【必備】小學數(shù)學教案模板5篇
作為一名教學工作者,常常需要準備教案,教案是教學活動的依據(jù),有著重要的地位。那么你有了解過教案嗎?下面是小編整理的小學數(shù)學教案5篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
小學數(shù)學教案 篇1
一、復習準備。
1、出示平行四邊形圖。
2、提問:這是什么圖形?知道底和高會求面積嗎?如果剪去這個平行四邊形的一角,剩下的會得到什么圖形呢?哪個圖形的面積你會直接計算?梯形的面積該怎樣計算呢?
3、揭題。
二、新授。
1、出示梯形圖。
(1)提問:這是什么圖形?說說梯形各部分的名稱。提示:求梯形的面積能不能像推導三角形面積計算公式一樣,把它轉(zhuǎn)化成已經(jīng)學過的圖形,計算它的面積?
。2)操作實驗。
反饋:你拼成了什么圖形?指名拼一拼。
指導拼法。
、僦睾。
②旋轉(zhuǎn)。哪個梯形旋轉(zhuǎn)?一般可以怎樣移動一個梯形?旋轉(zhuǎn)到兩下底成一條直線為止。
、燮揭。
思考:通過重合、旋轉(zhuǎn)、平移的方法將兩個完全一樣的梯形拼成了一個平行四邊形,每個梯形的面積與拼成的平行四邊形的'面積有什么關系?反過來還可以怎么說?
2、出示直角梯形圖。
。1)兩個完全一樣的直角梯形又能拼成一個怎樣的圖形,動手拼一拼。
。2)提問:拼成了什么圖形?平行四邊形與梯形有什么關系?
(3)觀察:每個直角梯形的面積與拼成的長方形的面積有什么關系?
小結:兩個完全一樣的梯形經(jīng)過重合、旋轉(zhuǎn)、平移的方法可以拼成一個平行四邊形或長方形,并且每個梯形的面積是拼成的平行四邊形或長方形的一半。
3、觀察拼成的平行四邊形。
思考:(1)比較梯形的上底下底與拼成的平行四邊形的底有什么關系?
。2)比較梯形的高與拼成
小學數(shù)學教案 篇2
認識形體
長方體、正方體的面、棱、頂點,結構與特征。(例 1、例2)
長方體、正方體表面的展開圖(例3)
表面積
表面積的意義和計算方法(例4)
表面積的實際應用(例5)
體積
體積的意義、容積的意義(例6、例7)
常用的體積單位和容積單位(例8)
長方體、正方體的體積計算公式(例9、例10)
體積單位的進率及簡單換算(例11)
整理與練習實踐活動
第一, 有一條合理的編排線索。先教學長方體、正方體的特征,再教學它們的表面積,然后教學體積,是一條符合知識間的發(fā)展關系,有利于學生認知的線索。把形體的特征安排為第一塊內(nèi)容,能為后面的表面積、體積的教學打下扎實的基礎。如果不理解長方體的6個面都是長方形,且相對的面完全相同,就不可能形成長方體表面積的計算方法。如果不建立長方體的長、寬、高的概念,體積公式就是無本之木、無源之水。把表面積安排在體積之前教學,是因為學生已經(jīng)有了面積的概念,掌握了常用的面積單位,會計算長方形、正方形的面積,教學表面積的條件比體積充分。而且通過表面積的教學,更深一層掌握長方體、正方體的特征,對教學體積是有益的。在體積這部分知識里,先教學體積的意義和常用單位,這些都是重要的基礎知識。建立了體積概念和體積單位概念,才能探索體積計算公式。把體積單位的進率安排在體積公式之后教學,就能通過計算獲得進率。這樣,體積單位的進率就是意義建構的,而不是機械接受的。
第二,加強了空間觀念。教學長方體和正方體,歷來都很重視發(fā)展空間觀念。本單元不僅在傳統(tǒng)的基礎知識的教學時加強培養(yǎng),還充實了長方體、正方體表面展開的內(nèi)容。過去教材里講長方體的表面展開是為了教學它的表面積及計算,現(xiàn)在教學表面的展開,更是為了發(fā)展空間的觀念!稊(shù)學課程標準(實驗稿)》把幾何體與其展開圖之間的轉(zhuǎn)化作為空間觀念的一個內(nèi)容,把能進行這些轉(zhuǎn)化作為空間觀念的一種表現(xiàn)。教材一方面把正方體、長方體紙盒展開,在展開圖里找到原來形體的每個面;另一方面又提供一些圖形,把它們折疊圍成立體,感受圖形的各部分在立體上的位置,讓學生的空間觀念在這些活動中實實在在地獲得發(fā)展。另外,設計的五道思考題和實踐活動《表面積的變化》,加大了空間想像的力度,都以發(fā)展空間觀念為主要目的。
第三,注重知識的實際應用。本單元教學的知識與學生的日常生活有密切的聯(lián)系。在現(xiàn)實的問題情境中能發(fā)現(xiàn)和認識數(shù)學知識,習得的概念和方法能應用于解決實際問題。教材盡力從數(shù)學的角度提出問題、解釋問題,引導學生綜合應用數(shù)學知識、技能解決問題,處處能看到數(shù)學與生活的有機結合。如認識長方體、正方體的特征以后,收集這樣的實物并量出長、寬、高或棱長;在做紙盒和魚缸的實際問題中教學表面積的計算和應用;用初步建立的體積(容積)概念比較物體的大。挥脤W到的體積單位計量常見物體的體積、常見容器的容量;靈活應用體積公式計算沙坑里沙的厚度、塑膠跑道的用料問題
一、 觀察、整理認識長方體、正方體的特征。
例1教學長方體和正方體的特征,把主要精力放在長方體上。這是由于長方體比正方體復雜,發(fā)現(xiàn)長方體的特征需要開展許多活動。而且,研究長方體的學習活動經(jīng)驗可以遷移到認識正方體中去。例題呈現(xiàn)一些圖片,如長方體或正方體包裝盒、家用電器等,在圖片的啟發(fā)下說說生活中哪些物體的形狀是長方體,哪些物體的形狀是正方體。在現(xiàn)實的情境中引出本單元的研究對象。
觀察實物,整理特點是認識長方體、正方體的主要教學活動。例1的教學過程安排成三步。
1. 觀察物體,理解直觀圖,認識面、棱和頂點。
三年級(上冊)通過觀察長方體和正方體,已經(jīng)知道在不同位置看到的面的個數(shù)不同。有時只能看到一個面,有時能同時看到兩個面,最多能同時看到三個面。例題以這些經(jīng)驗為教學起點,在觀察物體的基礎上理解長方體、正方體的直觀圖,認識它們的面、棱和頂點。
把立體的樣子畫在紙上,從長方體、正方體實物到它們的直觀圖,是空間觀念的一次發(fā)展。在實物上只能看到一部分面,在直觀圖上實線圍出了能看到的面,用虛線勾畫不能直接看到的面。把立體與其直觀圖有機聯(lián)系,感受直觀圖真實表達了立體的形狀,并在看到直觀圖時,能想到相應的立體,這是空間觀念的表現(xiàn)。直觀圖是教學難點,從有利于學生理解出發(fā),可以分兩步出現(xiàn)。先畫出能夠看到的面,再勾出不能看到的面。
面、棱和頂點是長方體、正方體結構的`要素,是三個最基本的概念,還是研究長方體、正方體特征的出發(fā)點。按面棱頂點的次序教學,有利于建構它們的意義。物體有面是已有認識,只要在立體上摸摸面,在直觀圖上指出面,就體會了長方體、正方體的面,不必作過多的解釋。兩個面相交的線叫做棱,是對棱的數(shù)學解釋。要通過觀察和在實物上的演示,直觀感受兩個面相交的含義,清楚地看到相交處是線。要強調(diào)這條線不能叫做長方體、正方體的邊,應稱作棱。三條棱相交的點叫做頂點,要通過在實物上摸一摸、在直觀圖上指一指等活動,看到每一個頂點都是三條棱的交點,這是認識頂點的關鍵。
2. 觀察物體,由量到質(zhì)認識長方體的特征。
第11頁認識長方體的特征,鼓勵主動探索,重視合作交流,遵循逐漸認識的規(guī)律。首先數(shù)出長方體、正方體有幾個面、幾條棱和幾個頂點,并把結果填在教材預設的表格里,從量的角度認識長方體、正方體的特征。填表能起三個作用:一是及時記錄獲得的信息,防止流失,有利于特征的整體性;二是通過寫出有關的數(shù)量,加深印象,有利于記憶;三是顯示出長方體、正方體都有6個面、12條棱和8個頂點,有利于感受長方體與正方體的聯(lián)系。接著深入研究長方體的特征,教材提示了可進行的活動是看、量、比;研究的對象是長方體面的形狀與大小,棱的長度與相互關系;研究的目的是發(fā)現(xiàn)長方體的特征。在學生充分活動的基礎上組織交流,概括出長方體的特征。教學時要注意四點:① 學生對長方體特征的認識很難一步到位,總是由表及里、由淺入深地發(fā)展的。認識長方體的特征既讓學生自主探索,又要教師引導點撥。如發(fā)現(xiàn)6個面都是長方形比較容易,而相對的面完全相同往往需要教師引導學生去關注、去比較。至于長方體的3組棱及每組4條棱長度相等,可能更需要教師給予點撥。再如學生的發(fā)現(xiàn)往往是局部的、點滴的,表達往往是不嚴密的,這就需要教師匯集生成的資源,提升語言水平,幫助抽象概括。② 例題里觀察的是一般的長方體,目的是緊扣長方體的本質(zhì)特征教學。把較特殊的長方體安排在練習三第1、2題里出現(xiàn),學生不會因為它有兩個面是正方形,對它是長方體產(chǎn)生懷疑。這樣安排也符合正方體從屬于長方體的關系。③ 學生間的學習方式總是多樣的,部分學生喜歡探索發(fā)現(xiàn),也有部分學生需要有意義的接受,合作交流能滿足學生的不同需要。要讓獨立探索有困難的學生共享成果,在聽懂同伴發(fā)言的基礎上,給他們親自驗證、親身感受的機會。④ 教學長、寬、高是繼續(xù)認識長方體,要在頂點與棱的概念的基礎上進行。必須清楚相交于一個頂點的三條棱分別是長方體三組棱中的一條,把它們分別叫做長方體的長、寬、高。不但要在立體上指出,還要在直觀圖上看出。如果適量地把長方體橫放、豎放、側(cè)放,根據(jù)不同的擺放位置,讓學生說說它的長、寬、高,可以防止死記硬背,發(fā)展空間觀念。
3. 觀察物體,獨立發(fā)現(xiàn)正方體的特征。
由于正方體比長方體簡單,又有認識長方體特征的經(jīng)驗,所以正方體特征的教學會比較輕松。教材先提出正方體的面和棱各有什么特征這個研究課題,讓學生在獨立探索以后,小組交流自己的發(fā)現(xiàn)。盡管正方體的特征比較簡單、容易得出,教學也不能過于倉促。仍要讓學生指指相對的面、相對的棱,說說得出結論的過程與方法,想想6個面是完全相同的正方形與12條棱長度相等之間有什么必然聯(lián)系使形象思維與抽象思維,以及數(shù)學活動的能力都得到發(fā)展。
二、 展、折,想像認識長方體、正方體的展開圖。
第12頁教學正方體、長方體的展開圖,這部分內(nèi)容的教育價值和教學要求,在前面介紹本單元教材編排特點時已經(jīng)闡述,不再重復。這里主要分析教材,提出教學建議。
1. 初步知道展開圖的含義,加強對正方體的認識。
例3先教學正方體的展開圖,原因仍然是正方體的特征比較簡單。例題詳細展示了把正方體紙盒展開的步驟,用紅線標出每步剪開的棱,最后還把剪開后的紙盒攤平。引導學生首次經(jīng)歷立體到展開圖的轉(zhuǎn)化過程,從中明白展開圖是平面圖形,清楚地看到展開圖由6個相同的正方形組成。教學這道例題要注意反思,即得到正方體展開圖以后,要回憶是怎樣展開的,思考為什么展開圖里有6個同樣的正方形,正方形的邊與正方體的棱有什么聯(lián)系通過反思,既加強對展開圖的認識,又加強對正方體特征的認識,更通過立體與展開圖關系的思辨發(fā)展空間觀念。
除了依照例題設計的剪法展開,還可以沿其他的棱剪。大象卡通提出的要求,是讓學生再次進行展開正方體的活動,體會沿著不同位置的棱剪,得到的展開圖形狀不同。但是,展開圖由6個相同的正方形組成,每個正方形的邊都是正方體的棱是相同的。從而理解正方體展開圖既有多樣性,又有確定性。多樣性是剪法不同的結果,確定性是正方體的特點決定的。
2. 自主研究長方體的展開圖,加強對長方體的認識。
長方體的展開圖安排在試一試里讓學生剪紙盒得到,學習正方體展開圖的經(jīng)驗和體會能支持他們主動地操作、交流。沿著哪幾條棱剪?在教材里沒有規(guī)定,可以自主選擇。因此,得到的展開圖也是多樣的,在每個展開圖里都可以看到6個長方形,從而體驗了長方體展開圖形狀的多樣性和組成的確定性。卡通提出的從展開圖中找到3組相對的面是富有思維含量的問題,能引發(fā)學生細致地研究展開圖,并把展開圖與立體聯(lián)系起來思考。要鼓勵學生進行展開圖長方體展開圖長方體的折、展活動,反復地看展開圖里的每一個長方形,想它在長方體的位置;看長方體的面,想它在展開圖里的位置。在體驗立體與展開圖相互轉(zhuǎn)化的過程中發(fā)展空間觀念。
另外,在展開圖上想長方體的長、寬、高,并把長、寬、高轉(zhuǎn)換成展開圖中各個長方形的長與寬,也有益于空間觀念的發(fā)展,還能為表面積的教學作鋪墊。
3. 判斷哪些圖形折疊后能圍成正方體或長方體,加強對體的認識。
第12頁練一練第2題提供的每個圖形都由6個相同的正方形組成,判斷這些圖形中哪些折疊后能圍成正方體。第14頁第5題的每個圖形都由6個長方形組成,判斷哪幾個圖形能折疊后圍成長方體。其中部分圖形圍不成正方體或長方體的原因是,折疊的時候部分正方形或長方形重疊,構不成有6個面的立體。因此,這兩道題一方面加強了展開圖與立體的轉(zhuǎn)化,另一方面加強了對長方體、正方體都有6個面的認識。
學生進行這些判斷會有困難,為此提出兩點教學建議: 第一,在例3和試一試里要把沿不同的棱剪紙盒得到的各個展開圖充分進行展示和交流。先認識圖中所示的標準狀態(tài)的展開圖,再體會展開圖還有其他形狀,并在各個展開圖上指出立體的相對的面。第二,允許學生靈活地先想后圍或者先圍后想。如果看到的圖形是標準的或接近標準狀態(tài)的,可以先判斷它能否圍成立體,想想圍成的立體是什么樣子,然后折疊驗證判斷和想像。如果看到的圖形不是標準狀態(tài)的,能不能圍成立體難以判斷,可以先動手操作,從中體會為什么能圍成或圍不成立體。
三、 分解,組合有意義地建構表面積的知識。
教學表面積知識編排的兩道例題都是關于長方體的,正方體的表面積通過試一試在練習中教學,這是因為長方體表面積的概念和計算方法能遷移到正方體上去。表面積的教學分兩步進行,先是例4與試一試,把表面積的意義和算法結合在一起。然后是例5,著重于表面積知識的應用,靈活地解決與長方體、正方體表面積有關的實際問題。
1. 聯(lián)系已有知識經(jīng)驗,探索表面積的知識。
例4的問題情境是做一個長方體紙盒至少要用多少硬紙板,在掌握長方體特征的基礎上,學生會想到這個問題與長方體各個面的面積有關,并出現(xiàn)不同的計算方法。猴子卡通和兔子卡通的算法是比較典型的兩種方法,它們有相同的思路:求出紙盒各個面面積的總和,但算法不同: 把3組相對的面的面積相加,把每組相對面中各個面的面積和乘2。前一種算法得益于第13頁第3題的鋪墊,后一種算法受到了(長+寬)2=長方形面積的啟發(fā)。兩種算法都是計算長方體表面積的較好方法,相同的思路和乘法分配律溝通了兩種算法的內(nèi)在聯(lián)系,教材鼓勵學生選用自己喜歡的方法算出結果。
學生求至少要用多少硬紙板所想到的各種算法,都應用了分解組合的思想方法,即先把一個較復雜的新穎問題分解成若干個簡單問題,再把這些簡單問題組合起來。反思并體驗這種思想方法,就能很好地理解表面積的意義,也不需要機械地記憶表面積的算法。學生對正方體有完全相同的6個正方形已經(jīng)有深刻的認識,試一試求做正方體紙盒至少用多少硬紙板,一般都會把一面的面積乘6。得出的長方體(或正方體)6個面的總面積,叫做它的表面積,既形成了表面積的概念,也總結了計算表面積的方法。
2. 聯(lián)系生活經(jīng)驗,靈活解決實際問題。
例5制作上面沒有玻璃的魚缸,利用長方體表面積的知識解決實際問題。通過實物圖幫助理解這個實際問題的特點,讓學生明白所用玻璃的面積是長方體5個面的面積和,從而主動想出算法。小鳥卡通和兔子卡通仍然應用了分解組合的思想方法,把實際問題抽象成求前、后、左、右和下面5個面的面積和的數(shù)學問題,或者抽象成從表面積(6個面的總面積)里去掉一個面的面積的數(shù)學問題。兩條思路各有特點,前一條突出的是空間想像,要找準并正確計算有關的各個面的面積。后一條的思路負荷輕、思考難度小,能減少錯誤的發(fā)生。還有其他方法嗎主要反映在按小鳥卡通的思路,可以列出5個面的面積連加的式子,也可以列出前、后兩個面的面積加左、右兩個面的面積,再加下面面積的式子。要注意的是,這道例題鼓勵解決問題的策略與方法多樣,并不要求學生能夠一題多解。教材仍然讓學生選擇一種算法。
練一練和練習四里還有只計算長方體的前、后、左、右4個面面積和的實際問題,缺少左側(cè)面的長方體的問題等。教材為部分習題配了示意圖,便于學生直觀感受實際問題是求哪些面的面積之和。部分習題沒有配置實物圖,可以在現(xiàn)實的生活空間里思考。如粉刷平頂教室的頂面和四周墻壁,只要看看自己的教室,就能把題目里的長、寬、高落到實處。又如臺階的問題,可以找個臺階看看,理解什么是它的占地面積以及地磚鋪在哪些面上。計算長方體火柴盒的內(nèi)盒和外盒所有的材料,綜合應用了長方體特征和表面積知識,再次體驗實際問題是多變的,要靈活應用知識才能正確解答。
四、 實驗、領悟初步建立體積概念。
例6和例7分別教學體積的意義和容積的意義,容積的意義要建立在體積概念上,因而例6是這部分教材的重點。學生形成體積概念也是教學的難點,這兩道例題的教學只能初步感受體積的含義,在后面教學常用的體積單位,以及長方體、正方體的體積計算時,還要通過測量和描述,進一步理解體積的意義。
1. 在有限的空間里領悟體積。
物體所占空間的大小叫做體積。空間物體占有空間所占空間的大小都是體積概念的內(nèi)涵,是建立體積概念必須解決的子概念。例6利用杯子的空間,把感悟體積的過程設計成三步。第一步是初步體會空間和物體占空間。兩個同樣的玻璃杯,左邊的盛滿水,右邊的放一個桃,把左邊杯里的水倒向右杯,會剩下一些水。杯中有一部分空間被桃占去了這句話解釋了現(xiàn)象、回答了原因,引出了空間這個詞,讓學生在現(xiàn)實的背景下感知空間的含義。這一步要把生活常識引向數(shù)學認識,看著放了桃的杯子,仔細領悟杯中有一部分空間被桃占去了的意思,是十分重要的教學活動。若有需要,還可以在一只透明空杯的上口放一本書,讓學生看著杯子的里面體會杯子的空間。再把桃放入杯里,仍然用書蓋住上口,看著杯里的桃,體會它占有杯子的一部分空間。第二步是感受不同的物體占的空間有大、有小。兩個同樣的杯子,一個杯里放1個桃,另一個杯里放1個荔枝,桃比荔枝大,分別往兩個杯里倒水,顯然前一個杯里可以倒入的水比后一個杯少。讓學生回答為什么,不能簡單地用桃大荔枝小來解釋。要像兔子卡通那樣想和說,用桃占的空間大,荔枝占的空間小來回答問題。理解桃大是指它占的空間大,荔枝小是指它占的空間小,從而獲得不同物體占的空間大小不同的體驗。第三步繼續(xù)體會每個物體都占有一定的空間。觀察圖片里的番茄、荔枝和桃,先思考哪一個占的空間大,再想想這三個水果分別放在三個杯里,往杯中倒水,哪個杯里水占的空間大。這是兩個連續(xù)的關于物體占有空間的問題,可從前一問題的答案推理得出后一問題的答案。由于蘋果占的空間大,杯子盛水的空間就小;番茄占的空間小,杯子盛水的空間就大,這就感受了每個物體都占有一定大小的空間,由此得出體積的意義:物體所占空間的大小叫做物體的體積。
舉例比比兩個物體體積的大小是為了鞏固體積概念,應該對學生提出兩點要求:一是用好體積這個詞,二是聯(lián)系實物解釋什么是它的體積。如電冰箱的體積是它占有空間的大小,電冰箱的體積比電視機的體積大。
練習五第1、3題進一步領悟體積的意義。把同樣的盒裝餅干堆成3堆,各堆的形狀不同、體積相同。理解體積是物體占有空間的大小,與物體的形狀無關。用小正方體擺出較大的正方體或長方體,理解體積大的物體占的空間大,體積相等的物體占的空間大小相等。
2. 從體積引出容積,初步建立容積概念。
容積與體積是兩個既有聯(lián)系,又有區(qū)別的概念,教學容積能進一步理解體積。
例7教學容積的意義,以體積概念為生長點。圖畫里有兩盒書,一盒是《四大名著》,另一盒是《成語故事》。先在直觀情境里比較哪盒書的體積大些,再從左邊盒子里書的體積大引出左邊盒子的容積大。書的體積是舊知,盒的容積是新知,教學既要以舊引新,也要體現(xiàn)容積與體積的不同意義。教材中比較書的體積,是看著兩盒書進行的。而容積是指著兩個書盒子講的,從而凸現(xiàn)容積的屬性,以及它與體積的區(qū)別。
為了有利于建立容積概念,教學時應該補充一些實例,讓學生懂得容器,體會每個容器能容納的體積是有限的、確定的。在充分感知的基礎上,得出容器所能容納物體的體積,叫做這個容器的容積。
試一試的教學要注意兩點: 一是讓學生解釋玻璃杯容積的含義,理解每個杯的容積是指它能容納多少水;二是通過實驗比出哪個杯的容積大。如在一個杯里裝滿水,再往另一個杯里倒,看能不能裝滿另一個杯子,會不會有剩下的水。學生應該是實驗設計、操作和結論得出的主體。
練一練第2題兩個盒子里裝的杯子的數(shù)量不同,練習五第4題兩個盒子外面同樣大,里面裝的儀器數(shù)量不等,這些直觀情境能幫助學生正確理解容積的意義,體會容器的體積與容積是不同的概念。
五、 認識,應用初步掌握常用的體積單位。
本單元教學的體積單位有立方厘米、立方分米、立方米。有了體積單位,就能測量、表達物體的體積,也能進一步體會體積的意義。
1. 認識體積單位包括兩方面內(nèi)容。
例8教學常用的體積單位,首先是測量、計量體積需要體積單位,然后是各個體積單位的具體含義。
觀察圖中的長方體和正方體,很難直接判斷哪一個體積大。把它們切成同樣大的正方體,就能比出體積的大小。這段教材讓學生明白,有了體積單位就能準確計量物體的體積。圖中的長方體是9個小正方體那么大,大正方體是8個小正方體那么大,長方體的體積比正方體大。還要讓學生感受用于測量物體體積的單位,應該是確定的小正方體,由此導出常用的三個體積單位。把長方體和正方體切成同樣的小正方體,最好是學生自主想到的方法。如果有困難,也可以看書或由教師告訴他們。但是,必須理解這個方法,體會其合理性,激發(fā)學習體積單位的愿望。
教學體積單位的具體含義,要準確地表達1立方厘米、1立方分米、1立方米各是多大的正方體。教材在文字描述這些體積單位的意義的同時,還選擇一些輔助方法,讓學生體會體積單位。棱長1厘米的正方體,體積是1立方厘米。教材里畫出了1立方厘米的示意圖,配合語言描述,讓學生了解1立方厘米。受版面限制,教材里畫出1立方分米、1立方米的直觀圖有困難。因此,在1立方分米的示意圖的旁邊,畫一個體積接近1立方分米的粉筆盒,利用熟悉的物體,感知1立方分米是多大。用3根1米長的木條,在墻角搭一個1立方米的空間,在現(xiàn)實情境中體會1立方米。
尋找體積接近1立方厘米、1立方分米的物體,是帶著體積單位的初步表象觀察周圍的事物,進一步體驗這些單位。教材舉的手指頭的體積大約1立方厘米這個實例,能引起觀察手指頭的興趣,加強1立方厘米的表象,再通過自主尋找實例,對1立方厘米的認識就深刻了。
2. 掌握體積單位有兩方面的要求。
掌握體積單位,要能應用體積單位計量物體的體積。在這部分教材里,一是說出由1立方厘米小正方體擺成的物體的體積,二是為常見的物體選擇合適的體積單位。
第21頁說出用4個或6個棱長1厘米的正方體擺成的長方體的體積,第一次量化描述物體的體積。兩個長方體的結構都很直觀,分別說出它們的體積非常容易。教學不能滿足于答案,要讓學生說出怎樣想的,進一步理解體積的意義和體積單位的用途。第24頁第6題里的三個物體都是1立方厘米的正方體擺成的,其中兩個物體的結構不是很直觀。說出它們的體積,要數(shù)出各是幾個正方體擺成的,尤其是想到那些不能直接看到的正方體,能發(fā)展空間觀念。第8題根據(jù)三視圖擺出物體,說出體積。擺出物體是解決問題的關鍵,是發(fā)展空間觀念的機會。這個物體不復雜,多數(shù)學生能夠擺出來。教學時不必補充這樣的練習,更不要增加擺出物體的難度。
第24頁第7題為物體選擇合適的體積單位。能不能填出合適的單位,一般決定于三個因素:一是對物體的熟悉程度,二是具有體積單位的表象,三是能開展正確而有效的思考。如學生都熟悉西瓜,知道1個西瓜大致是多大,如果體積是8立方厘米或8立方米,顯然都不符合實際。反之,為不熟悉的物體選擇體積單位,只能是脫離實際地亂猜,這是毫無意義的。教材里的橡皮、集裝箱、水桶等都是多數(shù)學生比較熟悉的物體。教學時如果補充類似的練習,一定要注意這點。
3. 進一步教學升與毫升。
四年級(下冊)曾經(jīng)教學升與毫升,初步知道它們都是計量液體的單位,也是容器的容量單位。對1升、1毫升液體是多少有了初步的認識,F(xiàn)在教學升和毫升,主要有兩個內(nèi)容: 第一,升和毫升都是體積單位,用于計量液體的體積,也用于計量容器的容積。把升與毫升納入體積單位的范疇,建立新的知識結構,是已有認識的深化和提高。第二,1升等于1立方分米,1毫升等于1立方厘米,利用1立方分米、1立方厘米的表象理解1升與1毫升的實際大小,使原有認識更清晰、更牢固。
六、 操作,發(fā)現(xiàn)探索長方體、正方體的體積公式。
例9和例10教學長方體的體積計算公式,并推導出正方體體積計算公式。在初步掌握兩個體積公式以后,還把它們統(tǒng)一起來。
1. 讓學生探索求積公式。
長方體、正方體體積公式的教育價值,不能局限于知道公式和應用公式。況且,記憶和照公式列式計算的思維含量較低。得出體積公式能加強對體積意義、體積單位的理解;能發(fā)展解決問題的策略,積累數(shù)學活動經(jīng)驗;能培養(yǎng)創(chuàng)新精神和實踐能力,有利于形成積極的情感態(tài)度。因此,教材十分重視探索體積公式的過程,設計、安排了認知線索和主要的探索活動。
例9和例10是兩個層次的活動,不僅操作內(nèi)容、要求有區(qū)別,而且思維程度有差異。例9用1立方厘米的正方體擺出4個不同的長方體,從已有的知識和能力開始教學新知識。沒有規(guī)定長方體的大小,學生可以按自己的意愿去擺,既調(diào)動積極性,又為合作學習營造了氛圍。在教材預設的表格里填寫每個長方體的長、寬、高,所用正方體個數(shù)以及體積,可以獲得兩點感受:一是沿著長、寬、高各擺幾個正方體,長方體的長、寬、高就分別是幾厘米;二是長方體里有多少個正方體,體積就是多少立方厘米,體積應該與長、寬、高有關。這兩點感受能使學生明白:探索長方體的體積計算公式,要研究體積與長、寬、高的關系。教學例9不要急于得出體積公式,而要在擺長方體與填表的基礎上,著力引導學生獲得上述兩點感受,形成繼續(xù)研究的心向。即使有學生從例9已經(jīng)看出了體積公式,也要引導他們通過例10進一步驗證公式,理解體積與長、寬、高之間的必然聯(lián)系,感受數(shù)學的嚴謹及結論的確定性。
例10根據(jù)圖示的長、寬、高,用1立方厘米的正方體擺出三個長方體;顒拥谋举|(zhì)是用體積單位測量物體的體積。對學習的要求是先想怎樣擺、需要幾個正方體,再按想法擺,驗證想的是否可行、是否正確。三個長方體是精心設計的。左起第一個長方體的寬與高都是1厘米,只要把4個正方體擺成一行,能夠體會長方體長的數(shù)量與沿著長擺的體積單位個數(shù)之間有必然聯(lián)系。第二個長方體的高1厘米,只要把正方體擺成一層。體會長方體寬的數(shù)量是幾,沿著寬應該擺出幾行體積單位。而長與寬的乘積,就是一層里體積單位的個數(shù)。第三個長方體高2厘米,要把正方體擺成2層,體會長方體高的數(shù)量與擺的體積單位的層數(shù)是一致的。教材在各個長方體里預設的教學內(nèi)涵,規(guī)劃了各次實物操作時的思維重點,有助于學生逐漸建構數(shù)學認識。擺各個長方體獲得的體會,就是對長方體的體積與它的長、寬、高關系的理解。教材讓學生說說在兩道例題中的發(fā)現(xiàn),是引導他們回顧、反思例題的學習,進一步清楚這些體會,并把這些體會有條理地組織起來,得出長方體的體積公式。
抓住正方體12條棱長度相等的特點,能從長方體的體積公式推導出正方體的體積公式。教材要求學生主動經(jīng)歷推導過程,在獨立思考之后小組交流。推導的思維方法是多樣的,從正方體具有長方體的所有特征出發(fā),演繹推理能完成推導,從再現(xiàn)測量體積活動出發(fā),
類比推理能完成推導: 用體積單位測量正方體的體積,每行擺的個數(shù)、擺的行數(shù)、擺的層數(shù)都與正方體的棱長相等。因此,正方體的體積=棱長棱長棱長。
寫正方體體積的字母公式時,根據(jù)字母表示數(shù)的書寫規(guī)則,如果把乘號簡寫為,那么V=aaa;如果乘號省去不寫,要寫成V=a3。一般采用后一種寫法,a3以及它表示的意思都是新知識。第26頁練一練第2題,算幾個整數(shù)或小數(shù)的立方的得數(shù),鞏固對立方的認識。解決正方體體積的實際問題,經(jīng)常會列出和計算這樣的算式。其中13、103和0.13要提醒學生特別注意,防止算錯。
2. 深入理解體積公式。
長方體與正方體的體積公式,除了有一般與特殊的關系(正方體是特殊的長方體,正方體的體積公式是長方體體積公式的特例),還有相同的內(nèi)容。認識它們的相同,能簡化知識結構。第27頁教學這個內(nèi)容,分三步進行: 第一步認識長方體和正方體的底面。教材在長方體、正方體的直觀圖上,用涂顏色和文字標注等辦法呈現(xiàn)它們的底面,讓學生看到底面一般指長方體、正方體的下面(認識長方體時曾指過上、下、前、后、左、右三組相對的面)。第二步認識底面積。長方體或正方體的底面,都是表面的一部分。教材指出,長方體和正方體底面的面積,叫做它們的底面積,幫助學生建立底面積的概念,要求學生研究計算底面積的方法,聯(lián)系求表面積的經(jīng)驗,得出長方體的底面積=長寬,正方體的底面積=棱長棱長,進一步加強對底面的認識。第三步演變原來的體積公式。在長方體的體積=長寬高里,如果把長寬看成先算底面積,那么體積公式可以演變成底面積高。在正方體的體積=棱長棱長棱長里,如果把棱長棱長看作先算底面積,那么體積公式也演變成底面積高。由于長方體、正方體的體積公式都能演變成底面積高,因而獲得了統(tǒng)一。
把長方體和正方體的體積公式統(tǒng)一成底面積高,有兩點教學意義: 第一是深入理解原有的兩個體積公式。長、寬、高或棱長都是立體的棱的長度,決定立體的大小。長寬或棱長棱長得到長方體或正方體的底面積,底面積高得到的是體積。這里面蘊含了長度、面積、體積之間的聯(lián)系。第二是重組知識結構。把兩個體積公式合并成一個公式,其本身是一次認知簡化。而且,底面積高還是計算所有直柱體體積的方法。無論底面是直線圖形的柱體,還是曲線圖形的柱體,體積公式都是V=Sh。前一點意義,在現(xiàn)在的教學中就能實現(xiàn);后一點意義,在以后的教學中會逐漸體現(xiàn)出來。
練習六第5題已知一根長方體木料的長與橫截面的邊長,橫截面是第一次出現(xiàn)的概念,教材利用示意圖幫助學生理解橫截面的含義。先算出橫截面的面積,再算木料的體積,有兩點意圖:一是通過計算橫截面的面積,進一步認識這個面;二是體會長方體、正方體的體積公式還能演變成長橫截面面積、橫截面面積棱長,從而對體積公式有更充實、更豐富的體驗。
七、 計算,遷移理解體積單位的進率。
在初步掌握長方體、正方體的體積公式以后,教學體積單位的進率,采用讓學生經(jīng)過計算發(fā)現(xiàn)和理解的教學方法。教材第30~32頁,先教學相鄰體積單位間的進率,再教學簡單的換算。
1. 求兩個同樣大小的正方體的體積,發(fā)現(xiàn)和理解進率。
例11的圖里有兩個正方體,一個棱長1分米,另一個棱長10厘米。從1分米=10厘米,知道兩個正方體的棱長相等,進而判斷它們的體積相等。這兩個正方體的體積分別是1立方分米與1000立方厘米,從它們體積相等,推理得出1立方分米=1000立方厘米,這就是立方分米與立方厘米的進率。
用同樣的方法,通過棱長1米和棱長10分米的正方體,可以得到立方米和立方分米間的進率。
在教學進率的過程中,作出兩個正方體體積相等的判斷是關鍵。因為1立方分米=1000立方厘米、1立方米=1000立方分米,首先表達的是兩個棱長相等的正方體的體積相等,然后才本質(zhì)地表達出相鄰兩個體積單位的進率。后者是這部分教材的重點所在。
練習七第1題的表格里已經(jīng)填了米、分米、厘米三個長度單位以及一個面積單位與一個體積單位,要求學生繼續(xù)寫出其他面積單位和體積單位,還要寫出表格里相鄰的長度、面積、體積單位的進率。這道題對長度、面積、體積三類計量單位從名稱和進率兩個方面進行初步的整理。填表能引起學生對這些單位概念的回憶,如邊長1米的正方形面積是1平方米,棱長1米的正方體體積是1立方米。從而體驗米、平方米、立方米是不同的概念,也是有對應關系的單位。有了這些體驗,在測量或計量長度、面積、體積時,就能正確應用單位名稱。通過填表能發(fā)現(xiàn)規(guī)律,如米、分米、厘米這三個長度單位,相鄰單位間的進率是10;平方米、平方分米、平方厘米這三個面積單位,相鄰單位間的進率是100(1010);立方米、立方分米、立方厘米這三個體積單位,相鄰單位間的進率是1000(101010)。理解這些規(guī)律,有助于記憶進率。
2. 應用進率進行簡單的換算。
對使用不同單位的體積進行換算,是應用進率的活動。本單元里的單位換算是比較簡單的,只在兩個相鄰單位間進行,而且都是單名數(shù)的換算。
練一練是體積單位的換算,先把較大單位的數(shù)量換算成較小單位的數(shù)量,再把較小單位的數(shù)量換算成較大單位的數(shù)量。類似的這些換算在長度單位、面積單位、質(zhì)量單位里都進行過,學生有換算的經(jīng)驗,知道可以利用小數(shù)點向右或向左移動位置的辦法解決。完成這里的練一練,可以把已有經(jīng)驗遷移過來,著重思考把小數(shù)點向哪邊移動幾位,并對這樣做的原因作出解釋。
練習七第2題把面積單位的換算與體積單位的換算對比著進行,目的是體會它們在換算時的相同與不同。無論哪類計量單位,只要是較大單位的數(shù)量換算成較小單位,都把小數(shù)點向右移動;只要是較小單位的數(shù)量換算成較大單位,都把小數(shù)點向左移動,這是規(guī)律,是共性。而小數(shù)點移動的位數(shù)是由進率決定的,進率分別是10、100、1000,小數(shù)點分別移動一位、兩位、三位。獲得這些體會的價值,已經(jīng)遠遠超出知識與技能的范疇,更是數(shù)學思考、解決問題方面的發(fā)展。第4題里升與毫升的換算,四年級(下冊)教材里曾經(jīng)進行過,F(xiàn)在進行這些換算,不限于整數(shù)范圍內(nèi)實施,對問題及其解決方法的理解也比過去深刻。把升為單位的數(shù)量改寫成立方分米為單位,把毫升為單位的數(shù)量改寫成立方厘米為單位,能加強1升等于1立方分米、1毫升等于1立方厘米的認識,更好地把體積單位組織起來,便于記憶和應用。
八、 拼拼,想想體驗表面積的變化。
實踐活動《表面積的變化》專題研究幾個相同的正方體(或長方體)拼起來,得到的立體與原來幾個正方體(長方體)表面積之和的關系,發(fā)現(xiàn)并理解其中的變化規(guī)律,發(fā)展空間觀念。
拼拼算算這個欄目,先研究用正方體拼的情況,再研究用長方體拼的情況,后一類情況比前一類復雜。研究正方體拼成長方體,從兩個正方體開始。選用體積1立方厘米的正方體,它的每個面的面積都是1平方厘米,有利于體會到表面積的變化。
用兩個相同的正方體拼出長方體,可以上、下兩個面拼,也可以左、右兩個面拼,還可以前、后兩個面拼。從現(xiàn)象看,似乎拼法不同。其實,各種拼法沒有實質(zhì)性的差別。首先是拼成的長方體的體積是2個正方體體積的和,每個正方體的體積是1立方厘米,長方體的體積是2立方厘米。其次是每種拼法都減少原來的2個面,這是正方體拼成長方體時發(fā)生的變化,也是這次實踐活動的研究內(nèi)容。在兩個正方體拼成長方體的圖示中,可以體會減少的2個面分別在兩個正方體上。拼的時候,這兩個面相重疊。
用3個、4個甚至更多個相同的正方體擺成一行,拼成長方體,表面積比原來減少幾個正方形面的面積?教材讓學生邊操作、邊觀察,邊思考、邊填表。發(fā)現(xiàn)的規(guī)律要幫助學生分兩個層次歸納和交流:一是關于拼的步驟。2個正方體一步就能拼成長方體,3個正方體要分兩步拼,4個正方體要分三步拼二是關于減少的面積。2個正方體拼,比原來減少2個(一對)正方形面的面積;3個正方體拼,比原來減少4個(兩對)正方形面的面積;4個正方體拼,比原來減少6個(三對)正方形面的面積
用兩個相同的長方體拼,情況比較復雜。由于長方體三組面的形狀、大小不同,只有把完全相同的兩個面重疊,才能拼出較大的長方體。因此,一般有三種不同的拼法。教材讓學生通過操作,了解三種拼法。再看著各種拼法的示意圖,思考每種拼法減少的面積。在體會三種拼法減少的面積不同之后,找出拼成的大長方體中,哪個表面積最大,哪個最小。
第37頁的示意圖中,左邊拼法的兩個長方體把54的面重疊,拼成的大長方體的表面積比原來減少兩個54;中間拼法的兩個長方體把53的面重疊,表面積減少2個53;右邊拼法的表面積減少2個43。這些都是學生在操作與看圖中能夠理解的,也是交流的主要內(nèi)容。指出表面積最大和最小的大長方體,要進行這樣的推理:拼的時候減少的面積最少,拼成的大長方體的表面積最大。反之,減少的面積最多,拼成的大長方體的表面積最小。只要教師稍加引領或點撥,學生都能像這樣想。而且計算三個大長方體的表面積比原來減少多少,都有捷徑可走。
拼拼說說欄目里變化了拼法,不但把正方體拼成一行,還拼成兩行。仔細地體會拼的活動和研究教材里的示意圖,左圖可看作有7次正方體的兩兩相拼(如圖),每次減少面積2平方厘米,大長方體的表面積比原來減少7個2平方厘米。右圖中可看作有5次正方體的兩兩相拼(如圖),大長方體的表面積比原來減少5個2平方厘米。所以,右邊的長方體表面積比左邊長方體大4平方厘米。
為10盒火柴設計一個最節(jié)省的包裝方案,是應用前面拼正方體或長方體的經(jīng)驗:重疊的面越大,表面積減少越多;兩兩相拼的次數(shù)多,減少的面積也多。這兩條經(jīng)驗要靈活地、綜合地應用,才能得到理想的方案。這對空間觀念和思維能力是很好的鍛煉。
小學數(shù)學教案 篇3
一、說教材
“三角形的內(nèi)角和”是人教版小學數(shù)學四年級下冊第五單元第3節(jié)的內(nèi)容。“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的規(guī)律,打下了堅實的基礎。
二、說學情
一堂成功的課不僅要熟悉教材,還需要我們充分的了解學生的特點。
本節(jié)課的授課對象是四年級的學生,從心理特征來說,他們對于新鮮的知識充滿著好奇心和強烈的求知欲望,無意注意仍起著主要作用,有意注意正在發(fā)展。
從認知狀況來說,學生在此之前已經(jīng)學習了三角形有關的知識,對三角形的內(nèi)角已經(jīng)有了初步的認識,這為順利完成本節(jié)課的教學任務打下了基礎,但對于三角形內(nèi)角和都是180度的理解,學生可能會產(chǎn)生一定的困難,所以教學中應予以簡單明白,深入淺出的分析。
三、說教學目標
根據(jù)新課程標準,教材特點、學生實際,我確定了如下三維教學目標。
【知識與技能】通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。
【過程與方法】經(jīng)歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結的能力。
【情感態(tài)度與價值觀】在參與學習的過程中,感受數(shù)學的魅力,體驗成功的喜悅,激發(fā)學習數(shù)學的興趣。
四、說教學重難點
根據(jù)學生現(xiàn)有的知識儲備和知識點本身的難易程度,學生很難建構知識點之間的聯(lián)系,這也確定了本節(jié)課的重點為三角形內(nèi)角和定理,而三角形內(nèi)角和定理推理的過程為本節(jié)課的難點。
五、說教法學法
新課程明確倡導動手實踐,自主探索、合作交流的學習方式,教師不僅是知識的傳授者,更是學生探究性、合作性學習活動的設計者,組織者和學生學習的伙伴。在教學過程中,我將采用創(chuàng)設情境,直觀演示,觀察,猜測,操作,思考,總結等方法,把學生帶進開放的,富有挑戰(zhàn)性的問題情景,讓學生通過自己學習,合作學習,和交流等活動,獲得知識與能力,掌握解決問題的方法,獲得積極的情感體驗。整個學習和探索活動,體現(xiàn)出開放性思維和多元思維并存的思維方式,教學生初步學會自主梳理知識,探索知識的方法,使他們親歷自主探究的過程。
六、教學過程
(一)導入新課
首先是導入環(huán)節(jié),我會多媒體課件播放有關三角形內(nèi)角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內(nèi)角和比你大”。直角三角形說“別爭了,我們的.內(nèi)角和是一樣大的,因為三角形的內(nèi)角和是180°”。
根據(jù)視頻中三角形的對話,順勢引出題目——三角形的內(nèi)角和。
設計意圖:在這個環(huán)節(jié)中,多媒體課件展示有關三角形內(nèi)角和的內(nèi)容,激發(fā)學生深厚的學習興趣和求知欲望,快速的進入學習高潮。
(二)新課探究
接下里是新課探究環(huán)節(jié),在這一教學環(huán)節(jié)中,我首先讓學生畫幾個不同類型的三角形。然后同桌互相量一量,算一算,三角形3個內(nèi)角的和各是多少度?通過測量,學生可以發(fā)現(xiàn)三角形的內(nèi)角和是180°。
接著我會提出一個問題是不是所有的三角形的內(nèi)角和都是180°,如何進行驗證你的結論呢?接下來我會讓學生分小組討論,針對學生出現(xiàn)的問題,我給予指導,討論過后,請同學匯報,鼓勵學生用自己的語言表達,無論學生回答的全面與否,都給予積極的評價,其他同學認真傾聽后做出判斷,進行補充,提高學生的注意力。
通過小組之間的討論,引導學生采用剪拼的方法進行驗證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。最后引導學生總結出三角形的內(nèi)角和是180°。
此環(huán)節(jié)通過小組合作,體現(xiàn)以生為本的教學理念。既培養(yǎng)學生的推理能力,又鍛煉學生的語言表達能力和溝通能力。
(三)鞏固提高
接下來進入鞏固提高環(huán)節(jié)。本環(huán)節(jié)我依據(jù)教學目標和學生在學習中存在的問題,設計有針對性、層次分明的練習題組。讓學生在解決這些問題的過程中,進一步理解、鞏固新知,訓練思維的靈活性、敏捷性、創(chuàng)造性,使學生的創(chuàng)新精神和實踐能力得到進一步提高。
小學數(shù)學教案 篇4
數(shù)鉛筆課題:數(shù)鉛筆 課型:新知課
【教學目標】
1、經(jīng)歷從實際情境中抽象出數(shù)的過程,會數(shù)、會讀100以內(nèi)的數(shù);
2、體會數(shù)位、基數(shù)、序數(shù)的意義;
3、初步感受一列數(shù)蘊含的規(guī)律;【教學重點】用多種方法數(shù)數(shù);
【教學難點】用數(shù)進行表達和交流
【教學方法】直觀教學法、合作探究式教學法
【教學準備】小棒、鉛筆
【教學設計】
一、數(shù)鉛筆教師出示鉛筆,比一比,誰數(shù)鉛筆的方法多。(學生可能會一根一根地數(shù),十根十根地數(shù),還可以一百一百、一千一千地數(shù)。)如果鉛筆非常多,可以一根一根地數(shù),一十一十地數(shù),還可以一百一百、一千一千地數(shù)。
二、說一說
1、圈一圈,數(shù)一數(shù)
2、問:下面畫了幾個圈?你怎樣數(shù)比較快?你是怎樣數(shù)的?把你數(shù)的方法表示出來。
3、用圓圈圈起來。
4、請幾名學生回答。
三、撥一撥
1、拿出計數(shù)器,做撥數(shù)游戲。
2、一個學生說數(shù),另一個同學撥珠子,并說說方法。(十位上撥____,表示____個十;個位上撥____,表示____幾個一。)
四、練一練
1、在下面各數(shù)的.后面,連續(xù)數(shù)出5個數(shù)來。二十三 (二十四、二十五、二十六、二十七、二十八)五十六 (五十七、五十八、五十九、六十、六十一)八十五 (八十六、八十七、八十八、八十九、九十)九十五 (九十六、九十七、九十八、九十九、一百)
2、看誰數(shù)得快?請同學們找出格子的規(guī)律,小組討論。(一個一個地數(shù);移一移,再十個十個地數(shù))看誰的方法最好?
3、接力賽找出女孩子數(shù)數(shù)的規(guī)律,男孩子按此規(guī)律接著往下說,看誰發(fā)現(xiàn)規(guī)律最快?女生:34,36,38 (相差2)男生:40,42,44女生:20,30,40 (相差10)男生:50,60,70女生:45,50,55 (相差5)男生:60,65,70女生:22,32,42 (相差10)男生:52,62,72
五、全課總結:今天你學到了什么知識?
小學數(shù)學教案 篇5
一、教學目標
通過學生的自主探索,理解和掌握比的基本性質(zhì),并會應用這個性質(zhì)把比化成最簡單的整數(shù)比。讓學生積極主動地探索,培養(yǎng)學生獲取知識、解決問題的能力。增強學生研究探時的意識,追求創(chuàng)新的精神:
二、教學資源
1.實物投影儀—臺。
2.每小組《驗證表》一張。
驗證表
舉例
結論
3.比,除法,分數(shù)關系表:
比
前項相當于
后項相當于
比值相當于
除法
分數(shù)
4.卡片若干張。
(1)商不變的規(guī)律;(2)分數(shù)的基本性質(zhì);
(3)比的基本性質(zhì)。
三、教學實施方案
教學內(nèi)容:蘇教版義教課標教科書數(shù)學六年級(上冊)70—71頁。
教學形式:小組合作,自主探究。
教學流程:創(chuàng)沒情境——驗證猜想——展示交流——意義構建——鞏固拓展。
評價方法:目標評價、師生評價、組際交流評價。
教學重點:理解、掌握比的基本性質(zhì)。
教學難點:理解比的基本性質(zhì)中“0除外”的道理。
教學準備:實物投影儀、驗證表,卡片等。
四、教學過程
1.創(chuàng)設情境,引發(fā)猜想。
目標:
(1)復習舊知,為學生發(fā)現(xiàn)問題、產(chǎn)生猜想奠定基礎。
(2)啟發(fā)學生大膽猜測,提出自己的假設。
過程:
(1)復習比和除法、分數(shù)的關系,通過填寫比和除法、分數(shù)的關系表,讓學生發(fā)現(xiàn)比、除法、分數(shù)有很多相似之處?
(2)復習商不變的規(guī)律和分數(shù)的基本性質(zhì)。
通過復習,引導學生聯(lián)想:在除法中有商不變的規(guī)律,在分數(shù)中有分數(shù)的基本性質(zhì),那么比有沒有類似的基本性質(zhì):
提出猜想:
(1)學生討論比有沒有類似的基本性質(zhì)。讓學生提出自己的見解,如:比和分數(shù)、除法有很多相似之處;一個比就可以寫成分數(shù)的形式,看成一個分數(shù),就可以遵循分數(shù)的基本性質(zhì)等。最后得出比的基本性質(zhì)。
(2)猜想比的基本性質(zhì)的內(nèi)容。引導學生根據(jù)商不變的規(guī)律和分數(shù)的基本性質(zhì)的內(nèi)容,猜測比的前項和后項同時乘或除以相同的數(shù),比值不變。
2.小組合作,驗證猜想。
目標:
(1)引導學生對驗證猜想提出各自的想法與途徑?
(2)組織實踐活動,揭示知識本質(zhì),讓學生自己獲取知識,培養(yǎng)學生主動參與意識。
(3)營造協(xié)作學習氛圍,組織討論研究、合作探究,培養(yǎng)學生協(xié)作學習意識。
過程:
(1)小組討論:這個猜想成不成立?是否具有普遍性?用什么方法來驗證?
(2)小組代表發(fā)言,說出本組思路。
A組:我們想用一個比,用它的前項和后項同時乘或除以相同的數(shù),得到新比,看比值變不變。
B組:我們想用一個比的前項和后項同時乘一個分數(shù)或者一個小數(shù),看它的比值變不變。
C組:我們想把不同的比的前項和后項同時乘或除以相同的數(shù),看它們的比值變不變。
通過學生發(fā)言,讓學生互相啟發(fā),產(chǎn)生靈感,對驗證猜想的方法進行比較,使自己的實踐活動更加具有科學性,更嚴謹。
小組合作,試著驗證:
每個小組根據(jù)自己的想法,用一個比或多個比進行驗證,對驗證結果進行初步總結。填寫《驗證表》。
3.展示交流,感受過程。
目標:
(1)理清知識脈絡,構建良好的認知結構,培養(yǎng)學生獲取知識、解決問題的能力。
(2)讓學生感受到探究過程,使學生學到科學的研究方法、
(3)培養(yǎng)學生的條理性和語言表達能力。
過程:
(1)用實物投影展示各個小組的《驗證表》。
(2)各小組代表發(fā)言,本組所得的結論。
(3)老師引導學生比較各組的結論。
(4)引導學生討淪比的基本性質(zhì)是否具有普遍性,有沒有比的前項和后項同時乘或除以相同的數(shù),比值變了的。如比的前項和后項同時乘0,比值會怎樣。
4.意義建構,體驗成功。
目標:
(1)通過整理歸納,提高學生的綜合概括能力,提高學生的數(shù)學素質(zhì)。
(2)讓學生體驗成功的快樂,提高學生學習數(shù)學的興趣,增強信心。
過程:
(1)引導學生討論哪個組的結論比較全面,怎樣說更嚴謹。
(2)集體歸納,板書。
(3)體驗成功:我們發(fā)現(xiàn)的這個數(shù)學規(guī)律就叫比的基本性質(zhì),許多科學家都是這樣提出猜想、實踐驗證,發(fā)現(xiàn)了許多大自然的奧秘,還有許多奧秘需要我們?nèi)グl(fā)現(xiàn)、創(chuàng)造。
5.鞏固拓展,靈活運用。
目標:
(1)利用不同形式的練習使學生熟練應用比的基本性質(zhì)、
(2)培養(yǎng)學生積極探究,勇于創(chuàng)新的精神。
過程:
(1)(出示)把下面各比化成最簡單的整數(shù)比。(第71頁練一練2)
邊練習邊討論:怎樣運用比的基本性質(zhì)化簡比,怎樣化簡最快最好。
(2)總結方法:聯(lián)系舊知,靈活運用。
(3)靈活運用,搶答比賽。
五、教學反思
1.創(chuàng)設情境,讓學生產(chǎn)生探究欲望。
蘇霍姆林斯基說過,在人的內(nèi)心深處都有一種根深蒂固的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈。所以,應該在課堂教學中創(chuàng)設情境,把問題隱藏在情境之中,形成懸念,引起學生迫不及待地探索和研究。這樣不僅能激發(fā)學生學習數(shù)學的興趣,同時還能給學生提供自主探索的機會,讓學生在自主探索中建構數(shù)學知識。如《比的基本性質(zhì)》一課,傳統(tǒng)的教學是:出示一組分數(shù)3/4、6/8、9/12,讓學生發(fā)現(xiàn)3/4:6/8:9/12,接著把分數(shù)轉(zhuǎn)化成比3:4=6:8=9:12,歸納出比的基本性質(zhì),接著是一層層的鞏固練習。這個過程是老師講,學生聽,被動地接受。不說讓學生感興趣,就是對其內(nèi)容,學生也是一知半解。在應用時,會出現(xiàn)比的前項和后項乘的不是同一個數(shù),甚至會出現(xiàn)前項乘后項的笑話。這種以接受知識為目的教學顯然不適應培養(yǎng)時代新人的要求,所以我在設計這節(jié)課時,沒有采用教材中的例3進行引入,而是讓學生先填表格復習比和除法,分數(shù)的關系,問學生:通過填這個表你發(fā)現(xiàn)廠什么?生:比和分數(shù)、除法有很密切的聯(lián)系,它們很相似:再出示:18÷6=( )÷2=24÷( )、15/20=( )/4=9/( )=( )/6。問:這兩題是根據(jù)什么規(guī)律和性質(zhì)來做的?生:商不變的規(guī)律和分數(shù)的基本性質(zhì)。師引導:在除法中有商不變的規(guī)律,在分數(shù)中有分數(shù)的基本性質(zhì),那么比有沒有類似的性質(zhì)呢?通過這樣的引導,緊緊抓住了學生的心。他們很想弄清楚:比有沒有類似商那樣的規(guī)律和分數(shù)那樣的性質(zhì),使他們產(chǎn)生強烈的探究欲望。
2.猜想驗證,讓學生感受探究過程。
在激發(fā)學生認知需要和探究欲望后,怎樣才能讓學生的思維卷入知識發(fā)現(xiàn)的過程呢?這時教師要起到引導者的`作用,引導學生自由思考,作出各種猜想,對猜想提出驗證的方法。然后小組合作從不同的角度驗證猜想,最后借助實物投影展示學生的研究思路與成果,通過這一系列的探究性的學習活動,讓學生感受探究過程。這樣不僅為學生自主發(fā)展提供了條件,讓學生學到科學探究的方法,還培養(yǎng)了學生主動獲取知識的能力、團結協(xié)作的精神,同時學生在活動中互相啟發(fā),產(chǎn)生靈感,使不同層次的學生都得到相應的發(fā)展。
如《比的基本性質(zhì)》一課中,學生提出:比肯定也有類似除法那樣的規(guī)律和分數(shù)那樣的性質(zhì)。老師引導大家討論怎樣驗證。結果A組的意見是:我們想用一個比的前項和后項同時乘或除以相同的數(shù),看它的比值變不變B組的意見是:我們想用一個比的前項和后項同時乘一個分數(shù)或者一個小數(shù),看它的比值變不變。C組的意見是:我們想把不同的比的前項和后項乘或除以相同的數(shù),看它們的比值變不變。老師肯定了大家的這些想法好,要求同學們分組試試。學生反應十分活躍,小組成員分工合作,你寫一個比來驗證,我寫一個比來試試,有的故意把數(shù)寫得很大,有的用。來乘……幾分鐘后,學生們爭先恐后地拿出自己的驗證結果,同時也提出了驗證過程中的疑問。
在整個活動過程中,都充分發(fā)揮了學生的潛能,讓他們根據(jù)白己的需要實驗驗證,讓學生感受知識產(chǎn)生和發(fā)展的過程,使學生在這個過程中完成新知的建構。
3.整理歸納,讓學生體驗成功。
歸納是課堂教學的一個重要組成部分,很多知識都可以讓學生自己去歸納。通過歸納,能提高學生的綜合概括能力,充分發(fā)揮學生的主體作用,發(fā)掘?qū)W生的聰明才智,提高學生的數(shù)學素質(zhì)。
如在《比的基本性質(zhì)》一課中,把學生驗證的結果一一展示后,老師引導學生比較,比的這個特性是否具有普遍性,比的這個特性怎樣歸納呢?有的說:比的前項和后項同時乘相同的數(shù),比值不變。有的說:還應該加同時除以相同的數(shù),比值不變。有的說:這還不完整,應加上0除外……這樣有效地讓學生通過分析、整理、歸納等科學研究方法得出結論,讓學生體驗到數(shù)學學科的嚴謹性,從而提高學生的分析概括能力、邏輯推 理能力。得出結淪后,告訴學生:你們太聰明了,發(fā)現(xiàn)的數(shù)學規(guī)律叫比的基本性質(zhì)、學生感到獲得了很大成功,信心十足,不僅增強了學習數(shù)學的興趣,更讓學生掌握主動獲取數(shù)學知識的方法,學到主動參與數(shù)學實踐的本領。
總之,“比的基本性質(zhì)”是學生學習“商不變的規(guī)律”和“分數(shù)的基本性質(zhì)”后安排的教學內(nèi)容、由于比和分數(shù)、除法的關系,很容易讓學生聯(lián)想到比也應該有類似的性質(zhì),這為學生發(fā)現(xiàn)問題、產(chǎn)生探究欲望奠定了基礎。同時由于上述學習內(nèi)容的鋪墊,為學生自主探究“比的基本性質(zhì)”這一新的學習任務創(chuàng)造了必要條件。所以,我沒有沿襲以往的教學思路及教材束縛,而是立足于學生已有的數(shù)學知識與經(jīng)驗,用探究性的學 習方法,讓學生在探究過程中建構新知識,解決新問題,獲得新發(fā)展。
【小學數(shù)學教案】相關文章:
小學數(shù)學教案07-07
小學數(shù)學教案07-07
小學數(shù)學教案07-07
小學數(shù)學教案07-07
小學數(shù)學教案07-07
小學數(shù)學教案07-07
小學數(shù)學教案07-07