八年級數學下冊教案(精選15篇)
作為一位不辭辛勞的人民教師,可能需要進行教案編寫工作,借助教案可以更好地組織教學活動。那么寫教案需要注意哪些問題呢?下面是小編整理的八年級數學下冊教案,希望能夠幫助到大家。
八年級數學下冊教案 1
【教學目標】
一、知識目標
經歷“實際問題-分式方程方程模型”的過程,經歷分式方程的概念,能將實際問題中的等量關系用分式方程表示,體會分式方程的模型作用。
二、能力目標
知道分時方程的意義,會解可化為一元一次方程的分式方程。
三、情感目標
在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學生努力尋找解決問題的進取心,體會數學的應用價值。
【教學重難點】
將實際問題中的等量關系用分式方程表示。找實際問題中的等量關系。
【教學過程】
一、課前預習與導學
1.什么叫做分式方程?解分式方程的步驟有哪幾步?
2.判斷下面解方程的過程是否正確,若不正確,請加以改正。
解方程:=3-
解:兩邊同乘以(x-1),得
2=3-x=1,①
x=3+1-2,②
所以x=2.③
。ú徽_。正確的解:兩邊同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)
3.解下列分式方程:(1)=(2)+=2.
二、新課
。ㄒ唬┣榫硠(chuàng)設:
1.甲、乙兩人加工同一種服裝,乙每天比甲多加工1件,已知乙加工24件服裝所用時間與甲加工20件服裝所用時間相同。怎樣用方程來描述其中數量之間的相等關系?
設甲每天加工服裝多少件,可得方程:
2.一個兩位數的各位數字是4,如果把各位數字與十位數字對調,那么所得的兩位數與原兩位數的比值是。怎樣用方程來描述其中數量之間的相等關系?
設這個兩位數的.十位數字是x,可得方程:
3.某校學生到距離學校15km的山坡上植樹,一部分學生騎自行車出發(fā)40min后,另一部分學生乘汽車出發(fā),結果全體學生同時到達。已知汽車的速度是自行車的速度的3倍。怎樣用方程來描述其中數量之間的相等關系?
設自行車的速度為xkm/h,可得方程:
。ǘ┨剿骰顒樱
1.上面所得到的方程有什么共同特點?
2.這些方程與整式方程有什么區(qū)別?
結論:分母中含有未知數的方程叫做分式方程。
3.如何解分式方程=?
解:這個分式方程的兩邊同乘各分式的最簡公分母x(x+1),
可以得到一元一次方程:20(x+1)=24x
解這個方程,得
x=5
為了判斷x=5是否是原方程的解,我們把x=5代入原方程:
左邊==4,右邊==4,左邊=右邊。
x=5是原方程的解。
說明:解分式方程的一般步驟是先去分母(在分式方程的兩邊同乘各分式的最簡公分母),把不熟悉的分式方程轉化為熟悉的一元一次方程來解決。
三、例題教學:
例1.解方程:-=0
板書出解分式方程的一般過程及完整的書寫格式。
解:方程兩邊同乘x(x-2),得
3(x-2)-2x=0
解這個方程,得
x=6
把x=6代入原方程:左邊=右邊=0,左邊=右邊。
x=6是原方程的解。
四、課堂練習:
1.下列各式中,分式方程是()
A.B.C.D.
2.分式方程解的情況是()
A.有解,B.有解C.有解,D.無解
3.解下列方程:
4.為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為人,那么滿足怎樣的方程?并求解。
八年級數學下冊教案 2
教學目標:
1、理解運用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的綜合運用。
3、進一步培養(yǎng)學生綜合、分析數學問題的能力。
教學重點:
運用平方差公式分解因式。
教學難點:
高次指數的轉化,提公因式法,平方差公式的靈活運用。
教學過程:
我們數學組的觀課議課主題:
1、關注學生的合作交流
2、如何使學困生能積極參與課堂交流。
在精心備課過程中,我設計了這樣的自學提示:
1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
①-x2+y2②-x2-y2③4-9x2
、(x+y)2-(x-y)2⑤a4-b4
3、試總結運用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結因式分解的步驟是什么?
師巡回指導,生自主探究后交流合作。
生交流熱情很高,但把全部問題分析完已用了30分鐘。
生展示自學成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2還能繼續(xù)分解為a+b)(a-b)
師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止!
反思:這節(jié)課我備課比較認真,自學提示的`設計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的條件,我設計了問題2,為讓學生能更容易總結因式分解的步驟,我又設計了問題4,自認為,本節(jié)課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結果卻出乎我的意料,本節(jié)課沒有按計劃完成教學任務,學生練習很少,作業(yè)有很大一部分同學不能獨立完成,反思這節(jié)課主要有以下幾個問題:
(1)我在備課時,過高估計了學生的能力,問題2中的③、④、⑤多數學生剛預習后不能熟練解答,導致在小組交流時,多數學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2)教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設計時可寫一些簡單的,像④、⑤可到練習時再出現,發(fā)現問題后再強調、歸納,效果也可能會更好。
我及時調整了自學提示的內容,在另一個班也上了這節(jié)課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結論,課堂氣氛非;钴S,練習量大,準確率高,但隨之我又發(fā)現我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開始緊張地練習……下課后,無意間發(fā)現竟還有好幾個同學課后題沒做。原因是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學生的齊答,要發(fā)揮組長的職責,注重過關落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。
確實,“學海無涯,教海無邊”。我們備課再認真,預設再周全,面對不同的學生,不同的學情,仍然會產生新的問題,“沒有,只有更好!”我會一直探索、努力,不斷完善教學設計,更新教育觀念,直到永遠……
八年級數學下冊教案 3
教學目標:
學會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。
教學重點:
去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的.方法、
教學難點:
解分式方程的一般步驟。
教學過程:
復習引入:
1、什么叫分式方程?
2、解分式方程的基本思想:分式方程整式方程
3、解方程(學生板演)
講授新課:
1、由上述學生的板演歸納出解分式方程的一般步驟
。1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;
。2)解這個整式方程;
。3)檢驗:將所得的解代入原方程的最簡公分母,若最簡公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、
2、范例講解
。▽W生嘗試練習后,教師講評)
例1:解方程例2:解方程例3:解方程講評時強調:
1、怎樣確定最簡公分母?(先將各分母因式分解)
2、解分式方程的步驟、
鞏固練習:P1471t,2t、
課堂小結:解分式方程的一般步驟
布置作業(yè):見作業(yè)本。
八年級數學下冊教案 4
一、教學目標
(一)教學知識點
1.掌握三角形相似的判定方法2、3。
2.會用相似三角形的判定方法2、3來判斷、證明及計算。
(二)能力訓練要求
1.通過自己動手并總結推出相似三角形的判定方法2、3,培養(yǎng)學生的動手操作能力,總結概括能力。
2.利用相似三角形的判定方法2、3進行判斷,訓練學生的靈活運用能力。
(三)情感與價值觀要求
1.通過探索相似三角形的判定方法2、3,體現數學活動充滿著探索性和創(chuàng)造性。
2.通過對判定方法的探索,發(fā)展學生思維的靈活性,進一步培養(yǎng)邏輯推理能力,領會分類思想。
二、教學重難點
教學重點:相似三角形判定方法2、3的推導過程,掌握判定方法2、3并能靈活運用。
教學難點:判定方法的推導及運用
三、教學過程設計
(一)創(chuàng)設情境,引入新課
投影片
[生]有四對相似三角形,它們是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA.他們相似的理由都是用相似三角形的判定方法1。
[師]現在我們已經有兩種方法可以判定兩個三角形相似,一種是定義,一種是判定方法1,除此之外,是否還有其他的辦法來判定兩個三角形相似?這一問題就是本節(jié)課我們需要研究的問題。
(二)新課講授
[師]相似三角形的判定方法1是只從角的方面考慮的,下面我們只從邊的方面去考慮。我們在學習全等三角形的判定方法中,也有只用邊來進行判斷的,即SSS公理。大家能不能用類比的方法,猜想只用邊來判定三角形相似的方法呢?
[生]三邊對應成比例的兩個三角形相似。
[師]下面我們就來驗證一下。
1.相似三角形的判定方法2:三邊對應成比例的兩個三角形相似。
投影片
個組取一個相同的k值,不同的組取不同的k值,好嗎?
[生]好。
[師]經過大家的親身參與體會,你們得出的結論是什么呢?
[生]結論為∠A=∠A′,∠B=∠B′,∠C=∠C′
△ABC∽△A′B′C′,理由是:
∠A=∠A′,∠B=∠B′,∠C=∠C′
根據相似三角形的定義可知:△ABC∽△A′B′C′。
[師]其他組的同學的結論相同嗎?
[生]相同。
[師]經過大家的探討,我們又掌握了一種相似三角形的判定方法,即三邊對應成比例的兩個三角形相似。
2.相似三角形的判定方法3。
[師]前面兩種判定方法我們都是只從角或只從邊的方面去考慮的,下面我們要從兩方面來考慮。還是要類比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我們就不用考慮了,因為我們已經有判定方法1、3,下面來驗證SAS,大家還是先猜想,然后再驗證。
[生]兩邊對應成比例且夾角相等的兩個三角形相似。
[師]好,下面我們還是由大家自己推導吧,請看投影片
[師]請大家按照上面的步驟進行,同時還要采取不同的組取不同的值法。
[生]按照要求作出的△ABC與△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根據判定方法1可知,△ABC∽△A′B′C′。
[師]大家同意嗎?
[生]同意。
[師]好,我們又探索出一個相似三角形的判定方法,即兩邊對應成比例且夾角相等的兩個三角形相似。
3.想一想
107
[師]下面驗證SSA,即兩邊對應成比例,其中一邊的對角對應相等,這兩個三角形相似嗎?
在全等三角形的.判定中SSA就不成立。大家還可以仿照上面的驗證過程來進行推導,下面是小明和小穎分別畫出的一個滿足條件的三角形,由此你能得到什么結論?
[生]從上面的圖中可以得出結論:有兩邊對應成比例,其中一邊的對角相等的三角形不相似。
4.做一做
[師]在這兩節(jié)課中我們已經學完了一般相似三角形的判定方法,下面請大家總結一下有幾種方法。
[生]一共有四種方法
第一種:對應角相等,對應邊成比例的兩個三角形相似,即定義法。
第二種:即判定方法1
兩角對應相等的兩個三角形相似
第三種:即判定方法2
三邊對應成比例的兩個三角形相似
第四種:即判定方法3
兩邊對應成比例且夾角相等的兩個三角形相似
[師]從這四種方法中我們可以看出,第一種判定方法比較麻煩,需要研究三對角、三對邊,而后面的幾種方法最多只需要研究三對邊或角,因此定義法一般不利用。如果已知條件只涉及角,就用第二種判定方法;如果已知條件只涉及邊,就用第三種判定方法;如果既有角又有邊,則可考慮用第四種方法判斷。
5.議一議
如圖,△ABC與△A′B′C′相似嗎?你有哪些判斷方法?
[生]解:△ABC∽△A′B′C′
判斷方法有
1.三邊對應成比例的兩個三角形相似
2.兩角對應相等的兩個三角形相似
3.兩邊對應成比例且夾角相等
4.定義法
(三)鞏固應用,拓展研究
下面每組的兩個三角形是否相似?為什么?
生]解:(1)△ABC∽△DEF
∵
∴△ABC∽△DEF
(2)在△ABC中
AB=2,AC=6
∵∠A=∠A
∴△ABC∽△AEF
(四)練習鞏固,促進遷移
依據下列各組條件,判定△ABC與△A′B′C′是不是相似,并說明為什么
(1)∠A=120°,AB=7 cm,AC=14 cm,
∠A′=120°,A′B′=3 cm,A′C′=6 cm,
(2)AB=4 cm,BC=6 cm,AC=8 cm,
A′B′=12 cm,B′C′=18 cm,A′C′=24 cm.解:
又∵∠A=∠A′
∴△ABC∽△A′B′C′(兩邊對應成比例且夾角相等,兩三角形相似)
∴△ABC∽△A′B′C′(三邊對應成比例,兩三角形相似)
(五)回顧聯(lián)系,形成結構
本節(jié)課主要探討了相似三角形的另兩種判定方法,即三邊對應成比例與兩邊對應成比例且夾角相等的兩個三角形相似.培養(yǎng)了大家的探索精神,同時讓學生懂得了數學活動充滿著探索與創(chuàng)新,學習的目的是能運用學過的知識去解決問題,在這里就是能利用判定方法進行有關證明。
八年級數學下冊教案 5
教學準備
教師準備:投影儀,教具:課本“探究”內容;補充材料制成投影片.
學生準備:復習平行四邊形性質;學具:課本“探究”內容.
學法解析
1.認知題后:學習了三角形全等、平行四邊形定義、性質以后學習本節(jié)課內容.
2.知識線索:
3.學習方式:采用動手操作來發(fā)現新的知識,通過交流形成知識體系.
教學過程
一、回顧交流,逆向思索
教師提問:
1.平行四邊形定義是什么?如何表示?
2.平行四邊形性質是什么?如何概括?
學生活動:思考后舉手回答:
回答:1.兩組對邊分別平行的四邊形叫做平行四邊形(教師在黑板上畫出下圖:幫助學生直觀理解)
回答:2.平行四邊形性質從邊考慮:
(1)對邊平行
。2)對邊相等
(3)對邊平行且相等;從角考慮:對角相等;從對角線考慮:兩條對角線互相平分.(借助上圖直觀理解).
教師歸納:(投影顯示)
平行四邊形【活動方略】
教師活動:操作投影儀,顯示課本P96和P97“探究”的問題.用問題牽引學生動手操作、思考、發(fā)現、歸納、論證,可以讓學生分成4人小組討論,然后再進行小組匯報,教師同時也拿出教具同學在一起探索.
學生活動:分四人小組,拿出準備好的學具探究.在活動中發(fā)現:
。1)將兩長兩短的四根細木條(或用硬紙片),用小釘鉸合在一起,做成四邊形,如果等長的木條成對邊,那么無論如何轉動這四邊形,它的形狀都是平行四邊形;
。2)若將兩根細木條中點用釘子釘合在一起,用像皮筋連接木條的'頂點,做成一個四邊形,轉動兩根木條,這個四邊形是平行四邊形.
。3)將兩條等長的木條平行放置,另外用兩根木條(不一定等長)用釘子予以加固,得到的四邊形一定是平行四邊形。
八年級數學下冊教案 6
教學目標:
情意目標:培養(yǎng)學生團結協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。
教學重點、難點
重點:等腰梯形性質的探索;
難點:梯形中輔助線的添加。
教學課件:
PowerPoint演示文稿
教學方法:
啟發(fā)法、
學習方法:
討論法、合作法、練習法
教學過程:
(一)導入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
(二)等腰梯形性質的`探究
【探究性質一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質:等腰梯形的兩條對角線相等。
【探究性質三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質:同以底上的兩個內角相等,對角線相等
(三)質疑反思、小結
讓學生回顧本課教學內容,并提出尚存問題;
學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
八年級數學下冊教案 7
一、教學目標:
1、會根據頻數分布表求加權平均數,從而解決一些實際問題
2、會用計算器求加權平均數的值
3、會運用樣本估計總體的方法來獲得對總體的認識
二、重點、難點:
1、重點:根據頻數分布表求加權平均數
2、難點:根據頻數分布表求加權平均數
三、教學過程:
1、復習
組中值的定義:上限與下限之間的中點數值稱為組中值,它是各組上下限數值的簡單平均,即組中值=(上限+上限)/2。
因為在根據頻數分布表求加權平均數近似值過程中要用到組中值去代替一組數據中的每個數據的值,所以有必要在這里復習組中值定義。
應給學生介紹為什么可以利用組中值代替一組數據中的每個數據的值,以及這樣代替的`好處、不妨舉一個例子,在一組中如果數據分布較為均勻時,比如教材P140探究問題的表格中的第三組數據,它的范圍是41≤X≤61,共有20個數據,若分布較為平均,41、42、43、44…60個出現1次,那么這組數據的和為41+42+…+60=1010。而用組中值51去乘以頻數20恰好為1020≈1010,即當數據分布較為平均時組中值恰好近似等于它的平均數。所以利用組中值X頻數去代替這組數據的和還是比較合理的,而且這樣做的最大好處是簡化了計算量。
為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統(tǒng)計表,體會表格的實際意義。
2、教材P140探究欄目的意圖
、、主要是想引出根據頻數分布表求加權平均數近似值的計算方法。
、凇⒓由盍藢Α皺唷币饬x的理解:當利用組中值近似取代替一組數據中的平均值時,頻數恰好反映這組數據的輕重程度,即權。
這個探究欄目也可以幫助學生去回憶、復習七年級下的關于頻數分布表的一些內容,比如組、組中值及頻數在表中的具體意義。
3、教材P140的思考的意圖。
、佟⑹箤W生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題。
、凇椭鷮W生理解表中所表達出來的信息,培養(yǎng)學生分析數據的能力。
4、利用計算器計算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內容不是利用計算器求加權平均數,但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數據較大、較多的計算也變得容易些了。
5、運用樣本估計總體
要使學生掌握在哪些情況下需要通過用樣本估計總體的方法來獲得對總體的認識;一是所要考察的對象很多,二是考察本身帶有破壞性;教材P142例3,這個例子就屬于考察本身帶有破壞性的情況。
八年級數學下冊教案 8
一、教學目標
1、理解分式的基本性質。
2、會用分式的基本性質將分式變形。
二、重點、難點
1、重點:理解分式的基本性質。
2、難點:靈活應用分式的基本性質將分式變形。
3、認知難點與突破方法
教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。
三、練習題的意圖分析
1、P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2、P9的例3、例4地目的是進一步運用分式的'基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。
3。P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘—’號”是分式的基本性質的應用之一,所以補充例5。
四、課堂引入
1、請同學們考慮:與相等嗎?與相等嗎?為什么?
2、說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3、提問分數的基本性質,讓學生類比猜想出分式的基本性質。
五、例題講解
P7例2。填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
P11例3。約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。
P11例4。通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
八年級數學下冊教案 9
教學目標:
1、經歷數據離散程度的探索過程
2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。
教學重點:
會計算某些數據的極差、標準差和方差。
教學難點:
理解數據離散程度與三個差之間的關系。
教學準備:
計算器,投影片等
教學過程:
一、創(chuàng)設情境
1、投影課本P138引例。
2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統(tǒng)計量。
二、活動與探究
如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿(投影課本159頁圖)
問題:
1、丙廠這20只雞腿質量的平均數和極差是多少?
2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。
3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?
(在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的.矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。
三、講解概念:
方差:各個數據與平均數之差的平方的平均數,記作s2
設有一組數據:
則s2=
而s=稱為該數據的標準差(既方差的算術平方根)
從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩(wěn)定。
四、做一做
你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?
(通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)
五、鞏固練習:課本第172頁隨堂練習
六、課堂小結:
1、怎樣刻畫一組數據的離散程度?
2、怎樣求方差和標準差?
七、布置作業(yè):習題5.5第1、2題。
八年級數學下冊教案 10
一、教材分析:
《正方形》這節(jié)課是九年義務版數學教材八年級下冊第章第二節(jié)的內容?v觀整個教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉等平面幾何知識,并且具備有初步的觀察、操作等活動經驗的基礎上出現的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點是正方形的概念和性質,難點是理解正方形與平行四邊形、矩形、菱形之間的內在聯(lián)系。根據大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。
。ㄒ唬┲R目標:
1、要求學生掌握正方形的概念及性質;
2、能正確運用正方形的性質進行簡單的計算、推理、論證;
。ǘ┠芰δ繕耍
1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、等能力;
2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;
。ㄈ┣楦心繕耍
1、讓學生樹立科學、嚴謹、理論聯(lián)系實際的良好學風;
2、培養(yǎng)學生互相幫助、團結協(xié)作、相互討論的精神;
3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。
二、學生分析:
該段學生具有一定的獨立思考和探究的能力,但表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。
三、教法分析:
針對本節(jié)課的特點,采用"--觀察--總結歸納--運用"為主線的教學方法。
通過學生動手,采取幾種不同的方法構造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結出正方形性質定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質理解、鞏固加以升華。
四、學法分析:
本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結得出結論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。
五、教學程序:
第一環(huán)節(jié):相關知識回顧
以提問的形式復習的平行四邊形、矩形、菱形的定義及性質之后,引導學生發(fā)現矩形、菱形的實質是由平行四邊形角度、邊變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的`學具演示以上兩種變化,從而得出結論。
第二環(huán)節(jié):新課講解通過學生們的發(fā)現引出課題“正方形”
1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手,歸納總結出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現,正方形既是特殊的菱形,又是特殊的矩形,從而總結出正方形的性質。
2、正方形的性質
定理1:正方形的四個角都是直角,四條邊都相等;
定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
以上是對正方形定義和性質的學習,之后是進行例題講解。
4、課堂練習:第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質的進一步理解,并考察學生掌握的情況。
第二部分是選擇題,通過體現生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質,使他們充分認識到數學實質是來源于生活并要于生活。
5、課堂小結:此環(huán)節(jié)我是通過圖框的形式小結正方形和前階段所學特殊四邊形之間的內在聯(lián)系,通過對所學幾種四邊形內在聯(lián)系體現正方形完美的本質,渲染學生們應追求象正方形一樣方正的品質,從而要努力學習以豐富的知識充實自己,達到理想中的完美。
6、作業(yè)設計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關正方形的知識。
八年級數學下冊教案 11
一、教材分析
1、特點與地位:重點中的重點。
本課是教材求兩結點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通訊網絡等方面具有一定的實用意義。
2、重點與難點:結合學生現有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:
。1)重點:如何將現實問題抽象成求解最短路徑問題,以及該問題的解決方案。
。2)難點:求解最短路徑算法的程序實現。
3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結點的最短路徑,另一種是求每一對結點之間的最短路徑。根據教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結合,逐步推動教學過程。
二、教學目標分析
1、知識目標:掌握最短路徑概念、能夠求解最短路徑。
2、能力目標:
(1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養(yǎng)學生的數據抽象能力。
(2)通過旅游景點線路選擇問題的解決,培養(yǎng)學生的獨立思考、分析問題、解決問題的能力。
3、素質目標:培養(yǎng)學生講究工作方法、與他人合作,提高效率。
三、教法分析
課前充分準備,研讀教材,查閱相關資料,制作多媒體課件。教學過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發(fā)的方式展開教學。由于本節(jié)課的`內容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據學生的反應控制好教學進度是本節(jié)課成功的關鍵。
四、學法指導
1、課前上次課結課時給學生布置任務,使其有針對性的預習。
2、課中指導學生討論任務解決方法,引導學生分析本節(jié)課知識點。
3、課后給學生布置同類型任務,加強練習。
五、教學過程分析
。ㄒ唬┱n前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。
教學方法及注意事項:
。1)采用提問方式,注意及時小結,提問的目的是幫助學生回憶概念。
。2)提示學生“溫故而知新”,養(yǎng)成良好的學習習慣。
。ǘ⿲胄抡n(3~5分鐘)以城市公路網為例,基于求兩個點間最短距離的實際需要,引出本課教學內容“求最短路徑問題”。教學方法及注意事項:
。1)先講實例,再指出概念,既可以吸引學生注意力,激發(fā)學習興趣,又可以實現教學內容的自然過渡。
。2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。
。ㄈ┲v授新課(25~30分鐘)
1、求某一結點到其他各結點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。
。1)將實際問題抽象成圖中求任一結點到其他結點最短路徑問題。(3~5分鐘)教學方法及注意事項:
、僦饕捎弥v授法,將實際問題用圖形表示出來。語言描述轉換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。
、谧⒁馐痉懂媹D只進行一部分,讓學生獨立思考、自主完成余下部分的轉化。
、奂皶r總結,原型抽象(景點作為圖的結點,景點間的線路作為圖的邊,旅途費用作為邊的權值),將案例求解問題抽象成求圖中某一結點到其他各結點的最短路徑問題。
④利用多媒體課件,向學生展示一張帶權有向圖,并略作解釋,為后續(xù)教學做準備。
教學方法及注意事項:
、賳l(fā)式教學,如何實現按路徑長度遞增產生最短路徑?
、诮Y合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。
。ㄋ模┱n堂小結(3~5分鐘)
1、明確本節(jié)課重點
2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?
(五)布置作業(yè)
書面作業(yè):復習本次課內容,準備一道備用習題,靈活把握時間安排。
六、教學特色
以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現所講內容的實用性,提高學生的學習興趣。
八年級數學下冊教案 12
一、學習目標及重、難點:
1、了解方差的定義和計算公式。
2、理解方差概念產生和形成過程。
3、會用方差計算公式比較兩組數據波動大小。
重點:掌握方差產生的必要性和應用方差公式解決實際問題。
難點:理解方差公式。
二、自主學習:
(一)知識詳解:
方差:設有n個數據,各數據與它們的平均數的差的平方分別為
用它們的平均數表示這組數據的方差,即
給力小貼士:方差越小說明這組數據越穩(wěn)定,波動性越低。
(二)自主檢測小練習:
1、已知一組數據為2.0、-1.3、-4,則這組數據的方差為。
2、甲、乙兩組數據如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12。
分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小。
三、新課講解:
引例:問題:從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
問:(1)哪種農作物的苗長較高(可以計算它們的平均數: = )?
(2)哪種農作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現)
歸納:方差:設有n個數據,各數據與它們的平均數的差的平方分別為
用它們的平均數表示這組數據的方差,即用來表示。
(一)例題講解:
例1、段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,哪個人的'成績比較穩(wěn)定?為什么?
測試次數第1次第2次第3次第4次第5次段巍1314131213金志強101291311
金志強 10 13 16 14 12
提示:先求平均數,然后使用公式計算方差。
(二)小試身手
1、甲、乙兩名學生在相同條件下各射擊靶10次,命中的環(huán)數如下:
甲:7.8.6.8.6.5.9.10.7.4
乙:9.5.7.8.7.6.8.6.7.7
經過計算,兩人射擊環(huán)數的平均數是,但 S = ,S = ,則 S S ,所以確定去參加比賽。
1、求下列數據的眾數:
(1)3.2.5.3.1.2.3 (2)5.2.1.5.3.5.2.2
2.8年級一班有46個學生,其中13歲的有5人,14歲的有20人,15歲的有15人,16歲的有6人。8年級一班學生年齡的平均數、中位數、眾數分別是多少?
四、課堂小結
方差公式:
提示:方差越小,說明這組數據越集中。波動性越小。
每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數,是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習中的成績如下表所示:(單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據這些成績選拔一人參加比賽,你會選誰呢?
六、課后作業(yè):
必做題:教材141頁練習1.2;選做題:練習冊對應部分習題。
七、學習小札記:
寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!
八年級數學下冊教案 13
一、教學目標
、俳洑v探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結果都是整式),培養(yǎng)學生獨立思考、集體協(xié)作的能力。
②理解整式除法的算理,發(fā)展有條理的思考及表達能力。
二、教學重點與難點
重點:整式除法的運算法則及其運用。
難點:整式除法的運算法則的推導和理解,尤其是單項式除以單項式的運算法則。
三、教學準備
卡片及多媒體課件。
四、教學設計
。ㄒ唬┣榫骋
教科書第161頁問題:木星的質量約為1。90×1024噸,地球的質量約為5。98×1021噸,你知道木星的質量約為地球質量的多少倍嗎?
重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。
注:教科書從實際問題引入單項式的'除法運算,學生在探索這個問題的過程中,將自然地體會到學習單項式的除法運算的必要性,了解數學與現實世界的聯(lián)系,同時再次經歷感受較大數據的過程。
(二)探究新知
。1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據是什么?
。2)你能利用(1)中的方法計算下列各式嗎?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
。3)你能根據(2)說說單項式除以單項式的運算法則嗎?
注:教師可以鼓勵學生自己發(fā)現系數、同底數冪的底數和指數發(fā)生的變化,并運用自己的語言進行描述。
單項式的除法法則的推導,應按從具體到一般的步驟進行。探究活動的安排,是使學生通過對具體的特例的計算,歸納出單項式的除法運算性質,并能運用乘除互逆的關系加以說明,也可類比分數的約分進行。在這些活動過程中,學生的化歸、符號演算等代數推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標所強調的。
。ㄈw納法則
單項式相除,把系數與同底數冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。
注:通過總結法則,培養(yǎng)學生的概括能力,養(yǎng)成用數學語言表達自己想法的數學學習習慣。
。ㄋ模⿷眯轮
例2計算:
。1)28x4y2÷7x3y;
(2)—5a5b3c÷15a4b。
首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學生口述,教師板書的形式完成。口述和板書都應注意展示法則的應用,計算過程要詳盡,使學生盡快熟悉法則。
注:單項式除以單項式,既要對系數進行運算,又要對相同字母進行指數運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學生來講,難免會出現照看不全的情況,所以更應督促學生細心解答問題。
鞏固新知教科書第162頁練習1及練習2。
學生自己嘗試完成計算題,同桌交流。
注:在獨立解題和同伴的相互交流過程中讓學生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學生良好的思維習慣和主動參與學習的習慣。
。ㄎ澹┳鳂I(yè)
1、必做題:教科書第164頁習題15。3第1題;第2題。
2、選做題:教科書第164頁習題15。3第8題
八年級數學下冊教案 14
一、學習目標
1.使學生了解運用公式法分解因式的意義;
2.使學生掌握用平方差公式分解因式
二、重點難點
重點:掌握運用平方差公式分解因式。
難點:將單項式化為平方形式,再用平方差公式分解因式。
學習方法:歸納、概括、總結。
三、合作學習
創(chuàng)設問題情境,引入新課
在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的.因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。
1.請看乘法公式
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
。1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
。1)9(m+n)2—(m—n)2;(2)2x3—8x。
補充例題:判斷下列分解因式是否正確。
。1)(a+b)2—c2=a2+2ab+b2—c2。
。2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習
教科書練習。
六、作業(yè)
1、教科書習題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級數學下冊教案 15
教學目標:
1、了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。
2、了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。
教學重點:
算術平方根的概念。
教學難點:
根據算術平方根的概念正確求出非負數的算術平方根。
教學過程
一、情境導入
請同學們欣賞本節(jié)導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少?如果這塊畫布的面積是?這個問題實際上是已知一個正數的平方,求這個正數的'問題?
這就要用到平方根的概念,也就是本章的主要學習內容。這節(jié)課我們先學習有關算術平方根的概念。
二、導入新課:
1、提出問題:(書P68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數x的值。
一般地,如果一個正數x的平方等于a,即=a,那么這個正數x叫做a的算術平方根。a的算術平方根記為,讀作根號a,a叫做被開方數。規(guī)定:0的算術平方根是0。
也就是,在等式=a(x0)中,規(guī)定x = 。
2、試一試:你能根據等式:=144說出144的算術平方根是多少嗎?并用等式表示出來。
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值。例如表示25的算術平方根。
4、例1求下列各數的算術平方根:
。1)100;(2)1;(3);(4)0。0001
三、練習
P69練習1、2
四、探究:(課本第69頁)
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?
建議學生觀察圖形感受的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究。
五、小結:
1、這節(jié)課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數的算術平方根
六、課外作業(yè):
P75習題13.1活動第1、2、3題
【八年級數學下冊教案】相關文章:
八年級數學下冊教案05-16
八年級數學下冊教案01-10
數學下冊教案03-16
八年級下冊數學教案01-01
八年級數學下冊教案【優(yōu)秀】05-22
八年級數學下冊教案[優(yōu)選]05-19
人教版八年級數學下冊教案04-27
八年級數學下冊教案【熱門】05-19
八年級下冊數學教案優(yōu)秀02-29
八年級數學下冊教案15篇01-10