四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高中數(shù)學(xué)教案

高中數(shù)學(xué)教案

時(shí)間:2024-02-21 08:29:24 數(shù)學(xué)教案 我要投稿

高中數(shù)學(xué)教案

  在教學(xué)工作者開展教學(xué)活動(dòng)前,可能需要進(jìn)行教案編寫工作,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編為大家收集的高中數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。

高中數(shù)學(xué)教案

高中數(shù)學(xué)教案1

  [學(xué)習(xí)目標(biāo)]

  (1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;

 。2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

  (3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

  [學(xué)習(xí)重點(diǎn)]

  兩角和與差的正弦、余弦、正切公式

  [學(xué)習(xí)難點(diǎn)]

  余弦和角公式的`推導(dǎo)

  [知識(shí)結(jié)構(gòu)]

  1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

  2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

  4、關(guān)于公式的正用、逆用及變用

高中數(shù)學(xué)教案2

  1. 幽默風(fēng)趣的你,平時(shí)在班里話語不多,也不張揚(yáng),但是,你在無意中的表現(xiàn)仍然贏得了很好的人際關(guān)系,學(xué)習(xí)上你認(rèn)真刻苦,也能及時(shí)的完成作業(yè),但是我覺得你總是沒把全部的心思用在學(xué)習(xí)上,不然以你的聰明,應(yīng)該保持在前三名才對(duì)啊,加油吧,也許關(guān)注學(xué)習(xí)成績對(duì)你才是更有意義的事!

  2. 身為紀(jì)律委員的你,認(rèn)真負(fù)責(zé),以身作則,生活上的你平易近人,與同學(xué)關(guān)系融洽,學(xué)習(xí)上你勤奮刻苦,尤其在英語的學(xué)習(xí)上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學(xué)科學(xué)習(xí)中,也一定會(huì)收獲很多的!加油吧!

  3. 你能嚴(yán)格遵守校規(guī),上課認(rèn)真聽講,作業(yè)完成認(rèn)真,樂于助人,愿意幫助同學(xué),大掃除時(shí)你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點(diǎn),定會(huì)取得更好的結(jié)果,而且你還是一個(gè)愿意動(dòng)腦筋的好學(xué)生,如果繼續(xù)保持下去定會(huì)取得驕人的成績!

  4. 你是個(gè)懂禮貌明事理的孩子,你能嚴(yán)格遵守班級(jí)紀(jì)律,熱愛集體,對(duì)待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認(rèn)真完成作業(yè)。你的學(xué)習(xí)方法有待改進(jìn),若能做到學(xué)習(xí)時(shí)心無旁騖就好了,掌握知識(shí)也不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高,平時(shí)善于多動(dòng)筆認(rèn)真作好筆記,多開動(dòng)腦筋,相信你一定能在下學(xué)期更得更大的進(jìn)步! 你學(xué)習(xí)認(rèn)真刻苦,也能善于思考,更十分活潑,并能嚴(yán)格遵守班級(jí)和宿舍紀(jì)律,上課你能認(rèn)真聽講,做作業(yè)時(shí)你十分專注,常常愿意花功夫鉆研難題,與同學(xué)相處也十分融洽,但若能在認(rèn)真做作業(yè)的同時(shí),將速度提上去,我相信你會(huì)做得更好。要多講究學(xué)習(xí)方法,不能靠熬夜來完成學(xué)習(xí)任務(wù),提高學(xué)習(xí)效率,老師相信你一定能通過自己的努力取得更好的成績!

  5. 雖然你個(gè)頭小,但每次你領(lǐng)讀時(shí)的那股認(rèn)真勁兒,令老師暗暗稱贊。你尊敬老師,和同學(xué)能和睦相處。甜美可愛的你,經(jīng)過不斷的努力,你會(huì)更出色的!

  6. 你是個(gè)活潑可愛的孩子,課堂上,你非常投入地學(xué)習(xí)著,朗讀課文時(shí)數(shù)你最有感情。中午你還主動(dòng)給老師捶背,真是個(gè)會(huì)關(guān)心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。

  7. 學(xué)習(xí)中你能嚴(yán)格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的`學(xué)習(xí)方法,抓緊一切時(shí)間,笑在最后的一定是你!

  8. 許麗君——你思想上進(jìn),踏實(shí)穩(wěn)重,誠實(shí)謙虛,尊敬老師。黑板報(bào)中有你傾注的心血,集體榮譽(yù)簿里有你的功勞。但學(xué)習(xí)的主動(dòng)精神不夠,競爭意識(shí)不強(qiáng),也很少看到你向老師請(qǐng)教,成績進(jìn)步不明顯。請(qǐng)相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進(jìn)取,多思多問,發(fā)揮你的聰明才智,進(jìn)一步激發(fā)活力,提高學(xué)習(xí)效率,持之以恒,美好的明天屬于你!

  9. 每天你都背著書包高高興興地來上學(xué),學(xué)到了不少的知識(shí),可惜只能記住很少的一部分。希望你改進(jìn)學(xué)習(xí)方法,提高學(xué)習(xí)效率,在下學(xué)期有更大的進(jìn)步!

  10. 你言語不多,但待人誠懇、禮貌,作風(fēng)踏實(shí),品學(xué)兼優(yōu),熱愛班級(jí),關(guān)愛同學(xué),勤奮好學(xué),思維敏捷,成績優(yōu)秀。愿你扎實(shí)各科基礎(chǔ),堅(jiān)持不懈,!一定能考上重點(diǎn)! 優(yōu)秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優(yōu)秀,把這種優(yōu)秀保持在你人生的每一階段中。你的人生就是輝煌如意的!

高中數(shù)學(xué)教案3

  一、教學(xué)內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象、恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡馭繁、因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。

  二、學(xué)生學(xué)習(xí)情況分析

  我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

  三、設(shè)計(jì)思想

  由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情、在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率、

  四、教學(xué)目標(biāo)

  1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

  2、通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

  3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1、對(duì)圓錐曲線定義的理解

  2、利用圓錐曲線的定義求“最值”

  3、“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線定義解題

  六、教學(xué)過程設(shè)計(jì)

  【設(shè)計(jì)思路】

 。ㄒ唬╅_門見山,提出問題

  一上課,我就直截了當(dāng)?shù)亟o出——

  例題1:(1)已知A(—2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。

 。ˋ)橢圓(B)雙曲線(C)線段(D)不存在

 。2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。

 。ˋ)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

  【設(shè)計(jì)意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

  為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

  【學(xué)情預(yù)設(shè)】

  估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)25這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

  在對(duì)學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長為,焦距為。以深化對(duì)概念的理解。

 。ǘ├斫舛x、解決問題

  例2(1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

 。2)在(1)的條件下,給定點(diǎn)P(—2,2),求|PA|

  【設(shè)計(jì)意圖】

  運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(。┲档哪J剑墙馕鰩缀螁栴}中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

  【學(xué)情預(yù)設(shè)】

  根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問題對(duì)學(xué)生們來講就顯得頗為簡單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

 。ㄈ┳灾魈骄俊⑸罨J(rèn)識(shí)

  如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)——

  練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

  引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

  【設(shè)計(jì)意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。

  【知識(shí)鏈接】

 。ㄒ唬﹫A錐曲線的定義

  1、圓錐曲線的第一定義

  2、圓錐曲線的統(tǒng)一定義

 。ǘ﹫A錐曲線定義的應(yīng)用舉例

  x2y2

  1、雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P169到右準(zhǔn)線的距離。|PF1||PF2|

  2、P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

  3、在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的'方程和點(diǎn)A的坐標(biāo)。x2y2

  4、(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求259|MA|+|MF|的最小值。x2y211

 。2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)92721|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。 2x2

 。3)已知點(diǎn)P(—2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。 8x2y2

  5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最259小值與最大值。

  七、教學(xué)反思

  1、本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。

  2、利用兩個(gè)例題及其引申,通過一題多變,層層深入的探索,以及對(duì)猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問題的求解到掌握一類問題的解決方法、循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題、而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

高中數(shù)學(xué)教案4

  教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo):

  本節(jié)的中心任務(wù)是研究導(dǎo)數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個(gè)層次:

  (1)通過復(fù)習(xí)舊知“求導(dǎo)數(shù)的兩個(gè)步驟”以及“平均變化率與割線斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導(dǎo)數(shù)的幾何意義可以依據(jù)導(dǎo)數(shù)概念的形成尋求解決問題的途徑。

  (2)從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。

  (3)依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導(dǎo)數(shù)的幾何意義教案在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案的幾何意義,使學(xué)生認(rèn)識(shí)到導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象在導(dǎo)數(shù)的幾何意義教案處的切線的斜率。即:

  導(dǎo)數(shù)的幾何意義教案=曲線在導(dǎo)數(shù)的幾何意義教案處切線的斜率k

  在此基礎(chǔ)上,通過例題和練習(xí)使學(xué)生學(xué)會(huì)利用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問題,加深對(duì)導(dǎo)數(shù)內(nèi)涵的理解。在學(xué)習(xí)過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學(xué)思想方法。

  過程與方法目標(biāo):

  (1)學(xué)生通過觀察感知、動(dòng)手探究,培養(yǎng)學(xué)生的動(dòng)手和感知發(fā)現(xiàn)的能力。

  (2)學(xué)生通過對(duì)圓的切線和割線聯(lián)系的認(rèn)識(shí),再類比探索一般曲線的情況,完善對(duì)切線的認(rèn)知,感受逼近的思想,體會(huì)相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學(xué)思維能力的提高。

  (3)結(jié)合分層的探究問題和分層練習(xí),期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨(dú)立解決問題和發(fā)現(xiàn)新知、應(yīng)用新知。

  情感、態(tài)度、價(jià)值觀:

  (1)通過在探究過程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過有限來認(rèn)識(shí)無限,體驗(yàn)數(shù)學(xué)中轉(zhuǎn)化思想的意義和價(jià)值;

  (2)在教學(xué)中向他們提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),如:探究活動(dòng),讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動(dòng)中激發(fā)學(xué)生的學(xué)習(xí)潛能,促進(jìn)他們真正理解和掌握基本的數(shù)學(xué)知識(shí)技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提高綜合能力,學(xué)會(huì)學(xué)習(xí),進(jìn)一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):理解和掌握切線的新定義、導(dǎo)數(shù)的幾何意義及應(yīng)用于解決實(shí)際問題,體會(huì)數(shù)形結(jié)合、以直代曲的思想方法。

  難點(diǎn):發(fā)現(xiàn)、理解及應(yīng)用導(dǎo)數(shù)的幾何意義。

  教學(xué)過程

  一、復(fù)習(xí)提問

  1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個(gè)步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).

  定義:函數(shù)在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)在該點(diǎn)處的瞬時(shí)變化率。

  求導(dǎo)數(shù)的步驟:

  第一步:求平均變化率導(dǎo)數(shù)的幾何意義教案;

  第二步:求瞬時(shí)變化率導(dǎo)數(shù)的幾何意義教案.

  (即導(dǎo)數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點(diǎn)導(dǎo)數(shù))

  2.觀察函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象,平均變化率導(dǎo)數(shù)的幾何意義教案在圖形中表示什么?

  生:平均變化率表示的是割線PQ的斜率.導(dǎo)數(shù)的幾何意義教案

  師:這就是平均變化率(導(dǎo)數(shù)的幾何意義教案)的幾何意義,

  3.瞬時(shí)變化率(導(dǎo)數(shù)的幾何意義教案)在圖中又表示什么呢?

  如圖2-1,設(shè)曲線C是函數(shù)y=f(x)的圖象,點(diǎn)P(x0,y0)是曲線C上一點(diǎn).點(diǎn)Q(x0+Δx,y0+Δy)是曲線C上與點(diǎn)P鄰近的任一點(diǎn),作割線PQ,當(dāng)點(diǎn)Q沿著曲線C無限地趨近于點(diǎn)P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點(diǎn)P處的切線.

  導(dǎo)數(shù)的幾何意義教案

  追問:怎樣確定曲線C在點(diǎn)P的切線呢?因?yàn)镻是給定的,根據(jù)平面解析幾何中直線的點(diǎn)斜式方程的知識(shí),只要求出切線的斜率就夠了.設(shè)割線PQ的傾斜角為導(dǎo)數(shù)的幾何意義教案,切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案,易知割線PQ的斜率為導(dǎo)數(shù)的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導(dǎo)數(shù)的幾何意義教案,即導(dǎo)數(shù)的幾何意義教案。

  由導(dǎo)數(shù)的定義知導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案。

  導(dǎo)數(shù)的幾何意義教案

  由上式可知:曲線f(x)在點(diǎn)(x0,f(x0))處的切線的斜率就是y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).今天我們就來探究導(dǎo)數(shù)的幾何意義。

  C類學(xué)生回答第1題,A,B類學(xué)生回答第2題在學(xué)生回答基礎(chǔ)上教師重點(diǎn)講評(píng)第3題,然后逐步引入導(dǎo)數(shù)的幾何意義.

  二、新課

  1、導(dǎo)數(shù)的幾何意義:

  函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的斜率.

  即:導(dǎo)數(shù)的幾何意義教案

  口答練習(xí):

  (1)如果函數(shù)y=f(x)在已知點(diǎn)x0處的導(dǎo)數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對(duì)應(yīng)點(diǎn)的切線的傾斜角,并說明切線各有什么特征。

  (C層學(xué)生做)

  (2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點(diǎn)的導(dǎo)數(shù).(A、B層學(xué)生做)

  導(dǎo)數(shù)的幾何意義教案

  2、如何用導(dǎo)數(shù)研究函數(shù)的增減?

  小結(jié):附近:瞬時(shí),增減:變化率,即研究函數(shù)在該點(diǎn)處的瞬時(shí)變化率,也就是導(dǎo)數(shù)。導(dǎo)數(shù)的正負(fù)即對(duì)應(yīng)函數(shù)的增減。作出該點(diǎn)處的切線,可由切線的升降趨勢(shì),得切線斜率的正負(fù)即導(dǎo)數(shù)的正負(fù),就可以判斷函數(shù)的增減性,體會(huì)導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

  同時(shí),結(jié)合以直代曲的思想,在某點(diǎn)附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

  例1函數(shù)導(dǎo)數(shù)的幾何意義教案上有一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求該點(diǎn)處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。

  導(dǎo)數(shù)的幾何意義教案

  函數(shù)在定義域上任意點(diǎn)處的瞬時(shí)變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時(shí)任意點(diǎn)處的切線就是直線本身,斜率就是變化率)

  3、利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.

  例2求曲線y=x2在點(diǎn)M(2,4)處的切線方程.

  解:導(dǎo)數(shù)的幾何意義教案

  ∴y'|x=2=2×2=4.

  ∴點(diǎn)M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.

  由上例可歸納出求切線方程的兩個(gè)步驟:

  (1)先求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).

  (2)根據(jù)直線方程的點(diǎn)斜式,得切線方程為y-y0=f'(x0)(x-x0).

  提問:若在點(diǎn)(x0,f(x0))處切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案,求切線方程。(因?yàn)檫@時(shí)切線平行于y軸,而導(dǎo)數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導(dǎo)數(shù)的'幾何意義教案)

  (先由C類學(xué)生來回答,再由A,B補(bǔ)充.)

  例3已知曲線導(dǎo)數(shù)的幾何意義教案上一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求:(1)過P點(diǎn)的切線的斜率;

  (2)過P點(diǎn)的切線的方程。

  解:(1)導(dǎo)數(shù)的幾何意義教案,

  導(dǎo)數(shù)的幾何意義教案

  y'|x=2=22=4. ∴在點(diǎn)P處的切線的斜率等于4.

  (2)在點(diǎn)P處的切線方程為導(dǎo)數(shù)的幾何意義教案即12x-3y-16=0.

  練習(xí):求拋物線y=x2+2在點(diǎn)M(2,6)處的切線方程.

  (答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).

  B類學(xué)生做題,A類學(xué)生糾錯(cuò)。

  三、小結(jié)

  1.導(dǎo)數(shù)的幾何意義.(C組學(xué)生回答)

  2.利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程的步驟.

  (B組學(xué)生回答)

  四、布置作業(yè)

  1.求拋物線導(dǎo)數(shù)的幾何意義教案在點(diǎn)(1,1)處的切線方程。

  2.求拋物線y=4x-x2在點(diǎn)A(4,0)和點(diǎn)B(2,4)處的切線的斜率,切線的方程.

  3.求曲線y=2x-x3在點(diǎn)(-1,-1)處的切線的傾斜角

  4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點(diǎn)的坐標(biāo); (2)拋物線在交點(diǎn)處的切線方程;

  (C組學(xué)生完成1,2題;B組學(xué)生完成1,2,3題;A組學(xué)生完成2,3,4題)

  教學(xué)反思:

  本節(jié)內(nèi)容是在學(xué)習(xí)了“變化率問題、導(dǎo)數(shù)的概念”等知識(shí)的基礎(chǔ)上,研究導(dǎo)數(shù)的幾何意義,由于新教材未設(shè)計(jì)極限,于是我盡量采用形象直觀的方式,讓學(xué)生通過動(dòng)手作圖,自我感受整個(gè)逼近的過程,讓學(xué)生更加深刻地體會(huì)導(dǎo)數(shù)的幾何意義及“以直代曲”的思想。

  本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義”和“利用導(dǎo)數(shù)的幾何意義解釋實(shí)際問題”兩個(gè)教學(xué)重心展開。先回憶導(dǎo)數(shù)的實(shí)際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導(dǎo)數(shù)的幾何意義;然后,類比“平均變化率——瞬時(shí)變化率”的研究思路,運(yùn)用逼近的思想定義了曲線上某點(diǎn)的切線,再引導(dǎo)學(xué)生從數(shù)形結(jié)合的角度思考,獲得導(dǎo)數(shù)的幾何意義——“導(dǎo)數(shù)是曲線上某點(diǎn)處切線的斜率”。

  完成本節(jié)課第一階段的內(nèi)容學(xué)習(xí)后,教師點(diǎn)明,利用導(dǎo)數(shù)的幾何意義,在研究實(shí)際問題時(shí),某點(diǎn)附近的曲線可以用過此點(diǎn)的切線近似代替,即“以直代曲”,從而達(dá)到“以簡單的對(duì)象刻畫復(fù)雜對(duì)象”的目的,并通過兩個(gè)例題的研究,讓學(xué)生從不同的角度完整地體驗(yàn)導(dǎo)數(shù)與切線斜率的關(guān)系,并感受導(dǎo)數(shù)應(yīng)用的廣泛性。本節(jié)課注重以學(xué)生為主體,每一個(gè)知識(shí)、每一個(gè)發(fā)現(xiàn),總設(shè)法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時(shí)間和空間,讓學(xué)生在動(dòng)手操作、動(dòng)筆演算等活動(dòng)后,再組織討論,本教師只是在關(guān)鍵處加以引導(dǎo)。從學(xué)生的作業(yè)看來,效果較好。

高中數(shù)學(xué)教案5

  高中數(shù)學(xué)趣味競賽題(共10題)

  1 、撒謊的有幾人

  5個(gè)高中生有,她們面對(duì)學(xué)校的新聞采訪說了如下的話:

  愛:“我還沒有談過戀愛! 靜香:“愛撒謊了。”

  瑪麗:“我曾經(jīng)去過昆明。” 惠美:“瑪麗在撒謊!

  千葉子:“瑪麗和惠美都在撒謊! 那么,這5個(gè)人之中到底有幾個(gè)人在撒謊呢?

  2、她們到底是誰

  有天使、惡魔、人三者,天使時(shí)刻都說真話,惡魔時(shí)時(shí)刻刻都說假話,人呢,有時(shí)候說真話,有時(shí)候說假話。

  穿黑色衣服的女子說:“我不是天使。” 穿藍(lán)色衣服的女子說:“我不是人。” 穿白色衣服的女子說:“我不是惡魔!蹦敲,這三人到底分別是誰呢?

  3、半只小貓

  聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家?墒牵皇O1只小貓了。

  “一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽說以后,馬上來買走了所有小貓的一半和半只! “半只?”“是啊,然后,鄰居家的老奶奶無論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?

  4、被蟲子吃掉的算式

  一只愛吃墨水的蟲子把下圖的`算式中的數(shù)字全部吃掉了。當(dāng)然,沒有數(shù)字的部分它沒有吃(因?yàn)闆]有墨水)。

  那么,請(qǐng)問原來的算式是什么樣子的呢?

  5、巧動(dòng)火柴

  用16根火柴擺成5個(gè)正方形。請(qǐng)移動(dòng)2根火柴,

  使

  正形變成4。

  6、折過來的角

  把正三角形的紙如圖那樣折過來時(shí),角?的度數(shù)是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、!雙胞胎?

  丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財(cái)產(chǎn)的 2/3 、如果生的是女孩就給他財(cái)產(chǎn)的 2/5 、剩下的給妻子。

  結(jié)果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個(gè)人怎么分財(cái)產(chǎn)好呢?

  9、贈(zèng)送和降價(jià)哪個(gè)更好?

  1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?

  10、折成15度

  用折紙做成45度很簡單是吧。那么,請(qǐng)折成15度,你會(huì)嗎?

高中數(shù)學(xué)教案6

  教學(xué)目標(biāo)

  (1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

 。2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

 。3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

  教學(xué)重點(diǎn)難點(diǎn)

  重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

  難點(diǎn)是解組合的應(yīng)用題.

  教學(xué)過程設(shè)計(jì)

  (-)導(dǎo)入新課

 。ń處熁顒(dòng))提出下列思考問題,打出字幕.

 。圩帜唬菀粭l鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

 。▽W(xué)生活動(dòng))討論并回答.

  答案提示:(1)排列;(2)組合.

  [評(píng)述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

  設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.

  (二)新課講授

 。厶岢鰡栴} 創(chuàng)設(shè)情境]

 。ń處熁顒(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

 。圩帜唬1.排列的定義是什么?

  2.舉例說明一個(gè)組合是什么?

  3.一個(gè)組合與一個(gè)排列有何區(qū)別?

  (學(xué)生活動(dòng))閱讀回答.

 。ń處熁顒(dòng))對(duì)照課文,逐一評(píng)析.

  設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.

  【歸納概括 建立新知】

 。ń處熁顒(dòng))承接上述問題的回答,展示下面知識(shí).

 。圩帜唬菽P停簭 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

  組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

  [評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

 。▽W(xué)生活動(dòng))傾聽、思索、記錄.

 。ń處熁顒(dòng))提出思考問題.

 。弁队埃 與 的關(guān)系如何?

 。◣熒顒(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

  第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

  第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .

  根據(jù)分步計(jì)數(shù)原理,得到

 。圩帜唬莨1:

  公式2:

 。▽W(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

  設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

  (三)小結(jié)

 。◣熒顒(dòng))共同小結(jié).

  本節(jié)主要內(nèi)容有

  1.組合概念.

  2.組合數(shù)計(jì)算的兩個(gè)公式.

  (四)布置作業(yè)

  1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

  2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

  3.研究性題:

  在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

  (五)課后點(diǎn)評(píng)

  在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

  作業(yè)參考答案

  2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

  3.能組成 (注意不能用 點(diǎn)為頂點(diǎn))個(gè)四邊形, 個(gè)三角形.

  探究活動(dòng)

  同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?

  解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.

  解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

  甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.

  甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.

  甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.

  由加法原理得,賀卡分配方法有3+3+3=9種.

  解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時(shí)還存在正向與逆向兩種思考途徑.

  正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的`賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

  逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

高中數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  1.了解復(fù)數(shù)的幾何意義,會(huì)用復(fù)平面內(nèi)的點(diǎn)和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.

  2.通過建立復(fù)平面上的點(diǎn)與復(fù)數(shù)的一一對(duì)應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

  教學(xué)重點(diǎn):

  復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

  教學(xué)難點(diǎn):

  復(fù)數(shù)加減法的幾何意義.

  教學(xué)過程:

  一 、問題情境

  我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示.那么,復(fù)數(shù)是否也能用點(diǎn)來表示呢?

  二、學(xué)生活動(dòng)

  問題1 任何一個(gè)復(fù)數(shù)a+bi都可以由一個(gè)有序?qū)崝?shù)對(duì)(a,b)惟一確定,而有序?qū)崝?shù)對(duì)(a,b)與平面直角坐標(biāo)系中的點(diǎn)是一一對(duì)應(yīng)的.,那么我們?cè)鯓佑闷矫嫔系狞c(diǎn)來表示復(fù)數(shù)呢?

  問題2 平面直角坐標(biāo)系中的點(diǎn)A與以原點(diǎn)O為起點(diǎn),A為終點(diǎn)的向量是一一對(duì)應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

  問題3 任何一個(gè)實(shí)數(shù)都有絕對(duì)值,它表示數(shù)軸上與這個(gè)實(shí)數(shù)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.任何一個(gè)向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對(duì)值)的概念嗎?它又有什么幾何意義呢?

  問題4 復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個(gè)復(fù)數(shù)差的模有什么幾何意義?

  三、建構(gòu)數(shù)學(xué)

  1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實(shí)部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點(diǎn)Z(a,b),我們可以用點(diǎn)Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

  2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實(shí)軸,y軸為虛軸.實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù).

  3.因?yàn)閺?fù)平面上的點(diǎn)Z(a,b)與以原點(diǎn)O為起點(diǎn)、Z為終點(diǎn)的向量一一對(duì)應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

  6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個(gè)復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個(gè)復(fù)數(shù)對(duì)應(yīng)的兩點(diǎn)間的距離.同時(shí),復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.

  四、數(shù)學(xué)應(yīng)用

  例1 在復(fù)平面內(nèi),分別用點(diǎn)和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.

  練習(xí) 課本P123練習(xí)第3,4題(口答).

  思考

  1.復(fù)平面內(nèi),表示一對(duì)共軛虛數(shù)的兩個(gè)點(diǎn)具有怎樣的位置關(guān)系?

  2.如果復(fù)平面內(nèi)表示兩個(gè)虛數(shù)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,那么它們的實(shí)部和虛部分別滿足什么關(guān)系?

  3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

  4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對(duì)應(yīng)的點(diǎn)在虛軸上”的_____條件.

  例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于第二象限,求實(shí)數(shù)m允許的取值范圍.

  例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大。

  思考 任意兩個(gè)復(fù)數(shù)都可以比較大小嗎?

  例4 設(shè)z∈C,滿足下列條件的點(diǎn)Z的集合是什么圖形?

  (1)│z│=2;(2)2<│z│<3.

  變式:課本P124習(xí)題3.3第6題.

  五、要點(diǎn)歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.復(fù)數(shù)的幾何意義.

  2.復(fù)數(shù)加減法的幾何意義.

  3.?dāng)?shù)形結(jié)合的思想方法.

高中數(shù)學(xué)教案8

  教學(xué)目標(biāo)

 。1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

  (2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

  (3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

  (4)會(huì)分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

 。5)通過對(duì)排列應(yīng)用問題的學(xué)習(xí),讓學(xué)生通過對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)難點(diǎn)分析

  本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問題。難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問題當(dāng)中。

  從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排成一列,稱為從n個(gè)不同元素中任取m個(gè)元素的一個(gè)排列。因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個(gè)不同元素中任取m(m≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個(gè)概念,前者是具有m個(gè)元素的'排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù)。

  公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點(diǎn)分析好的推導(dǎo)。

  排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問題的能力。

  在分析應(yīng)用題的解法時(shí),教材上先畫出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用。

  在教學(xué)排列應(yīng)用題時(shí),開始應(yīng)要求學(xué)生寫解法要有簡要的文字說明,防止單純的只寫一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

  三、教法建議

 、僭谥v解排列數(shù)的概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念。一個(gè)排列是指“從n個(gè)不同元素中,任取出m個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù)。例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:

  ab,ac,ba,bc,ca,cb,

  其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào)表示排列數(shù)。

 、谂帕械亩x中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

  從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

  在定義中“一定順序”就是說與位置有關(guān),在實(shí)際問題中,要由具體問題的性質(zhì)和條件來決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。

  在排列的定義中,如果有的書上叫選排列,如果,此時(shí)叫全排列。

  要特別注意,不加特殊說明,本章不研究重復(fù)排列問題。

 、坳P(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導(dǎo),,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。

  導(dǎo)出公式后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時(shí)候把公式寫錯(cuò)。這個(gè)公式的特點(diǎn)可見課本第229頁的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是,共m個(gè)因數(shù)相乘!边@實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘。

  公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對(duì)這個(gè)公式指出兩點(diǎn):

  (1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁例2就是用這個(gè)公式證明的問題;

  (2)為使這個(gè)公式在時(shí)也能成立,規(guī)定,如同時(shí)一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

 、芙ㄗh應(yīng)充分利用樹形圖對(duì)問題進(jìn)行分析,這樣比較直觀,便于理解。

 、輰W(xué)生在開始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí)。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。

高中數(shù)學(xué)教案9

  一、教材分析

  1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形。“二面角”是人教版《數(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究兩個(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

  2、教學(xué)目標(biāo):

  知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。

 。2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

  能力目標(biāo):(1)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。

  德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

  情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。

  3、重點(diǎn)、難點(diǎn):

  重點(diǎn):“二面角”和“二面角的平面角”的概念

  難點(diǎn):“二面角的平面角”概念的形成過程

  二、教法分析

  1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

 。、教學(xué)控制與調(diào)節(jié)的.措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

  3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。

  三、學(xué)法指導(dǎo)

  1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

  2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

  3、會(huì)學(xué):通過自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

  四、教學(xué)過程

  心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營造了創(chuàng)新思維的氛圍。

 。ㄒ唬⒍娼

  1、揭示概念產(chǎn)生背景。

  問題情境1、在平面幾何中“角”是怎樣定義的?

  問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

  問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。

  通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。

  問題情境4、那么,應(yīng)該如何定義二面角呢?

  創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。

  問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。

 。ǘ、二面角的平面角

  1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

  與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。

  問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

  2、展現(xiàn)概念形成過程

  (1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。

  問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。

  問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。

  問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

  (2)、提出猜想:二面角的大小也可通過平面的角來定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

  問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。

  (3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

 。4)、繼續(xù)探索,得到定義。

  問題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

 。5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

 。ㄈ⒍娼羌捌淦矫娼堑漠嫹

  主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

 。ㄋ模⒎独治

  為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

  例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。

  分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

  變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。

  題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

  (2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

 。ㄎ澹⒕毩(xí)、小結(jié)與作業(yè)

  練習(xí):習(xí)題9.7的第3題

  小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。

  作業(yè):習(xí)題9.7的第4題

  思考題:見例題

  五、板書設(shè)計(jì)(見課件)

  以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!

高中數(shù)學(xué)教案10

  教學(xué)目標(biāo)

  (1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

  (2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

  (3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

  教學(xué)重點(diǎn)難點(diǎn)

  重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

  難點(diǎn)是解組合的應(yīng)用題.

  教學(xué)過程設(shè)計(jì)

  (-)導(dǎo)入新課

  (教師活動(dòng))提出下列思考問題,打出字幕.

  [字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

  (學(xué)生活動(dòng))討論并回答.

  答案提示:(1)排列;(2)組合.

  [評(píng)述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

  設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.

  (二)新課講授

  [提出問題 創(chuàng)設(shè)情境]

  (教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

  [字幕]1.排列的.定義是什么?

  2.舉例說明一個(gè)組合是什么?

  3.一個(gè)組合與一個(gè)排列有何區(qū)別?

  (學(xué)生活動(dòng))閱讀回答.

  (教師活動(dòng))對(duì)照課文,逐一評(píng)析.

  設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.

  【歸納概括 建立新知】

  (教師活動(dòng))承接上述問題的回答,展示下面知識(shí).

  [字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

  組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

  [評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

  (學(xué)生活動(dòng))傾聽、思索、記錄.

  (教師活動(dòng))提出思考問題.

  [投影] 與 的關(guān)系如何?

  (師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

  第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

  第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .根據(jù)分步計(jì)數(shù)原理,得到

  [字幕]公式1:

  公式2:

  (學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

  設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

  【例題示范 探求方法】

  (教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.

  [字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.

  例2 計(jì)算:(1) ;(2) .

  (學(xué)生活動(dòng))板演、示范.

  (教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.

  [字幕]例3 已知 ,求 的所有值.

  (學(xué)生活動(dòng))思考分析.

  解 首先,根據(jù)組合的定義,有

 、

  其次,由原不等式轉(zhuǎn)化為

  即

  解得 ②

  綜合①、②,得 ,即

  [點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

  設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

  【反饋練習(xí) 學(xué)會(huì)應(yīng)用】

  (教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).

  [課堂練習(xí)]課本P99練習(xí)第2,5,6題.

  [補(bǔ)充練習(xí)]

  [字幕]1.計(jì)算:

  2.已知 ,求 .

  (學(xué)生活動(dòng))板演、解答.

  設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

  (三)小結(jié)

  (師生活動(dòng))共同小結(jié).

  本節(jié)主要內(nèi)容有

  1.組合概念.

  2.組合數(shù)計(jì)算的兩個(gè)公式.

  (四)布置作業(yè)

  1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

  2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

  3.研究性題:

  在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

  (五)課后點(diǎn)評(píng)

  在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

高中數(shù)學(xué)教案11

  教學(xué)目的:掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

  教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

  教學(xué)難點(diǎn):標(biāo)準(zhǔn)方程的'靈活運(yùn)用

  教學(xué)過程:

  一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

  二、掌握知識(shí),鞏固練習(xí)

  練習(xí):⒈說出下列圓的方程

  ⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

 、仓赋鱿铝袌A的圓心和半徑

 、牛▁-2)2+(y+3)2=3

  ⑵x2+y2=2

 、莤2+y2-6x+4y+12=0

 、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系

 、磮A心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

  練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長度。

  例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

  四、小結(jié)練習(xí)P771,2,3,4

  五、作業(yè)P811,2,3,4

高中數(shù)學(xué)教案12

  教學(xué)目標(biāo):

  1。通過生活中優(yōu)化問題的學(xué)習(xí),體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用,促進(jìn)

  學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。

  2。通過實(shí)際問題的研究,促進(jìn)學(xué)生分析問題、解決問題以及數(shù)學(xué)建模能力的提高。

  教學(xué)重點(diǎn):

  如何建立實(shí)際問題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。

  教學(xué)過程:

  一、問題情境

  問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時(shí)面積最大?

  問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個(gè)正方形面積之各最?

  問題3做一個(gè)容積為256L的方底無蓋水箱,它的高為多少時(shí)材料最?

  二、新課引入

  導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題。

  1。幾何方面的應(yīng)用(面積和體積等的最值)。

  2。物理方面的應(yīng)用(功和功率等最值)。

  3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤方面最值)。

  三、知識(shí)建構(gòu)

  例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無蓋的方底箱子,箱底的邊長是多少時(shí),箱底的容積最大?最大容積是多少?

  說明1解應(yīng)用題一般有四個(gè)要點(diǎn)步驟:設(shè)——列——解——答。

  說明2用導(dǎo)數(shù)法求函數(shù)的`最值,與求函數(shù)極值方法類似,加一步與幾個(gè)極

  值及端點(diǎn)值比較即可。

  例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才

  能使所用的材料最?

  變式當(dāng)圓柱形金屬飲料罐的表面積為定值S時(shí),它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最。

  說明1這種在定義域內(nèi)僅有一個(gè)極值的函數(shù)稱單峰函數(shù)。

  說明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對(duì)一般的求法加以簡化,其步驟為:

  S1列:列出函數(shù)關(guān)系式。

  S2求:求函數(shù)的導(dǎo)數(shù)。

  S3述:說明函數(shù)在定義域內(nèi)僅有一個(gè)極大(。┲担瑥亩鴶喽楹瘮(shù)的最大(。┲担匾獣r(shí)作答。

  例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動(dòng)勢(shì)為。外電阻為

  多大時(shí),才能使電功率最大?最大電功率是多少?

  說明求最值要注意驗(yàn)證等號(hào)成立的條件,也就是說取得這樣的值時(shí)對(duì)應(yīng)的自變量必須有解。

  例4強(qiáng)度分別為a,b的兩個(gè)光源A,B,它們間的距離為d,試問:在連接這兩個(gè)光源的線段AB上,何處照度最?試就a=8,b=1,d=3時(shí)回答上述問題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。

  例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。

 。1)設(shè),生產(chǎn)多少單位產(chǎn)品時(shí),邊際成本最低?

 。2)設(shè),產(chǎn)品的單價(jià),怎樣的定價(jià)可使利潤最大?

  四、課堂練習(xí)

  1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。

  2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽? 時(shí),它的面積最大。

  3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個(gè)無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應(yīng)為多少?

  4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面ABCD的面積為定值S時(shí),使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長b。

  五、回顧反思

 。1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問題,需要分析問題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實(shí)際意義。

  (2)根據(jù)問題的實(shí)際意義來判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較。

 。3)相當(dāng)多有關(guān)最值的實(shí)際問題用導(dǎo)數(shù)方法解決較簡單。

  六、課外作業(yè)

  課本第38頁第1,2,3,4題。

高中數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).

  2.能識(shí)別和理解簡單的框圖的功能.

  3. 能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡單的問題.

  教學(xué)方法:

  1. 通過模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問題的過程,加深對(duì)流程圖的感知.

  2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).

  教學(xué)過程:

  一、問題情境

  1.情境:

  某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為

  其中(單位:)為行李的重量.

  試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫出流程圖.

  二、學(xué)生活動(dòng)

  學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).

  解 算法為:

  輸入行李的重量;

  如果,那么,

  否則;

  輸出行李的.重量和運(yùn)費(fèi).

  上述算法可以用流程圖表示為:

  教師邊講解邊畫出第10頁圖1-2-6.

  在上述計(jì)費(fèi)過程中,第二步進(jìn)行了判斷.

  三、建構(gòu)數(shù)學(xué)

  1.選擇結(jié)構(gòu)的概念:

  先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種

  操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).

  如圖:虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.

  2.說明:(1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判

  斷的不同情況進(jìn)行不同的操作,這類問題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);

 。2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

 。3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)

  行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;

 。4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和

  兩個(gè)退出點(diǎn).

  3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?

高中數(shù)學(xué)教案14

  一、教學(xué)內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。

  二、學(xué)生學(xué)習(xí)情況分析

  我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

  三、設(shè)計(jì)思想

  由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。

  四、教學(xué)目標(biāo)

  1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

  2、通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

  3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1、對(duì)圓錐曲線定義的理解

  2、利用圓錐曲線的定義求“最值”

  3、“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線定義解題

  六、教學(xué)過程設(shè)計(jì)

  【設(shè)計(jì)思路】

  (一)開門見山,提出問題

  一上課,我就直截了當(dāng)?shù)亟o出例題1:

  (1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。

  (A)橢圓(B)雙曲線(C)線段(D)不存在

  (2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。

  (A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

  【設(shè)計(jì)意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

  為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

  【學(xué)情預(yù)設(shè)】

  估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)25

  這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

  在對(duì)學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長為,焦距為。以深化對(duì)概念的理解。

  (二)理解定義、解決問題

  例2:

  (1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2),求|PA|

  【設(shè)計(jì)意圖】

  運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

  【學(xué)情預(yù)設(shè)】

  根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問題對(duì)學(xué)生們來講就顯得頗為簡單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

  (三)自主探究、深化認(rèn)識(shí)

  如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)。

  練習(xí):

  設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

  引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

  【設(shè)計(jì)意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,

  可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。

  【知識(shí)鏈接】

  (一)圓錐曲線的定義

  1、圓錐曲線的第一定義

  2、圓錐曲線的統(tǒng)一定義

  (二)圓錐曲線定義的應(yīng)用舉例

  1、雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的`距離。

  2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

  3、在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

  4、例題:

  (1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

  (2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。

  (3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。

  七、教學(xué)反思

  1、本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。

  2、利用兩個(gè)例題及其引申,通過一題多變,層層深入的探索,以及對(duì)猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問題的求解到掌握一類問題的解決方法,循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題,而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

高中數(shù)學(xué)教案15

  一、課程性質(zhì)與任務(wù)

  數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。二、課程教學(xué)目標(biāo)

  1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。

  3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)

  本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

  1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

  3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的'任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。四、教學(xué)內(nèi)容與要求

 。ㄒ唬┍敬缶V教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)

  了解:初步知道知識(shí)的含義及其簡單應(yīng)用。

  理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

  計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢(shì),數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

  空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

  分析與解決問題能力:能對(duì)工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

  數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問題(或需求),會(huì)選擇合適的模型(模式)。

 。ǘ┙虒W(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))

  第2單元不等式(8學(xué)時(shí))

  第3單元函數(shù)(12學(xué)時(shí))

  第4單元指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12學(xué)時(shí))

  第5單元三角函數(shù)(18學(xué)時(shí))

  第6單元數(shù)列(10學(xué)時(shí))

  第7單元平面向量(矢量)(10學(xué)時(shí))

  第8單元直線和圓的方程(18學(xué)時(shí))

  第9單元立體幾何(14學(xué)時(shí))

  第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

  2.職業(yè)模塊

  第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))

  第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

  第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))

【高中數(shù)學(xué)教案】相關(guān)文章:

高中數(shù)學(xué)教案04-21

高中數(shù)學(xué)教案《二面角》08-22

數(shù)學(xué)教案-數(shù)學(xué)教案08-16

數(shù)學(xué)教案05-16

數(shù)學(xué)教案-高中化學(xué)教案 第一部分化學(xué)08-17

數(shù)學(xué)教案-比較粗細(xì)數(shù)學(xué)教案-比較粗細(xì)08-16

數(shù)學(xué)教案及反思04-09

《青蛙》數(shù)學(xué)教案04-20

《種花》數(shù)學(xué)教案04-21

數(shù)學(xué)教案-爭氣08-16