四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>《多邊形的內(nèi)角和》數(shù)學教案

《多邊形的內(nèi)角和》數(shù)學教案

時間:2023-02-09 13:22:43 數(shù)學教案 我要投稿
  • 相關推薦

《多邊形的內(nèi)角和》數(shù)學教案

  作為一名優(yōu)秀的教育工作者,有必要進行細致的教案準備工作,教案有助于順利而有效地開展教學活動。來參考自己需要的教案吧!以下是小編為大家整理的《多邊形的內(nèi)角和》數(shù)學教案,希望能夠幫助到大家。

《多邊形的內(nèi)角和》數(shù)學教案

《多邊形的內(nèi)角和》數(shù)學教案1

  一、素質教育目標

  (一)知識教學點

  1.使學生掌握四邊形的有關概念及四邊形的內(nèi)角和外角和定理.

  2.了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應用.

  (二)能力訓練點

  1.通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力.

  2.通過推導四邊形內(nèi)角和定理,對學生滲透化歸思想.

  3.會根據(jù)比較簡單的條件畫出指定的四邊形.

  4.講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關概念對學生滲透類比思想.

  (三)德育滲透點

  使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣.

  (四)美育滲透點

  通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應用美.

  二、學法引導

  類比、觀察、引導、講解

  三、重點·難點·疑點及解決辦法

  1.教學重點:四邊形及其有關概念;熟練推導四邊形外角和這一結論,并用此結論解決與四邊形內(nèi)外角有關計算問題.

  2.教學難點:理解四邊形的有關概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用.

  3.疑點及解決辦法:四邊形的定義中為什么要有“在平面內(nèi)”,而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關鍵是要分析好作圖的順序,一般先作一個角.

  四、課時安排

  2課時

  五、教具學具準備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設計

  教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關概念;師生共同推導四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應用;共同分析探索外角和定理,學生閱讀相關材料.

  第2課時

  七、教學步驟

  【復習提問】

  1.什么叫四邊形?四邊形的內(nèi)角和定理是什么?

  2.如圖4-9, 求 的度數(shù)(打出投影).

  【引入新課】

  前面我們學習過三角形的外角的概念,并知道外角和是360°.類似地,四邊形也有外角,而它的外角和是多少呢?我們還學習了三角形具有穩(wěn)定性,而四邊形就不具有這種性質,為什么?下面就來研究這些問題.

  【講解新課】

  1.四邊形的外角

  與三角形類似,四邊形的角的一邊與另一邊延長線所組成的角叫做四邊形的外角,四邊形每一個頂點處有兩個外角,這兩個外角是對頂角,所以它們是相等的四邊形的外角與它有公共頂點的內(nèi)角互為鄰補角,即它們的和等于180°,如圖4-10.

  2.外角和定理

  例1 已知:如圖4-11,四邊形ABCD的四個內(nèi)角分別為 ,每一個頂點處有一個外角,設它們分別為 .

  求 .

  (1)向學生介紹四邊形外角和這一概念(取四邊形的每一個內(nèi)角的一個鄰補角相加的和).

  (2)教給學生一組外角的畫法——同向法.

  即按順時針方向依次延長各邊,如圖4—11,或按逆時針方向依次延長各邊,如圖4-12,這四個外角和就是四邊形的`外角和.

  (3)利用每一個外角與其鄰補角的關系及四邊形內(nèi)角和為360°.

  證得:

  360°

  外角和定理:四邊形的外角和等于360°

  3.四邊形的不穩(wěn)定性

 、傥覀冎廊切尉哂蟹(wěn)定性,已知三個條件就可以確定三角形的形狀和大小,已知一邊一夾角,作三角形你會嗎?

  (學生回答)

 、谌粢 為邊作四邊形ABCD.

  提示畫法:①畫任意小于平角的 .

 、谠 的兩邊上截取 .

 、鄯謩e以A,C為圓心,以12mm,18mm為半徑畫弧,兩弧相交于D點.

 、苓B結AD、CD,四邊形ABCD是所求作的四邊形,如圖4-13.

  大家比較一下,所作出的圖形的形狀一樣嗎?這是為什么呢?因為 的大小不固定,所以四邊形的形狀不確定.

 、(教師演示:用四根木條釘成如圖4-14的框)雖然四邊形的邊長不變,但它的形狀改變了,這說明四邊形沒有穩(wěn)定性.

  教師指出,“不穩(wěn)定”是四邊形的一個重要性質,還應使學生明確:

 、偎倪呅胃淖冃螤顣r只改變某些角的大小,它的邊長不變,因而周長不變它仍為四邊形,所以它的內(nèi)角和不變.②對四條邊長固定的四邊形任何一個角固定或者一條對角線的長一定,四邊形的形狀就固定了,如教材P125中2的第H問,為克服不穩(wěn)定性提供了理論根據(jù).

  (4)舉出四邊形不穩(wěn)定性的應用實例和克服不穩(wěn)定的實例,向學生進行理論聯(lián)系實際的教育.

  【總結、擴展】

  1.小結:

  (1)四邊形外角概念、外角和定理.

  (2)四邊形不穩(wěn)定性的應用和克服不穩(wěn)定性的理論根據(jù).

  2.擴展:如圖4-15,在四邊形ABCD中, ,求四邊形ABCD的面積

  八、布置作業(yè)

  教材P128中4.

  九、板書設計

  十、隨堂練習

  教材P124中1、2

  補充:(1)在四邊形ABCD中, , 是四邊形的外角,且 ,則 度.

  (2)在四邊形ABCD中,若分別與 相鄰的外角的比是1:2:3:4,則 度, 度, 度, 度

  (3)在四邊形的四個外角中,最多有_______個鈍角,最多有_____個銳角,最多有____個直角.

《多邊形的內(nèi)角和》數(shù)學教案2

  一、教學任務分析

  1、教學目標定位

  根據(jù)《數(shù)學課程標準》和素質教育的要求,結合學生的認知規(guī)律及心理特征而確定,即:七年級的學生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強的表現(xiàn)欲,同時又具備了一定的歸納、總結表達的能力。因此,確定如下教學目標:

 。1).知識技能目標

  讓學生掌握多邊形的內(nèi)角和的公式并熟練應用。

 。2).過程和方法目標

  讓學生經(jīng)歷知識的形成過程,認識數(shù)學特征,獲得數(shù)學經(jīng)驗,進一步發(fā)展學生的說理意識和簡單推理,合情推理能力。

 。3).情感目標

  激勵學生的學習熱情,調(diào)動他們的學習積極性,使他們有自信心,激發(fā)學生樂于合作交流意識和獨立思考的習慣。。

  2、教學重、難點定位

  教學重點是多邊形的內(nèi)角和的得出和應用。

  教學難點是探索和歸納多邊形內(nèi)角和的過程。

  二、教學內(nèi)容分析

  1、教材的地位與作用

  本課選自人教版數(shù)學七年級下冊第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。

  2、聯(lián)系及應用

  本節(jié)課是以三角形的知識為基礎,仿照三角形建立多邊形的有關概念。因此

  多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會把復雜化為簡單,化未知為已知,從特殊到一般和轉化等重要的思想方法。而多邊形在工程技術和實用圖案等方面有許多的實際應用,下一節(jié)平面鑲嵌就要用到,讓學生接觸一些多邊形的實例,可以加深對它的概念以及性質的理解。

  三、教學診斷分析

  學生對三角形的知識都已經(jīng)掌握。讓學生由三角形的內(nèi)角和等于180°,是一個定值,猜想四邊形的內(nèi)角和也是一個定值,這是學生很容易理解的地方。由幾個特殊的四邊形的內(nèi)角和出發(fā),譬如長方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個定值,這個定值是360°。要得到四邊形的內(nèi)角和等于360°這個結論最直接的方法就是用量角器來度量。讓學生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導學生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導,學習將新問題化歸為已有結論的思想方法,這里學生都容易理解。課堂教學設計中,在探究五邊形,六邊形和七邊形的內(nèi)角和時,讓學生動手實踐,設置探究活動二,為了讓學生拓寬思路,從不同的角度去思考這個問題,這個活動對學生的動手能力要求進一步提高了,學生對這個問題的理解稍微有些難度,但學生可根據(jù)自己本身的特點來加以補充和完善。在教學設計中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內(nèi)各個成員需要分工協(xié)作,才能夠順利的把任務完成;最后,學生還需要把自己的.思維從感性認識提升到理性認識的高度,這樣就培養(yǎng)了學生合情推理的意識。

  四、教法特點及預期效果分析本節(jié)課借鑒了美國教育家杜威的"在做中學"的理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"的思想,我確定如下教法和學法:

  1、教學方法的設計

  我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。

  2、活動的開展

  利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

  3、現(xiàn)代教育技術的應用

  我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學設計中占了非常大的比例,探究活動一設置目的讓學生動手實踐,并把新知識與學過的三角形的相關知識聯(lián)系起來;探究活動二設置目的讓學生拓寬思路,為放開書本的束縛打下基礎;培養(yǎng)學生動手操作的能力和合情推理的意識。通過師生共同活動,訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神;使學生懂得數(shù)學內(nèi)容普遍存在相互聯(lián)系,相互轉化的特點。練習活動的設計,目的一檢查學生的掌握知識的情況,并促進學生積極思考;目的二凸現(xiàn)小組合作的特點,并促進學生情感交流。

  以上是我對《多邊形的內(nèi)角和》的教學設計說明。

《多邊形的內(nèi)角和》數(shù)學教案3

  一、 教學目標

  知識與技能目標:能夠說出多邊形的內(nèi)角和公式并會運用

  過程與方法目標:通過多邊形內(nèi)角和公式的推導過程,提高邏輯思維能力。

  情感態(tài)度與價值觀目標:養(yǎng)成實事求是的科學態(tài)度。

  二、 教學重難點

  教學重點:多邊形的內(nèi)角和公式

  教學難點:多邊形內(nèi)角和公式

  三、 教學方法

  講解法、練習法、分小組討論法

  四、 教學過程

  結合新課程標準及以上的分析,我將我的教學過程設置為以下五個教學環(huán)節(jié):導入新知、

  生成新知、深化新知、鞏固新知、小結作業(yè)。

  1. 導入新知

  首先是導入新知環(huán)節(jié),我會引導學生回顧三角形的內(nèi)角和,緊接著提出問題:四邊形的

  內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書)。

  通過提問的方式幫助學生回顧舊知識的同時,引導學生思考,也激發(fā)學生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學習奠定了基礎。

  2. 生成新知

  接下來,進入生成新知環(huán)節(jié),我會引導學生將四邊形分成兩個三角形來求內(nèi)角和,由此

  得出四邊形的內(nèi)角和是2個三角形的內(nèi)角和,即2*180=360,那同樣的引導學生將五邊形,六邊形分別從同一個頂點出發(fā)劃分為3個4個三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學生前后桌四個人為一個小組,五分鐘時間,歸納n變形的`內(nèi)角和是多少,討論結束后,找一個小組來回答他們討論的結果。由此生成我們的新知識:多邊形的內(nèi)角和公式180*(n-2)。

  驗證:七邊形驗證

  在本環(huán)節(jié)中通過學生自主學習歸納總結得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。

  3. 深化新知

  再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會引導學生思考一下有沒有其他的將多邊形分隔求

  內(nèi)角和的方法,引導學生思考,可不可以將六邊形從多個頂點出發(fā),然后用公式驗證一下我們這樣分割可行不可行。這時候會發(fā)現(xiàn)有的分割可行有的分割不可行,在這個時候給他們講解為什么不可行為什么可行,以此來引出分割時對角線不能相交,從而強調(diào)我們分隔的一個原則。

  本環(huán)節(jié)的設計主要是對多變形內(nèi)角和的一個深入了解,給學生一個內(nèi)化的過程,同時引導學生不要將知識學死了,要活學活用,從多個角度來思考問題,解決問題。

  4. 鞏固提高

  我們說數(shù)學是來源于生活,服務于生活的一門學科,所以在接下來的鞏固提高環(huán)節(jié),

  我講引領學生用我們所學過的多邊形的內(nèi)角和公式來解決生活中的實際問題。

  我會在PPT上播放一個蜂巢的圖片,然后提出一個問題,蜂房是幾邊形?每個蜂房的內(nèi)角和是多少?由此來引發(fā)學生思考運用我們本節(jié)課所學習的知識來解決問題,對多邊形的內(nèi)角和公式進一步鞏固提高。

  5. 小結作業(yè)

  先讓學生思考一下我們本節(jié)課學習了什么知識點,然后找一位同學來總結一下我們本節(jié)課所學習的知識點。對本節(jié)課學習內(nèi)容有了一個回顧之后,讓學生做一下練習題1、2題,以此來進一步提升學生運用知識的能力。

《多邊形的內(nèi)角和》數(shù)學教案4

  課題

  探索多邊形內(nèi)角和

  教學目標

  知識目標

  1、探索多邊形內(nèi)角和定義、公式

  2、正多邊形定義

  能力目標

  1、發(fā)展學生的合情推理意識、主動探索的習慣

  2、發(fā)展學生的說理能力和簡單的推理意識及能力

  德育目標

  培養(yǎng)用多邊形美花生活的意識

  教學重點

  多邊形內(nèi)角和公式的推導

  學難點

  多邊形內(nèi)角和公式的簡單運用

  教學方法

  探索、討論、啟發(fā)、講授

  教學手段

  利用學生剪紙、投影儀進行教學

  教學過程:

  一、引入:

  1、出示多媒體投影片或出示事物圖:正方形石英鐘、五邊形(廣場圖)、六變形螺母、八邊形。

  2、給出多邊形概念:多邊形的頂點、邊、內(nèi)角和、對角線及其有關概念。

  二、多邊形內(nèi)角和公式:

  1、三角形的內(nèi)角和是多少度?任意四邊形的內(nèi)角和是多少度?怎樣得到的?那么五邊形的內(nèi)角和怎樣求呢?要求學生剪紙或畫圖找出五邊形可剪成多少個三角形求內(nèi)角和?六邊形可怎樣剪成三角形?n邊形呢?

  2、學生討論:在剪紙及畫圖活動中充分的探索、交流、體會,先獨立思考,然后小組討論、交流,發(fā)表不同見解。探索五邊形內(nèi)角和的不同方法:(學生可能得出如圖一、圖二、圖三中的不同方法)

 。1)量出每個內(nèi)角度數(shù)然后相加為540°;

  (2)從五邊形的任一頂點出發(fā),連結不相鄰的兩個頂點,將五邊形分割成三個三角形,得出五邊形內(nèi)角和為540°(如圖一);

 。3)在五邊形內(nèi)任取一點,連結各頂點,將五邊形分割成五個三角形,得出五邊形內(nèi)角和為5×180°—360°=540°(如圖二);

 。4)從五邊形任意一邊上取一點,連接不相鄰的頂點,將五邊形分割成四個三角形內(nèi)角和為4×180°—180°=540°(如圖三);

  (5)六邊形可怎樣剪成三角形求內(nèi)角和?n邊形呢?

 。6)總結規(guī)律:多邊形內(nèi)角和為(n—2)×180°(n≥3)。

  3、議一議:

 。1)過四邊形一個頂點的對角線把四邊形分成兩個三角形;

 。2)過五邊形一個頂點的對角線把五邊形分成( )個三角形;

 。3)過六邊形一個頂點的對角線把六邊形分成( )個三角形。

 。4)過n邊形一個頂點的對角線把n邊形分成( )個三角形;

  三、正多邊形定義:

  1、出示課本第109頁想一想圖:(思考,圖中的多邊形各是幾邊形,它們的邊和角有什么特點)

  2、多邊形定義:在平面內(nèi),內(nèi)角都相等,邊也相等的多邊形是正多邊形。

  3、填表:

  正多邊形的邊數(shù)

  3

  4

  5

  6

  8

  …

  n

  正多邊形的內(nèi)角和

  180°

  360°

  540°

  720°

  1080°

  …

  正多邊形每個內(nèi)角的度數(shù)

  60°

  90°

  108°

  120°

  135°

  …

  四、小結:

  主要表揚本節(jié)課同學們很善于思考,對所學知識應用得很好,做得好的小組及他們做得好的'地方。

  五、布置作業(yè):

  課本P110、習題4、10第1、2、3題。

  附:選用隨堂練習:

  1、一個多邊形的每個內(nèi)角都是140,它是()邊形?

  2、過四邊形一頂點的對角線把它分成兩個三角形,過五邊形一個頂點的對角線把它分成()個三角形。

  3、過六邊形的一個頂點的對角線把它分成()個三角形,過n邊形的一個頂點的對角線把n邊形分成()個三角形。

  4、一個多邊形的每個內(nèi)角都是140°,這個多邊形是()邊形。

  5、如果一個多邊形的邊數(shù)增加1,那么這時它的內(nèi)角和增加了()度。

  6、下列角能成為一個多邊形的內(nèi)角和的是()

  A、270°B、560°C、1800°D、1900°

  思考題:如圖(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?

  如圖(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少

【《多邊形的內(nèi)角和》數(shù)學教案】相關文章:

多邊形的內(nèi)角和教學反思03-22

多邊形內(nèi)角和的教案(通用10篇)04-26

初中數(shù)學多邊形的內(nèi)角教案12-30

初中數(shù)學多邊形的內(nèi)角教案3篇01-02

《三角形內(nèi)角和》數(shù)學教案12-19

《三角形內(nèi)角和》數(shù)學教案02-15

《三角形內(nèi)角和》數(shù)學教案12篇03-26

多邊形的外角和教學反思02-24

《多邊形的外角和》教學反思03-14