初二數(shù)學(xué)一次函數(shù)教案
作為一名教師,通常需要準備好一份教案,借助教案可以讓教學(xué)工作更科學(xué)化。教案應(yīng)該怎么寫才好呢?以下是小編精心整理的初二數(shù)學(xué)一次函數(shù)教案 ,希望對大家有所幫助。
初二數(shù)學(xué)一次函數(shù)教案 1
一、創(chuàng)設(shè)情境
問題畫出函數(shù)y=的圖象,根據(jù)圖象,指出:
(1)x取什么值時,函數(shù)值y等于零?
(2)x取什么值時,函數(shù)值y始終大于零?
二、探究歸納
問一元一次方程=0的解與函數(shù)y=的圖象有什么關(guān)系?
答一元一次方程=0的解就是函數(shù)y=的圖象上當(dāng)y=0時的x的值.
問一元一次方程=0的解,不等式>0的解集與函數(shù)y=的圖象有什么關(guān)系?
答不等式>0的解集就是直線y=在x軸上方部分的x的取值范圍.
三、實踐應(yīng)用
例1畫出函數(shù)y=-x-2的圖象,根據(jù)圖象,指出:
(1)x取什么值時,函數(shù)值y等于零?
(2)x取什么值時,函數(shù)值y始終大于零?
解過(-2,0),(0,-2)作直線,如圖.
(1)當(dāng)x=-2時,y=0;
(2)當(dāng)x<-2時,y>0.
例2利用圖象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.
解設(shè)y1=2x-5,y2=-x+1,
在直角坐標系中畫出這兩條直線,如下圖所示.
兩條直線的交點坐標是(2,-1),由圖可知:
(1)2x-5>-x+1的解集是y1>y2時x的.取值范圍,為x>-2;
(2)2x-5<-x+1的解集是y1<y2時x的取值范圍,為x<-2.
四、交流反思
運用函數(shù)的圖象來解釋一元一次方程、一元一次不等式的解集,并能通過函數(shù)圖象來回答一元一次方程、一元一次不等式的解集.
五、檢測反饋
1.已知函數(shù)y=4x-3.當(dāng)x取何值時,函數(shù)的圖象在第四象限?
2.畫出函數(shù)y=3x-6的圖象,根據(jù)圖象,指出:
(1)x取什么值時,函數(shù)值y等于零?
(2)x取什么值時,函數(shù)值y大于零?
(3)x取什么值時,函數(shù)值y小于零?
3.畫出函數(shù)y=-0.5x-1的圖象,根據(jù)圖象?
初二數(shù)學(xué)一次函數(shù)教案 2
一、學(xué)生起點分析
八年級學(xué)生已在七年級學(xué)習(xí)了“變量之間的關(guān)系”,對利用圖象表示變量之間的關(guān)系已有所認識,并能從圖象中獲取相關(guān)的信息,對函數(shù)與圖象的聯(lián)系還比較陌生,需要教師在教學(xué)中引導(dǎo)學(xué)生重點突破函數(shù)與圖象的對應(yīng)關(guān)系.
二、教學(xué)任務(wù)分析
《一次函數(shù)的圖象》是義務(wù)教育課程標準北師大實驗教科書八年級(上)第六章《一次函數(shù)》的第三節(jié).本節(jié)內(nèi)容安排了2個課時,第1課時是讓學(xué)生了解函數(shù)與對象的對應(yīng)關(guān)系和作函數(shù)圖象的步驟和方法,明確一次函數(shù)的圖象是一條直線,能熟練地作出一次函數(shù)的圖象。第2課時是通過對一次函數(shù)圖象的比較與歸類,探索一次函數(shù)及其圖象的簡單性質(zhì).本課時是第一課時,教材注重學(xué)生在探索過程的體驗,注重對函數(shù)與圖象對應(yīng)關(guān)系的認識.
為此本節(jié)課的教學(xué)目標是:
1.了解一次函數(shù)的圖象是一條直線,能熟練作出一次函數(shù)的圖象.
2.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.
3.已知函數(shù)的代數(shù)表達式作函數(shù)的圖象,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識和能力.
4.理解一次函數(shù)的代數(shù)表達式與圖象之間的一一對應(yīng)關(guān)系.
教學(xué)重點是:
初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.
教學(xué)難點是:
理解一次函數(shù)的代數(shù)表達式與圖象之間的一一對應(yīng)關(guān)系.
三、教學(xué)過程設(shè)計
本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):
第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題;
第二環(huán)節(jié):畫一次函數(shù)的圖象;
第三環(huán)節(jié):動手操作,深化探索;
第四環(huán)節(jié):鞏固練習(xí),深化理解;
第五環(huán)節(jié):課時小結(jié);
第六環(huán)節(jié):拓展探究;
第七環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題
內(nèi)容:
一天,小明以80米/分的速度去上學(xué),請問小明離家的距離S(米)與小明出發(fā)的時間t(分)之間的函數(shù)關(guān)系式是怎樣的?它是一次函數(shù)嗎?它是正比例函數(shù)嗎? S=80t(t≥0)下面的圖象能表示上面問題中的S與t的關(guān)系嗎?
我們說,上面的圖象是函數(shù)S=80t(t≥0)的圖象,這就是我們今天要學(xué)習(xí)的主要內(nèi)容:一次函數(shù)的圖象的特殊情況正比例函數(shù)的圖象。
目的:通過學(xué)生比較熟悉的生活情景,讓學(xué)生在寫函數(shù)關(guān)系式和認識圖象的過程中,初步感受函數(shù)與圖象的聯(lián)系,激發(fā)其學(xué)習(xí)的欲望.
效果:學(xué)生通過對上述情景的分析,初步感受到函數(shù)與圖象的聯(lián)系,激發(fā)了學(xué)生的學(xué)習(xí)欲望.
第二環(huán)節(jié):畫正比例函數(shù)的圖象
內(nèi)容:首先我們來學(xué)習(xí)什么是函數(shù)的圖象?
把一個函數(shù)的自變量x與對應(yīng)的因變量y的值分別作為點的橫坐標和縱坐標,在直角坐標系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象(graph).
例1請作出正比例函數(shù)y=2x的圖象.
第三環(huán)節(jié):動手操作,深化探索
內(nèi)容:做一做
(1)作出正比例函數(shù)y= 3x的圖象.
(2)在所作的圖象上取幾個點,找出它們的橫坐標和縱坐標,并驗證它們是否都滿足關(guān)系y= 3x.
請同學(xué)們以小組為單位,討論下面的問題,把得出的結(jié)論寫出來.
(1)滿足關(guān)系式y(tǒng)= 3x的x,y所對應(yīng)的點(x,y)都在正比例函數(shù)y= 3x的圖象上嗎?
(2)正比例函數(shù)y= 3x的圖象上的點(x,y)都滿足關(guān)系式y(tǒng)= 3x嗎?
(3)正比例函數(shù)y=kx的圖象有什么特點?
明晰
由上面的討論我們知道:正比例函數(shù)的代數(shù)表達式與圖象是一一對應(yīng)的,即滿足正比例函數(shù)的代數(shù)表達式的x,y所對應(yīng)的`點(x,y)都在正比例函數(shù)的圖象上;正比例函數(shù)的圖象上的點(x,y)都滿足正比例函數(shù)的代數(shù)表達式.正比例函數(shù)y=kx的圖象是一條直線,以后可以稱正比例函數(shù)y=kx的圖象為直線y=kx.
議一議
既然我們得出正比例函數(shù)y=kx的圖象是一條直線.那么在畫正比例函數(shù)圖象時有沒有什么簡單的方法呢?
因為“兩點確定一條直線”,所以畫正比例函數(shù)y=kx的圖象時可以只描出兩個點就可以了.因為正比例函數(shù)的圖象是一條過原點(0,0)的直線,所以只需再確定一個點就可以了,通常過(0,0),(1,k)作直線.
4.3一次函數(shù)的圖象:同步測試
14若直線經(jīng)過第一.二.四象限,則k.b的取值范圍是( ).
A.k>0,b>0 B.k>0,b<0
C.k<0,b>0 D. k<0,b<0
2.已知一次函數(shù)y=3-2x
(1)求圖像與兩條坐標軸的交點坐標,并在下面的直角坐標系中畫出它的圖像;
(2)從圖像看,y隨著x的增大而增大,還是隨x的增大而減小?
(3)x取何值時,y>0?
3.已知一次函數(shù)y=-2x+4
(1)畫出函數(shù)的圖象.
(2)求圖象與x軸、y軸的交點A、B的坐標.
(3)求A、B兩點間的距離.
(4)求△AOB的面積.
(5)利用圖象求當(dāng)x為何值時,y≥0.
《函數(shù)的圖象》課后練習(xí)
1.一根彈簧原長12cm,它所掛物體的質(zhì)量不超過10kg,并且每掛重物1kg就伸長1.5cm,掛重物后彈簧長度y(cm)與掛重物x(kg)之間的函數(shù)關(guān)系式是()
A.y=1.5(x+12)(0≤x≤10)
B.y= 1.5x+12(0≤x≤10)
C.y=1.5x+10(x≥0)
D.y=1.5(x-12)(0≤x≤10)
初二數(shù)學(xué)一次函數(shù)教案 3
學(xué)習(xí)目標:
1、了解平行線性質(zhì)定理和判定定理在條件和結(jié)論上的區(qū)別,體會互逆的思維過程;
2、能熟練應(yīng)用平行線的性質(zhì)公理及定理。
一、試一試
自學(xué)指導(dǎo):平行線性質(zhì)公理:兩直線平行,同位角相等
1、 思考下列各題,你能利用平行線性質(zhì)公理解決它們嗎?
2、 充分思考后自學(xué)教材P229-231,學(xué)完后合上課本完成下列各題,注意邏輯和書寫。
(1)已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的內(nèi)錯角。請根據(jù)平行線性質(zhì)公理證明∠1=∠2
由此得平行線性質(zhì)定理1:
(2) 已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的同旁內(nèi)角。請根據(jù)平行線性質(zhì)公理或上題已證的.定理證明∠1+∠2=180°
由此得平行線性質(zhì)定理2:
二、練一練
1、已知:如圖,直線a,b,c被直線d所截,且a∥b,c∥b
(1)求證:a∥c
(2)請將(1)題證得的結(jié)論用一句話總結(jié)出來
2、利用“兩直線平行,同旁內(nèi)角互補”證明“平行四邊形對角線相等”。
四、記一記
1、兩直線平行的性質(zhì)公理及兩個性質(zhì)定理;
2、平行線的性質(zhì)補充結(jié)論
(1)垂直于兩平行線之一的直線必垂直于另一條直線
(2)夾在兩平行線之間的平行線段相等;
(3)兩條平行線間的距離處處相等;
(4)經(jīng)過直線外一點,有且只有一條直線和已知直線平行;
(5)如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等或者互補
B組:請在補充結(jié)論中選擇你感興趣的進行證明:
初二數(shù)學(xué)一次函數(shù)教案 4
課型:
復(fù)習(xí)課
學(xué)習(xí)目標(學(xué)習(xí)重點):
1. 針對函數(shù)及其圖象一章,查漏補缺,答疑解惑;
2. 一次函數(shù)應(yīng)用的復(fù)習(xí).
補充例題:
例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系
(1)B出發(fā)時與A相距 千米;
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時;
(3)B出發(fā)后 小時與A相遇;
(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式;
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進, 小時與A相遇,相遇點離B的出發(fā)點 千米,在圖中表示出這個相遇點C.
例2.在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸, y的垂線,與坐標軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.
(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;
(2)若和諧點P(a,3)在直線y=-x+b(b為常數(shù))上,求點a, b的值.
例3.在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間 (秒)之間的函數(shù)圖象,圖③是P點的.縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.
(1)求s與t之間的函數(shù)關(guān)系式.
(2)與圖③相對應(yīng)的P點的運動路徑是: ;P點出發(fā) 秒首次到達點B;
(3)寫出當(dāng)38時,y與s之間的函數(shù)關(guān)系式,并在圖③中補全函數(shù)圖象.
課后續(xù)助:
1.某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水3000噸,計劃內(nèi)用水每噸收費0.5元,超計劃部分每噸按0.8元收費.
(1)寫出該單位水費y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式
、儆盟啃∮诘扔3000噸 ;②用水量大于3000噸 .
(2)某月該單位用水3200噸,水費是 元;若用水2800噸,水費 元.
(3)若某月該單位繳納水費1540元,則該單位用水多少噸?
2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費的收費方式是 (填①或②),月租費是 元;
(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結(jié)束全過程, 開始時風(fēng)暴平均每小時增加2千米/時,4小時后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r增加4千米/時,一段時間,風(fēng)暴保持不變,當(dāng)沙塵暴遇到綠色植被區(qū)時,其風(fēng)速平均每小時減小1千米/時,最終停止。 結(jié)合風(fēng)速與時間的圖像,回答下列問題:
(1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;
(2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時?
(3)求出當(dāng)x25時,風(fēng)速y(千米/時)與時間x(小時)之間的函數(shù)關(guān)系式.
(4)若風(fēng)速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續(xù)多長時間?
初二數(shù)學(xué)一次函數(shù)教案 5
一、讀一讀
學(xué)習(xí)目標:
1、掌握“三角形內(nèi)角和定理”的證明及其簡單應(yīng)用;
2、體會思維實驗和符號化的理性作用
二、試一試
自學(xué)指導(dǎo):
1、回憶三角形內(nèi)角和的探索方式,想一想,根據(jù)前面給出的公里 和定理,你能進行論證么?
2、已知:如右圖所示,△ABC
求證:∠A+∠B+∠C=180°
思考:延長BC到D,過點C作射線CE∥BA,這樣就相
當(dāng)于把∠A移到了 的位置,把∠B移到 的位置。
注意:這里的CD,CE稱為輔助線,輔助線通常畫成虛線
證明:作BC的延長線CD,過點C作射線CE∥BA,則:
3、你還有其它方式么(可參考課本239頁“議一議”小明的想法;241頁聯(lián)系拓廣4)?方法越多越好!
三、練一練
1、直角三角形的兩銳角之和是多少度?正三角形的`一個內(nèi)角是多少度?請證明你的結(jié)論。
2、已知:如圖,在△ABC中,∠A=60°,∠C=70°,點D和點E分別在AB和AC上,且DE∥BC
求證:∠ADE=50°
3、如圖,在△ABC中,DE∥BC,∠DBE=30°, ∠EBC=25°,求∠BDE的大小。
4、證明:四邊形的內(nèi)角和等于360°
初二數(shù)學(xué)一次函數(shù)教案 6
一、讀一讀
學(xué)習(xí)目標:
1、熟練證明的基本步驟和書寫格式;
2、會根據(jù)“同位角相等,兩直線平行”(公理)證明“同旁內(nèi)角互補,兩直線平行”“內(nèi)錯角相等,兩直線平行”(定理),并能應(yīng)用這些結(jié)論。
二、試一試
自學(xué)指導(dǎo):平行線判定公理: 同位角相等,兩直線平行
1、自學(xué)教材P229-231,學(xué)完后合上課本完成下列各題:
(1)已知:如右圖所示,∠1和∠2是直線a,b被直線c截出的同旁內(nèi)角,且∠1和∠2互補。利用平行線判定公理證明a∥b
由此得,平行線判定定理1: ;
(2)已知:如右圖所示,∠1和∠2是直線a,b被直線c截出的內(nèi)錯角,且∠1=∠2利用平行線判定公理或上述已證明的`判定定理證明a∥b
由此得,平行線判定定理2: .
三、練一練
1、在教材上完成P231隨堂練習(xí)1;P232知識技能1;P233問題解決
2、已知:如右圖所示,直線a,b被直線c所截,且∠1+∠2=180°
求證:a∥b 你有幾種證明方法?請選擇其中兩種方法來證明
四、記一記:
證明命題的一般步驟:
(1)根據(jù)題意畫出圖形(若已給出圖形,則可省略)
(2)根據(jù)題設(shè)和結(jié)論,結(jié)合圖形,寫出已知和求證;
(3)經(jīng)過分析,找出已知退出求證的途徑,寫出證明過程;
(4)檢查證明過程是否正確完善。
【初二數(shù)學(xué)一次函數(shù)教案 】相關(guān)文章:
初二數(shù)學(xué)一次函數(shù)教案 6篇12-09
初二數(shù)學(xué)一次函數(shù)教案 (6篇)12-10
數(shù)學(xué)教案:一次函數(shù)的表達式01-21
數(shù)學(xué)初二教案11-24
最新數(shù)學(xué)初二教案09-28
初二數(shù)學(xué)教案11-02
【推薦】初二數(shù)學(xué)教案12-23
初二數(shù)學(xué)教案【熱】12-24