,求出未知數(shù)的值.
(5)寫出答案(包括單位名稱).
概括地說,列簡易方程解應(yīng)用題,一般有“設(shè)、列、解、驗(yàn)、答”五個(gè)步驟,審題可在草稿紙上進(jìn)行.其中關(guān)鍵是“列”,即列出符合題意的方程.難點(diǎn)是找等量關(guān)系.要想抓住關(guān)鍵、突破難點(diǎn),一定要開動(dòng)腦筋,勤于思考、努力提高自己分析問題和解決問題的能力.
數(shù)學(xué)初二教案14
一、教學(xué)目標(biāo):
1.經(jīng)歷觀察、發(fā)現(xiàn)、探究中心對稱圖形的有關(guān)概念和基本性質(zhì)的過程,積累一定的審美體驗(yàn)。
2了解中心對稱圖形及其基本性質(zhì),掌握平行四邊形也是中心對稱圖形。
二、教學(xué)重、難點(diǎn):
理解中心對稱圖形的概念及其基本性質(zhì)。
三、教學(xué)過程:
(一)創(chuàng)設(shè)問題情境
1.以魔術(shù)創(chuàng)設(shè)問題情境:教師通過撲克牌魔術(shù)的演示引出研究課題,激發(fā)學(xué)生探索“中心對稱圖形”的興趣。
【魔術(shù)設(shè)計(jì)】:師取出若干張非中心對稱的撲克牌和一張是中心對稱的牌,按牌面的多數(shù)指向整理好(如上圖),然后請一位同學(xué)上臺任意抽出一張撲克,把這張牌旋轉(zhuǎn)180O后再插入,再請這位同學(xué)洗幾下,展開撲克牌,馬上確定這位同學(xué)抽出的撲克。
(課堂反應(yīng):學(xué)生非常安靜,目不轉(zhuǎn)睛地盯著老師做動(dòng)作。每完成一個(gè)動(dòng)作之后,學(xué)生就進(jìn)入沉思狀態(tài),接著就是小聲議論。)
師重復(fù)以上活動(dòng)
2次后提問:
(1)你們知道這是什么原因嗎?老師手中的撲克牌圖案有什么特點(diǎn)?
(2)你能說明為什么老師要把抽出的這張牌旋轉(zhuǎn)1800嗎?(小組討論)
(反思:創(chuàng)設(shè)問題情境主要在于下面幾點(diǎn)理由:(1)采取從學(xué)生最熟悉的實(shí)際問題情境入手的方式,貼近學(xué)生的生活實(shí)際,讓學(xué)生認(rèn)識到數(shù)學(xué)來源于生活,又服務(wù)于生活,進(jìn)一步感悟到把實(shí)際問題抽象成數(shù)學(xué)問題的訓(xùn)練,從而激發(fā)學(xué)生的求知欲。
(2)所有新知識的學(xué)習(xí)都以對相關(guān)具體問題情境的探索作為開始,它們是學(xué)生了解與學(xué)習(xí)這些新知識的有效方法,同時(shí)也活躍了課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)興趣。(
3)通過撲克魔術(shù)創(chuàng)設(shè)問題情境,學(xué)生獲得的答案將是豐富的。在最后交流歸納時(shí),他們感覺到,自己在活動(dòng)中“研究”的成果,對最終形成規(guī)范、正確的結(jié)論是有貢獻(xiàn)的,從而激發(fā)他們更加注意學(xué)習(xí)方式和“研究”方式。這也是對他們從事科學(xué)研究的情感態(tài)度的培養(yǎng)。學(xué)生勤于動(dòng)手、樂于探究,發(fā)展學(xué)生實(shí)踐應(yīng)用能力和創(chuàng)新精神成為可行。)
2.教師揭示謎底。
利用“Z+Z”課件游戲演示牌面,請學(xué)生找一找哪張牌旋轉(zhuǎn)
180O后和原來牌面一樣。
3.學(xué)生通過動(dòng)手分析上述撲克牌牌面、獨(dú)立思考、探究、合作交流等活動(dòng),得到答案:
(1)只有一張撲克牌圖案顛倒后和原來牌面一樣。
(2)其余撲克牌顛倒后和原來牌面不一樣,因此,老師事先按牌面的多數(shù)(少數(shù))指向整理好,把任意抽出的一張撲克牌旋轉(zhuǎn)180O后,就可以馬上在一堆撲克牌中找出它。
(反思:本環(huán)節(jié)是在撲克魔術(shù)揭密問題的具體背景下,通過學(xué)生自己的觀察、發(fā)現(xiàn)、總結(jié)、歸納,進(jìn)一步理解中心對稱圖形及其特點(diǎn),發(fā)展空間觀念,突出了數(shù)學(xué)課堂教學(xué)中的探索性。從而培養(yǎng)了學(xué)生觀察、概括能力,讓學(xué)生嘗到了成功的喜悅,激發(fā)了學(xué)生的發(fā)現(xiàn)思維的火花。)
(二)學(xué)生分組討論、思考探究:
1.師問:生活中有哪些圖形是與這張撲克牌一樣,旋轉(zhuǎn)180O后和原來一樣?
生舉例:線段、平行四邊形、矩形、菱形、正方形、圓、飛機(jī)的雙葉螺旋槳等。
2.你能將下列各圖分別繞其上的一點(diǎn)旋轉(zhuǎn)180O,使旋轉(zhuǎn)前后的圖形完全重合嗎?(先讓學(xué)生思考,允許有困難的學(xué)生利用 “
Z+Z”演示其旋轉(zhuǎn)過程。)3
.有人用“中心對稱圖形”一詞描述上面的這些現(xiàn)象,你認(rèn)為這個(gè)詞是什么含義?
(對于抽象的概念教學(xué),要關(guān)注概念的實(shí)際背景與形成過程,加強(qiáng)數(shù)學(xué)與生活的聯(lián)系,力求讓學(xué)生采取發(fā)現(xiàn)式的學(xué)習(xí)方式,通過“想一想”、“議一議”、 “動(dòng)一動(dòng)”等多種活動(dòng)形式,幫助學(xué)生克服記憶概念的學(xué)習(xí)方式。)
(三)教師明晰,建立模型
1給出“中心對稱圖形”定義:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180O,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)叫做它的對稱中心。
2.對比軸對稱圖形與中心對稱圖形:(列出表格,加深印象)
軸對稱圖形中心對稱圖形有一條對稱軸——直線有一個(gè)對稱中心——點(diǎn)沿對稱軸對折繞對稱中心旋轉(zhuǎn)1880O對折后與原圖形重合
旋轉(zhuǎn)后與原圖形重合
(四)解釋、應(yīng)用與拓廣
1.教師用“Z+Z
智能教育平臺”演示旋轉(zhuǎn)過程,驗(yàn)證上述圖形的'中心對稱性,引導(dǎo)學(xué)生討論、探究中心對稱圖形的性質(zhì)。
(利用計(jì)算機(jī)《Z+Z智能教育平臺》技術(shù),通過圖形旋轉(zhuǎn)給出中心對稱圖形的一個(gè)幾何解釋,目的是使學(xué)生對中心對稱圖形有一個(gè)更直觀的認(rèn)識。)
2.探究中心對稱圖形的性質(zhì)
板書:中心對稱圖形上的每一對對應(yīng)點(diǎn)所連成的線段都被對稱中心平分。
3.師問:怎樣找出一個(gè)中心對稱圖形的對稱中心?
(兩組對應(yīng)點(diǎn)連結(jié)所成線段的交點(diǎn))
4平行四邊形是中心對稱圖形嗎?若是,請找出其對稱中心,你怎樣驗(yàn)證呢?
學(xué)生分組討論交流并回答。
討論:根據(jù)以上的驗(yàn)證方法,你能驗(yàn)證平行四邊形的哪些性質(zhì)?學(xué)生分組討論交流并回答。
討論:根據(jù)以上的驗(yàn)證方法,你能驗(yàn)證平行四邊形的哪些性質(zhì)?
5逆向問題:如果一個(gè)四邊形是中心對稱圖形,那么這個(gè)四邊形一定是平行四邊形嗎?
學(xué)生討論回答。
6你還能找出哪些多邊形是中心對稱圖形?
(反思:合作學(xué)習(xí)是新課程改革中追求的一種學(xué)習(xí)方法,但合作學(xué)習(xí)必須建立在學(xué)生的獨(dú)立探索的基礎(chǔ)上,否則合作學(xué)習(xí)將會流于形式,不能起到應(yīng)有的效果,所于我在上課時(shí)強(qiáng)調(diào)學(xué)生先獨(dú)立思考,再由當(dāng)天的小組長組織進(jìn)行,并由當(dāng)天的記錄員記錄小組成員的活動(dòng)情況(每個(gè)小組有一張課堂合作學(xué)習(xí)參考表,見附錄)。)
(五)拓展與延伸
1中國文字豐富多彩、含義深刻,有許多是中心對稱的,你能找出幾個(gè)嗎?
2.正六邊形的對稱中心怎樣確定?
(六)魔術(shù)表演:
1.師:把4張撲克牌放在桌上,然后把某一張撲克牌旋轉(zhuǎn)180o后,得到右圖,你知道哪一張撲克被旋轉(zhuǎn)過嗎?
2.學(xué)生小組活動(dòng):
以“引入”為例,在一副撲克牌中,拿出若干張撲克牌設(shè)計(jì)魔術(shù),相互之間做游戲。
(新教材的編寫,著重突出了用數(shù)學(xué)活動(dòng)呈現(xiàn)教學(xué)內(nèi)容,而不是以例題和習(xí)題的形式出現(xiàn)。通過多種形式的實(shí)踐活動(dòng),讓學(xué)生親歷探究與現(xiàn)實(shí)生活聯(lián)系密切的學(xué)習(xí)過程,使學(xué)生在合作中學(xué)習(xí),在競爭收獲,共同分享成功的喜悅,同時(shí)能調(diào)節(jié)課堂的氣氛,培養(yǎng)學(xué)生之間的情感。只有這樣,學(xué)生的創(chuàng)新意識和動(dòng)手意識才會充分地發(fā)揮出來。)
四、案例小結(jié)
《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:“實(shí)踐活動(dòng)是培養(yǎng)學(xué)生進(jìn)行主動(dòng)探索與合作交流的重要途徑!薄敖處煈(yīng)該充分利用學(xué)生已有的生活經(jīng)驗(yàn),隨時(shí)引導(dǎo)學(xué)生把所學(xué)的數(shù)學(xué)知識應(yīng)用到生活中去,解決身邊的數(shù)學(xué)問題,了解數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,體會學(xué)習(xí)數(shù)學(xué)的重要性!边@兩段話,正體現(xiàn)了新教材的重要變化——關(guān)注學(xué)生的生活世界,學(xué)習(xí)內(nèi)容更加貼近實(shí)際,同時(shí)強(qiáng)調(diào)了數(shù)學(xué)教學(xué)讓學(xué)生動(dòng)手實(shí)踐的重要意義和作用。
現(xiàn)實(shí)性的生活內(nèi)容,能夠賦予數(shù)學(xué)足夠的活力和靈性。對許多學(xué)生來說,“撲克”和“游戲”是很感興趣的內(nèi)容,因此,也具有現(xiàn)實(shí)性,即回歸生活(玩撲克牌)——讓學(xué)生感知學(xué)習(xí)數(shù)學(xué)可以讓生活增添許多樂趣,同時(shí)也讓學(xué)生感知到數(shù)學(xué)就在我們身邊,學(xué)生學(xué)習(xí)的數(shù)學(xué)應(yīng)當(dāng)是生活中的數(shù)學(xué),是學(xué)生“自己身邊的數(shù)學(xué)”。這樣,數(shù)學(xué)來源于生活,又必須回歸于生活,學(xué)生就能在游戲中學(xué)得輕松愉快,整個(gè)課堂顯得生動(dòng)活潑。
數(shù)學(xué)初二教案15
教學(xué)目標(biāo)
1.知識與技能目標(biāo):會用勾股定理及直角三角形的判定條件解決實(shí)際問題,逐步培養(yǎng)“數(shù)形結(jié)合”和“轉(zhuǎn)化”數(shù)學(xué)能力。
2.過程與方法目標(biāo):發(fā)展學(xué)生的分析問題能力和表達(dá)能力。經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3.情感態(tài)度與價(jià)值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育
教學(xué)重點(diǎn)
1、重點(diǎn):勾股定理及其逆定理的應(yīng)用
2、難點(diǎn):勾股定理及其逆定理的應(yīng)用
一、基礎(chǔ)知識梳理
在本章中,我們探索了直角三角形的三邊關(guān)系,并在此基礎(chǔ)上得到了勾股定理,并學(xué)習(xí)了如何利用拼圖驗(yàn)證勾股定理,介紹了勾股定理的用途;本章后半部分學(xué)習(xí)了勾股定理的逆定是以及它的應(yīng)用.其知識結(jié)構(gòu)如下:
1.勾股定理:
直角三角形兩直角邊的XXXXXX和等于XXXXXXX的平方.就是說,對于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有:————————————.這就是勾股定理.
勾股定理揭示了直角三角形XXX之間的數(shù)量關(guān)系,是解決有關(guān)線段計(jì)算問題的重要依據(jù).
勾股定理的直接作用是知道直角三角形任意兩邊的長度,求第三邊的長.這里一定要注意找準(zhǔn)斜邊、直角邊;二要熟悉公式的變形:
,.
2.勾股定理逆定理
“若三角形的兩條邊的平方和等于第三邊的平方,則這個(gè)三角形為XXXXXXXX.”這一命題是勾股定理的逆定理.它可以幫助我們判斷三角形的形狀.為根據(jù)邊的關(guān)系解決角的有關(guān)問題提供了新的方法.定理的證明采用了構(gòu)造法.利用已知三角形的邊a,b,c(a2+b2=c2),先構(gòu)造一個(gè)直角邊為a,b的直角三角形,由勾股定理證明第三邊為c,進(jìn)而通過“SSS”證明兩個(gè)三角形全等,證明定理成立.
3.勾股定理的作用:
已知直角三角形的兩邊,求第三邊;
勾股定理的逆定理是用來判定一個(gè)三角形是否是直角三角形的,但在判定一個(gè)三角形是否是直角三角形時(shí)應(yīng)首先確定該三角形的邊,當(dāng)其余兩邊的平方和等于邊的平方時(shí),該三角形才是直角三角形.勾股定理的逆定理也可用來證明兩直線是否垂直,這一點(diǎn)同學(xué)
勾股定理是直角三角形的性質(zhì)定理,而勾股定理的逆定理是直角三角形的判定定理,它不僅可以判定三角形是否為直角三角形,還可以判定哪一個(gè)角是直角,從而產(chǎn)生了證明兩直線互相垂直的新方法:利用勾股定理的逆定理,通過計(jì)算來證明,體現(xiàn)了數(shù)形結(jié)合的思想.
三角形的三邊分別為a、b、c,其中c為邊,若,則三角形是直角三角形;若,則三角形是銳角三角形;若,則三角形是鈍角三角形.所以使用勾股定理的逆定理時(shí)首先要確定三角形的邊.
二、考點(diǎn)剖析
考點(diǎn)一:利用勾股定理求面積
求:(1) 陰影部分是正方形; (2) 陰影部分是長方形; (3) 陰影部分是半圓.
2. 如圖,以Rt△ABC的三邊為直徑分別向外作三個(gè)半圓,試探索三個(gè)半圓的面積之間的關(guān)系.
考點(diǎn)二:在直角三角形中,已知兩邊求第三邊
例(09年山東濱州)如圖2,已知△ABC中,AB=17,AC=10,BC邊上的高,AD=8,則邊BC的長為( )
A.21 B.15 C.6 D.以上答案都不對
【強(qiáng)化訓(xùn)練】:1.在直角三角形中,若兩直角邊的長分別為5cm,7cm ,則斜邊長為 .
2.(易錯(cuò)題、注意分類的思想)已知直角三角形的兩邊長為4、5,則另一條邊長的平方是
3、已知直角三角形兩直角邊長分別為5和12, 求斜邊上的高.(結(jié)論:直角三角形的兩條直角邊的積等于斜邊與其高的積,ab=ch)
考點(diǎn)三:應(yīng)用勾股定理在等腰三角形中求底邊上的高
例、(09年湖南長沙)如圖1所示,等腰中,,
是底邊上的高,若,求 ①AD的長;②ΔABC的面積.
考點(diǎn)四:應(yīng)用勾股定理解決樓梯上鋪地毯問題
例、(09年濱州)某樓梯的側(cè)面視圖如圖3所示,其中米,,
,因某種活動(dòng)要求鋪設(shè)紅色地毯,則在AB段樓梯所鋪地毯的長度應(yīng)為 .
分析:如何利用所學(xué)知識,把折線問題轉(zhuǎn)化成直線問題,是問題解決的關(guān)鍵。仔細(xì)觀察圖形,不難發(fā)現(xiàn),所有臺階的高度之和恰好是直角三角形ABC的直角邊BC的'長度,所有臺階的寬度之和恰好是直角三角形ABC的直角邊AC的長度,只需利用勾股定理,求得這兩條線段的長即可。
考點(diǎn)五、利用列方程求線段的長(方程思想)
1、小強(qiáng)想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿頂端的繩子垂到地面還多2米,當(dāng)他把繩子的下端拉開4米后,發(fā)現(xiàn)下端剛好接觸地面,你能幫他算出來嗎?
【強(qiáng)化訓(xùn)練】:折疊矩形ABCD的一邊AD,點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=4cm,BC=5cm,求CF 和EC。.
考點(diǎn)六:應(yīng)用勾股定理解決勾股樹問題
例、如右圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中的正方形的邊長為5,則正方形A,B,C,D的面積的和為
分析:勾股樹問題中,處理好兩個(gè)方面的問題,
一個(gè)是正方形的邊長與面積的關(guān)系,另一個(gè)是正方形的面積與直角三角形直角邊與斜邊的關(guān)系。
考點(diǎn)七:判別一個(gè)三角形是否是直角三角形
例1:分別以下列四組數(shù)為一個(gè)三角形的邊長:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能夠成直角三角形的有
【強(qiáng)化訓(xùn)練】:已知△ABC中,三條邊長分別為a=n-1, b=2n,c=n+1(n>1).試判斷該三角形是否是直角三角形,若是,請指出哪一條邊所對的角是直角.
考點(diǎn)八:其他圖形與直角三角形
例:如圖是一塊地,已知AD=4m,CD=3m,∠D=90°,AB=13m,BC=12m,求這塊地的面積。
考點(diǎn)九:與展開圖有關(guān)的計(jì)算
例、如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.
【強(qiáng)化訓(xùn)練】:如圖一個(gè)圓柱,底圓周長6cm,高4cm,一只螞蟻沿外壁爬行,要從A點(diǎn)爬到B點(diǎn),則最少要爬行 cm
四、課時(shí)作業(yè)優(yōu)化設(shè)計(jì)
【駐足“雙基”】
1.設(shè)直角三角形的三條邊長為連續(xù)自然數(shù),則這個(gè)直角三角形的面積是XXXXX.
2.直角三角形的兩直角邊分別為5cm,12cm,其中斜邊上的高為( ).
A.6cm B.8.5cm C.cm D.cm
【提升“學(xué)力”】
3.如圖,△ABC的三邊分別為AC=5,BC=12,AB=13,將△ABC沿AD折疊,使AC落在AB上,求DC的長.
4.如圖,一只鴨子要從邊長分別為16m和6m的長方形水池一角M游到水池另一邊中點(diǎn)N,那么這只鴨子游的最短路程應(yīng)為多少米?
5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所爬行的最短路線的長是
6.如圖:在一個(gè)高6米,長10米的樓梯表面鋪地毯,
則該地毯的長度至少是 米。
【聚焦“中考”】
8.(海南省中考題)如圖,鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站建在距A站多少千米處?
5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所爬行的最短路線的長是
6.如圖:在一個(gè)高6米,長10米的樓梯表面鋪地毯,
則該地毯的長度至少是 米。
【數(shù)學(xué)初二教案】相關(guān)文章:
數(shù)學(xué)初二教案11-24
最新數(shù)學(xué)初二教案09-28
初二數(shù)學(xué)教案11-02
初二數(shù)學(xué)上冊教案11-14
【薦】初二數(shù)學(xué)教案12-19
【精】初二數(shù)學(xué)教案12-19