高一數學集合教案12篇
作為一名無私奉獻的老師,可能需要進行教案編寫工作,借助教案可以更好地組織教學活動。我們該怎么去寫教案呢?下面是小編精心整理的高一數學集合教案,希望對大家有所幫助。
高一數學集合教案1
1.1.2集合的表示方法
一、教學目標:
1、集合的兩種表示方法(列舉法和特征性質描述法).
2、能選擇適當的方法正確的表示一個集合.
重點:集合的表示方法。
難點:集合的特征性質的概念,以及運用特征性質描述法表示集合。
二、復習回顧:
1.集合中元素的特性:______________________________________.
2.常見的數集的簡寫符號:自然數集 整數集 正整數集
有理數集 實數集
三、知識預習:
1. ___________________________________________________________________________ ____________________________________________________________________叫做列舉法;
2. _______________________ ____________________________________________________叫做集合A的一個特征性質. ___________________________________________________________________________________
叫做特征性質描述法,簡稱描述法.
說明:概念的理解和注意問題
1. 用列舉法表示集合時應注意以下5點:
(1) 元素間用分隔號,
(2) 元素不重復;
(3) 不考慮元素順序;
(4) 對于含有較多元素的集合,如果構成該集合的'元素有明顯規(guī)律,可用列舉法,但必須把元素間的規(guī)律顯示清楚后方能用省略號.
(5) 無限集有時也可用列舉法表示。
2. 用特征性質描述法表示集合時應注意以下6點;
(1) 寫清楚該集合中元素的代號(字母或用字母表達的元素符號);
(2) 說明該集合中元素的性質;
(3) 不能出現未被說明的字母;
(4) 多層描述時,應當準確使用且和或
(5) 所有描述的內容都要寫在集合符號內;
(6) 用于描述的語句力求簡明,準確.
四、典例分析
題型一 用列舉法表示下列集合
例1 用列舉法表示下列集合
(1)A={x N|0
變式訓練:○1課本7頁練習A第1題。 ○2課本9頁習題A第3題。
題型二 用描述法表示集合
例2 用描述法表示下列集合
(1){-1,1} (2)大于3的全體偶數構成的集合 (3)在平面 內,線段AB的垂直平分線
變式訓練:課本8頁練習A第2題、練習B第2題、9頁習題A第4題。
題型三 集合表示方法的靈活運用
例3 分別判斷下列各組集合是否為同一個集合:
(1)A={x|x+32} B={y|y+32}
(2) A={(1,2)} B={1,2}
(3) M={(x,y)|y= +1} N={y| y= +1}
變式訓練:1、集合A={x|y= ,x Z,y Z},則集合A的元素個數為( )
A 4 B 5 C 10 D 12
2、課本8頁練習B第1題、習題A第1題
例4 已知集合A={x|k -8x+16=0}只有一個元素,試求實數k的值,并用列舉法表示集合A.
作業(yè):課本第9頁A組第2題、B組第1、2題。
限時訓練
1. 選擇
(1)集合 的另一種表示法是( B )
A. B. C. D.
(2) 由大于-3小于11的偶數所組成的集合是( D )
A. B.
C. D.
(3) 方程組 的解集是( D )
A. (5, 4) B. C. (-5, 4) D. (5,-4)
(4)集合M= (x,y)| xy0, x , y 是( D )
A. 第一象限內的點集 B. 第三象限內的點集
C. 第四象限內的點集 D. 第二、四象限內的點集
(5)設a, b , 集合 1,a+b, a = 0, , b , 則b-a等于( C )
A. 1 B. -1 C. 2 D. -2
2. 填空
(1)已知集合A= 2, 4, x2-x , 若6 ,則x=___-2或3______.
(2)由平面直角坐標系內第二象限的點組成的集合為__ __.
(3)下面幾種表示法:○1 ;○2 ; ○3 ;
○4(-1,2);○5 ;○6 . 能正確表示方程組
的解集的是__○2__○5_______.
(4) 用列舉法表示下列集合:
A= =___{0,1,2}________________________;
B= =___{-2,-1,0,1,2}________________________;
C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.
(5) 已知A= , B= , 則集合B=__{0,1,2}________.
3. 已知集合A= , 且-3 ,求實數a. (a= )
4. 已知集合A= .
(1) 若A中只有一個元素,求a的值;(a=0或a=1)
(2)若A中至少有一個元素,求a的取值范圍;(a1)
(3)若A中至多有一個元素,求a的取值范圍。(a=0或a1)
高一數學集合教案2
教學目標:
1.使學生理解集合的含義,知道常用集合及其記法;
2.使學生初步了解屬于關系和集合相等的意義,初步了解有限集、無限集、空集的意義;
3.使學生初步掌握集合的表示方法,并能正確地表示一些簡單的集合.
教學重點:
集合的含義及表示方法.
教學過程:
一、問題情境
1.情境.
新生自我介紹:介紹家庭、原畢業(yè)學校、班級.
2.問題.
在介紹的過程中,常常涉及像家庭、學校、班級、男生、女生等概念,這些概念與學生相比,它們有什么共同的特征?
二、學生活動
1.介紹自己;
2.列舉生活中的集合實例;
3.分析、概括各集合實例的共同特征.
三、數學建構
1.集合的含義:一般地,一定范圍內不同的、確定的對象的全體組成一個集合.構成集合的每一個個體都叫做集合的一個元素.
2.元素與集合的關系及符號表示:屬于,不屬于.
3.集合的表示方法:
另集合一般可用大寫的拉丁字母簡記為集合A、集合B.
4.常用數集的記法:自然數集N,正整數集N*,整數集Z,有理數集Q,實數集R.
5.有限集,無限集與空集.
6.有關集合知識的歷史簡介.
四、數學運用
1.例題.
例1 表示出下列集合:
(1)中國的直轄市;(2)中國國旗上的顏色.
小結:集合的確定性和無序性
例2 準確表示出下列集合:
(1)方程x2―2x-3=0的解集;
(2)不等式2-x0的解集;
(3)不等式組 的解集;
(4)不等式組 2x-1-33x+10的解集.
解:略.
小結:(1)集合的表示方法列舉法與描述法;
(2)集合的'分類有限集⑴,無限集⑵與⑶,空集⑷
例3 將下列用描述法表示的集合改為列舉法表示:
(1){(x,y)| x+y = 3,x N,y N }
(2){(x,y)| y = x2-1,|x |2,x Z }
(3){y| x+y = 3,x N,y N }
(4){ x R | x3-2x2+x=0}
小結:常用數集的記法與作用.
例4 完成下列各題:
(1)若集合A={ x|ax+1=0}=,求實數a的值;
(2)若-3{ a-3,2a-1,a2-4},求實數a.
小結:集合與元素之間的關系.
2.練習:
(1)用列舉法表示下列集合:
、賩 x|x+1=0};
②{ x|x為15的正約數};
、踸 x|x 為不大于10的正偶數};
④{(x,y)|x+y=2且x-2y=4};
⑤{(x,y)|x{1,2},y{1,3}};
、辿(x,y)|3x+2y=16,xN,yN}.
(2)用描述法表示下列集合:
①奇數的集合;②正偶數的集合;③{1,4,7,10,13}
五、回顧小結
(1)集合的概念集合、元素、屬于、不屬于、有限集、無限集、空集;
(2)集合的表示列舉法、描述法以及Venn圖;
(3)集合的元素與元素的個數;
(4)常用數集的記法.
高一數學集合教案3
教學目標:
1、理解集合的概念和性質。
2、了解元素與集合的表示方法。
3、熟記有關數集。
4、培養(yǎng)學生認識事物的能力。
教學重點:
集合概念、性質
教學難點:
集合概念的理解
教學過程:
1、定義:
集合:一般地,某些指定的對象集在一起就成為一個集合(集)。元素:集合中每個對象叫做這個集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素為1、3、5、7,
例(2)的元素為到兩定點距離等于兩定點間距離的點,
例(3)的元素為滿足不等式3x—2> x+3的實數x,
例(4)的元素為所有直角三角形,
例(5)為高一·六班全體男同學。
一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??
為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(1)確定性;(2)互異性;(3)無序性。
3、元素與集合的'關系:隸屬關系
元素與集合的關系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A。
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的.元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)
注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??
元素通常用小寫的拉丁字母表示,如a、b、c、p、q??
2、“∈”的開口方向,不能把a∈A顛倒過來寫。
4
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0。
(2)非負整數集內排除0的集。記作N__或N+ 。Q、Z、R等其它數集內排除0
的集,也是這樣表示,例如,整數集內排除0的集,表示成Z__
請回答:已知a+b+c=m,A={x|ax2+bx+c=m},判斷1與A的關系。
高一數學學習方法歸納
【一、及時回憶】
如果等到把課堂內容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習。
可以一個人單獨回憶,也可以幾個人在一起互相啟發(fā),補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節(jié),循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
【二、重復鞏固】
即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長?梢援斕祆柟绦轮R,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統(tǒng)的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節(jié)進行知識歸納總結,必須把相關知識串聯(lián)在一起,形成知識網絡,達到對知識和方法的整體把握。
【三、合理安排】
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優(yōu)于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,并非間隔時間越長越好,而要適合自己的復習規(guī)律。
【四、突破重點難點】
對所學的素材要進行分析、歸類,找出重、難點,分清主次。在復習過程中,特別要關注難點及容易造成誤解的問題,應分析其關鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點“超市”,可隨時點擊,進行復習。
【五、效果檢測】
隨著時間的推移,復習的效果會產生變化,有的淡化、有的模糊、有的不準確,到底各環(huán)節(jié)的內容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關練習、期中考試、期末考試等,都是為了檢測學習效果。檢測時必須獨立,完成,保證檢測出的效果的真實性,如果存在問題,應該找到錯誤的根源,并適時采取補救措施進行校正。目前市場上練習冊多如牛毛,請在老師的指導下選用。
高中數學考試的技巧
總體原則
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關的知識點都寫出來,要知道數學講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學好)。
一、整體把握、抓大放小
拿到試卷后可以先快速瀏覽一下所有題目,根據積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的題目,一定要拿到應得的分數。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
高一數學集合教案4
高一數學教案設計一:集合的概念
教學目的:
。1)使學生初步理解集合的概念,知道常用數集的概念及記法
。2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
教學重點:
集合的基本概念及表示方法
教學難點:
運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:
新授課
課時安排:
1課時
教具:
多媒體、實物投影儀
內容分析:
1、集合是中學數學的一個重要的基本概念。在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題。例如,在代數中用到的有數集、解集等;在幾何中用到的有點集。至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學生認識學習本章的意義,也是本章學習的基礎
把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握和使用數學語言的基礎。例如,下一章講函數的概念與性質,就離不開集合與邏輯
本節(jié)首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節(jié)課主要學習全章的引言和集合的基本概念。學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義。本節(jié)課的教學重點是集合的基本概念
集合是集合論中的原始的、不定義的概念。在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識。教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集!边@句話,只是對集合概念的描述性說明
教學過程:
一、復習引入:
1、簡介數集的發(fā)展,復習最大公約數和最小公倍數,質數與和數;
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國數學家)(見附錄);
4、“物以類聚”,“人以群分”;
5、教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
(一)集合的有關概念:
由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.定義:一般地,某些指定的對象集在一起就成為一個集合、
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
。2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
。1)非負整數集(自然數集):全體非負整數的集合記作N,
。2)正整數集:非負整數集內排除0的集記作N*或N+
(3)整數集:全體整數的集合記作Z ,
。4)有理數集:全體有理數的集合記作Q ,
(5)實數集:全體實數的'集合記作R
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0
(2)非負整數集內排除0的集記作N*或N+ Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z*
3、元素對于集合的隸屬關系
。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
。1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒有重復
。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習
2、下列各組對象能確定一個集合嗎?
。1)所有很大的實數(不確定)
(2)好心的人(不確定)
。3)1,2,2,3,4,5、(有重復)
3、設a,b是非零實數,那么可能取的值組成集合的元素是_-2,0,2__
4、由實數x,-x,|x|,所組成的集合,最多含(A)
。ˋ)2個元素
。˙)3個元素
。–)4個元素
(D)5個元素
5、設集合G中的元素是所有形如a+b(a∈Z, b∈Z)的數,求證:
(1)當x∈N時, x∈G;
(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b(a∈Z, b∈Z),y= c+d(c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,又∵不一定都是整數,∴=不一定屬于集合G
四、小結:本節(jié)課學習了以下內容:
1、集合的有關概念:(集合、元素、屬于、不屬于)
2、集合元素的性質:確定性,互異性,無序性
3、常用數集的定義及記法
高一數學集合教案5
教學目的:
。1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
。2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;
。3)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
教學重點:
集合的交集與并集、補集的概念;
教學難點:
集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;
【知識點】
1、并集
一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn圖表示:
第4 / 7頁
A與B的所有元素來表示。 A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的.交集(intersection)。
記作:A∩B讀作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個集合求交集,結果還是一個集合,是由集合A與B的公共元素組成的集合。
拓展:求下列各圖中集合A與B的并集與交集
A
說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,不能說兩個集合沒有交集
3、補集
全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。
補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(complementary set),簡稱為集合A的補集,
記作:CUA
即:CUA={x|x∈U且x∈A}
第5 / 7頁
補集的Venn圖表示
說明:補集的概念必須要有全集的限制
4、求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分
交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法。
5、集合基本運算的一些結論:
A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A
A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=?
若A∩B=A,則A?B,反之也成立
若A∪B=B,則A?B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
¤例題精講:
【例1】設集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在數軸上表示出集合A、B。
【例2】設A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:
。1)A?(B?C);(2)A??A(B?C)。
【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求實數m的取值范圍。
XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求
CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關系。
高一數學集合教案6
教材分析:集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
課 型:新授課
教學目標:(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
教學重點:集合的基本概念與表示方法;
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;
教學過程:
一、 引入課題
軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。
閱讀課本P2-P3內容
二、 新課教學
(一)集合的有關概念
1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。
2. 一般地,研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。
3. 思考1:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,對學生的例子予以討論、點評,進而講解下面的問題。
4. 關于集合的元素的特征
(1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的'互不相同的個體(對象),因此,同一集合中不應重復出現同一元素。
(3)集合相等:構成兩個集合的元素完全一樣
5. 元素與集合的關系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A
(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a A(或a A)(舉例)
6. 常用數集及其記法
非負整數集(或自然數集),記作N
正整數集,記作N*或N+;
整數集,記作Z
有理數集,記作Q
實數集,記作R
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(課本例1)
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
(2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。
具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2.(課本例2)
說明:(課本P5最后一段)
思考3:(課本P6思考)
強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。
說明:列舉法與描述法各有優(yōu)點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、 歸納小結
本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
四、 作業(yè)布置
書面作業(yè):習題1.1,第1- 4題
五、 板書設計(略
高一數學集合教案7
教學目的:
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
。2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
課 型:新授課
教學重點:
集合的交集與并集、補集的概念;
教學難點:
集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;
教學過程:
1、引入課題
我們兩個實數除了可以比較大小外,還可以進行加法運算,類比實數的加法運算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
2、新課教學
1.并集
一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn圖表示:
說明:兩個集合求并集,結果還是一個集合,是由集合A與B的所有元素組成的集合(重復元素只看成一個元素)。
例題(P9-10例4、例5)
說明:連續(xù)的(用不等式表示的)實數集合可以用數軸上的一段封閉曲線來表示。
問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應是我們所關心的,我們稱其為集合A與B的交集。
2.交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個集合求交集,結果還是一個集合,是由集合A與B的公共元素組成的集合。
例題(P9-10例6、例7)
拓展:求下列各圖中集合A與B的并集與交集
說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集
3.補集
全集:一般地,如果一個集合含有我們所研究問題中所涉及的.所有元素,那么就稱這個集合為全集(Universe),通常記作U。
補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(complementary set),簡稱為集合A的補集,
記作:CUA
即:CUA={x|x∈U且x∈A}
補集的Venn圖表示
說明:補集的概念必須要有全集的限制
例題(P12例8、例9)
4.求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法。
5.集合基本運算的一些結論:
A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A
AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A
(CUA)∪A=U,(CUA)∩A=
若A∩B=A,則AB,反之也成立
若A∪B=B,則AB,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
6.課堂練習
。1)設A={奇數}、B={偶數},則A∩Z=A,B∩Z=B,A∩B=
。2)設A={奇數}、B={偶數},則A∪Z=Z,B∪Z=Z,A∪B=Z
3、歸納小結(略)
4、作業(yè)布置
1、書面作業(yè):P13習題1.1,第6-12題
2、提高內容:
。1)已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且,試求p、q;
。2)集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q;
。3)A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB ={3,7},求B。
高一數學集合教案8
教學目的:要求學生初步理解集合的概念,理解元素與集合間的關系,掌握集合的表示法,知道常用數集及其記法.
教學重難點:
1、元素與集合間的關系
2、集合的表示法
教學過程:
一、 集合的概念
實例引入:
⑴ 1~20以內的所有質數;
、 我國從1991~20xx的13年內所發(fā)射的所有人造衛(wèi)星;
⑶ 金星汽車廠20xx年生產的所有汽車;
、 20xx年1月1日之前與我國建立外交關系的所有國家;
⑸ 所有的正方形;
、 黃圖盛中學20xx年9月入學的高一學生全體.
結論:一般地,我們把研究對象統(tǒng)稱為元素;把一些元素組成的總體叫做集合,也簡稱集.
二、 集合元素的特征
(1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立.
。2)互異性:一個給定集合中的.元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素.
。3)無序性:一般不考慮元素之間的順序,但在表示數列之類的特殊集合時,通常按照習慣的由小到大的數軸順序書寫
練習:判斷下列各組對象能否構成一個集合
⑴ 2,3,4 ⑵ (2,3),(3,4) ⑶ 三角形
⑷ 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}
、饰覈男『恿 ⑺方程x2+4=0的所有實數解
⑻好心的人 ⑼著名的數學家 ⑽方程x2+2x+1=0的解
三 、 集合相等
構成兩個集合的元素一樣,就稱這兩個集合相等
四、 集合元素與集合的關系
集合元素與集合的關系用“屬于”和“不屬于”表示:
(1)如果a是集合A的元素,就說a屬于A,記作a∈A
。2)如果a不是集合A的元素,就說a不屬于A,記作a∈A
五、常用數集及其記法
非負整數集(或自然數集),記作N;
除0的非負整數集,也稱正整數集,記作N*或N+;
整數集,記作Z;
有理數集,記作Q;
實數集,記作R.
練習:(1)已知集合M={a,b,c}中的三個元素可構成某一三角形的三條邊,那么此三角形一定不是( )
A直角三角形 B 銳角三角形 C鈍角三角形 D等腰三角形
(2)說出集合{1,2}與集合{x=1,y=2}的異同點?
六、集合的表示方式
。1)列舉法:把集合中的元素一一列舉出來,寫在大括號內;
。2)描述法:用集合所含元素的共同特征表示的方法.(具體方法)
例 1、 用列舉法表示下列集合:
(1)小于10的所有自然數組成的集合;
。2)方程x2=x的所有實數根組成的集合;
。3)由1~20以內的所有質數組成。
例 2、 試分別用列舉法和描述法表示下列集合:
。1)由大于10小于20的的所有整數組成的集合;
。2)方程x2-2=2的所有實數根組成的集合.
注意:(1)描述法表示集合應注意集合的代表元素
(2)只要不引起誤解集合的代表元素也可省略
七、小結
集合的概念、表示;集合元素與集合間的關系;常用數集的記法.
高一數學集合教案9
教學目標:
(1) 知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數學中一些常用的的數集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2) 過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例 剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法 和描述法表示集合。
(3) 情感態(tài)度與價值觀:感受集合語言的'意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的 精神 ,發(fā)展用嚴密謹 慎的集合語言描述問題的習慣。
教學重難點:
(1) 重點:了解集合的含義 與表示、集合中元 素的特性。
(2) 難點:區(qū)別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
【問題1】在初中我們已經學 習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?
[設計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設計意圖]探討并形成集合的含義。
【問題3】請同學 們舉出認為是集合的例子。
[設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
【問題4】同學們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關系?
[設計意圖] 區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數集及其記法。理解集合與元素的關系。
【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、 印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有實數根”組成的集
[設計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x-7<3的解集嗎?
【問題7】例2的講解。請同學們思考 課本第6頁的思考題。
[設計意圖] 幫助學生在表示具體的集合時,如何從列舉法與描述法中 做出選擇。
【問題8】請同學們總結這節(jié)課我們主要學習了那些內容?有什么學習體會?
[設計意圖]學習小結。對本節(jié)課所學知識進行回顧。
高一數學集合教案10
1.1 集合含義及其表示
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
教學過程:
一、閱讀下列語句:
1) 全體自然數0,1,2,3,4,5,
2) 代數式 .
3) 拋物線 上所有的點
4) 今年本校高一(1)(或(2))班的全體學生
5) 本校實驗室的所有天平
6) 本班級全體高個子同學
7) 著名的科學家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數分,可分為1)__________2)_________
三、集合中元素的三個性質:
1)___________2)___________3)_____________
四、元素與集合的關系:1)____________2)____________
五、特殊數集專用記號:
1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______
4)有理數集______5)實數集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、 中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是 ( )
A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形
例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
1)地球上的四大洋構成的集合;
2)函數 的全體 值的集合;
3)函數 的全體自變量 的集合;
4)方程組 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇數組成的集合;
8)所有正偶數組成的`集合;
例3、用符號 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)設 , , 則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習:
例6、設含有三個實數的集合既可以表示為 ,也可以表示為 ,則 的值等于___________
例7、已知: ,若 中元素至多只有一個,求 的取值范圍。
思考題:數集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。
小結:
作業(yè) 班級 姓名 學號
1. 下列集合中,表示同一個集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .則 ( )
A . B. C. D.
3. 方程組 的解集是____________________.
4. 在(1)難解的題目,(2)方程 在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5. 設集合 A= , B= ,
C= , D= ,E= 。
其中有限集的個數是____________.
6. 設 ,則集合 中所有元素的和為
7. 設x,y,z都是非零實數,則用列舉法將 所有可能的值組成的集合表示為
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,試用列舉法表示集合B=
9. 把下列集合用另一種方法表示出來:
(1) (2)
(3) (4)
10. 設a,b為整數,把形如a+b 的一切數構成的集合記為M,設 ,試判斷x+y,x-y,xy是否屬于M,說明理由。
11. 已知集合A=
(1) 若A中只有一個元素,求a的值,并求出這個元素;
(2) 若A中至多只有一個元素,求a的取值集合。
12.若-3 ,求實數a的值。
【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:集合含義及其表示能給您帶來幫助!
高一數學集合教案11
[三維目標]
一、知識與技能:
1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系
2、了解集合的運算包含了集合表示法之間的轉化及數學解題的一般思想
3、了解集合元素個數問題的討論說明
二、過程與方法
通過提問匯總練習提煉的形式來發(fā)掘學生學習方法
三、情感態(tài)度與價值觀
培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的'思維
[教學重點、難點]:會正確應用其概念和性質做題 [教 具]:多媒體、實物投影儀
[教學方法]:講練結合法
[授課類型]:復習課
[課時安排]:1課時
[教學過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數分為:有限集和無窮集兩類
高一數學集合教案12
教學目的:
(1)使學生初步理解集合的概念,知道常用數集的概念及記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
教學重點:
集合的基本概念及表示方法
教學難點:
運用集合的兩種常用表示方法——列舉法與描述法,正確表示
一些簡單的集合
授課類型:
新授課
課時安排:
1課時
教具:
多媒體、實物投影儀
內容分析:
1.集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎
把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯
本節(jié)首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節(jié)課主要學習全章的引言和集合的基本概念學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義本節(jié)課的教學重點是集合的基本概念
集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明
教學過程:
一、復習引入:
1.簡介數集的發(fā)展,復習公約數和最小公倍數,質數與和數;
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:
由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
(1)非負整數集(自然數集):全體非負整數的集合記作N,
(2)正整數集:非負整數集內排除0的集記作Nx或N+
(3)整數集:全體整數的集合記作Z,
(4)有理數集:全體有理數的集合記作Q,
(5)實數集:全體實數的集合記作R
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0
(2)非負整數集內排除0的集記作Nx或N+Q、Z、R等其它
數集內排除0的集,也是這樣表示,例如,整數集內排除0
的集,表示成Zx
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的`特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數(不確定)
(2)好心的人(不確定)
(3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數,那么可能取的值組成集合的元素是_-2,0,2__
4、由實數x,-x,|x|,所組成的集合,最多含(A)
(A)2個元素(B)3個元素(C)4個元素(D)5個元素
5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:
(1)當x∈N時,x∈G;
(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
則x=x+0x=a+b∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整數,
∴=不一定屬于集合G
四、小結:本節(jié)課學習了以下內容:
1.集合的有關概念:(集合、元素、屬于、不屬于)
2.集合元素的性質:確定性,互異性,無序性
3.常用數集的定義及記法
五、課后作業(yè):
六、板書設計(略)
高中數學考試的技巧
一、整體把握、抓大放小
拿到試卷后可以先快速瀏覽一下所有題目,根據積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的題目,一定要拿到應得的分數。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
高中數學有效的學習方法
一、課后及時回憶
如果等到把課堂內容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習。
可以一個人單獨回憶,也可以幾個人在一起互相啟發(fā),補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節(jié),循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
二、定期重復鞏固
即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長?梢援斕祆柟绦轮R,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統(tǒng)的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節(jié)進行知識歸納總結,必須把相關知識串聯(lián)在一起,形成知識網絡,達到對知識和方法的整體把握。
三、科學合理安排
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優(yōu)于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,并非間隔時間越長越好,而要適合自己的復習規(guī)律。
【高一數學教案】相關文章:
高一優(yōu)秀數學教案09-28
高一數學教案11-05
人教版高一數學教案06-10
高一數學教案【熱門】11-28
高一數學教案【薦】12-02
高一數學教案【熱】12-03
【熱門】高一數學教案11-26
【薦】高一數學教案11-27
高一數學教案【精】11-29
【精】高一數學教案12-01