四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高中數(shù)學(xué)教案

高中數(shù)學(xué)教案

時(shí)間:2024-02-24 08:02:19 數(shù)學(xué)教案 我要投稿

高中數(shù)學(xué)教案通用(15篇)

  作為一位杰出的教職工,就難以避免地要準(zhǔn)備教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么大家知道正規(guī)的教案是怎么寫(xiě)的嗎?下面是小編幫大家整理的高中數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

高中數(shù)學(xué)教案通用(15篇)

高中數(shù)學(xué)教案1

  一、教學(xué)目標(biāo)

  (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

  (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

  (3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;

  (4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;

  (5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

  (6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.

  二、教學(xué)重點(diǎn)難點(diǎn):

  重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.

  三、教學(xué)過(guò)程

  1.新課導(dǎo)入

  在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).

  初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)

  (從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)

  學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1)

  兩直線平行,同位角相等.…………(2)

  教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)

  (同學(xué)議論結(jié)果,答案是肯定的)

  教師提問(wèn):什么是命題?

  (學(xué)生進(jìn)行回憶、思考.)

  概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.

  (教師肯定了同學(xué)的回答,并作板書(shū).)

  由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

  (教師利用投影片,和學(xué)生討論以下問(wèn)題.)

  例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

  命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.

  初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).

  2.講授新課

  大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?

  (片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)

  (1)什么叫做命題?

  可以判斷真假的語(yǔ)句叫做命題.

  判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

  (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

  對(duì)“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個(gè)是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

  對(duì)“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個(gè)條件都要滿足的意思.

  對(duì)“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題 對(duì)應(yīng)于集合 ,則命題非 就對(duì)應(yīng)著集合 在全集 中的補(bǔ)集 .

  命題可分為簡(jiǎn)單命題和復(fù)合命題.

  不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

  由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

  (4)命題的表示:用 , , , ,……來(lái)表示.

  (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)

  我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.

  給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

  對(duì)于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .

  在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的.末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.

  3.鞏固新課

  例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.

  (1) ;

  (2)0.5非整數(shù);

  (3)內(nèi)錯(cuò)角相等,兩直線平行;

  (4)菱形的對(duì)角線互相垂直且平分;

  (5)平行線不相交;

  (6)若 ,則 .

  (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

  例3 寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).

  若給定語(yǔ)為

  等于

  大于

  是

  都是

  至多有一個(gè)

  至少有一個(gè)

  至多有個(gè)

  其否定語(yǔ)分別為

  分析:“等于”的否定語(yǔ)是“不等于”;

  “大于”的否定語(yǔ)是“小于或者等于”;

  “是”的否定語(yǔ)是“不是”;

  “都是”的否定語(yǔ)是“不都是”;

  “至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;

  “至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;

  “至多有 個(gè)”的否定語(yǔ)是“至少有 個(gè)”.

  (如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)

  置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開(kāi).)

  4.課堂練習(xí):第26頁(yè)練習(xí)1

  5.課外作業(yè):第29頁(yè)習(xí)題1.6

高中數(shù)學(xué)教案2

  教學(xué)目標(biāo)

 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

 。2)理解直線與二元一次方程的關(guān)系及其證明

 。3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).

  教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明.

  教學(xué)用具:計(jì)算機(jī)

  教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法

  教學(xué)過(guò)程

  下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:

  教學(xué)設(shè)計(jì)思路

 。ㄒ唬┮氲脑O(shè)計(jì)

  前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:

  問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

  肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:

  問(wèn):求出過(guò)點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

  肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”.

  啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論.

  學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:

  【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”

  (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

  這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路.

  學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

  經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

  平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結(jié)論:

  在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程.

  至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的`方程”.

  同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

  學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.

  這樣上邊的結(jié)論可以表述如下:

  在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程.

  啟發(fā):任何一條直線都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?

  【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?

  師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

  回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即

 。1)當(dāng) 時(shí),方程可化為

  這是表示斜率為 、在 軸上的截距為 的直線.

  (2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結(jié)論:

  在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的.

  【動(dòng)畫(huà)演示】

  演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.

  至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.

 。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

  略

高中數(shù)學(xué)教案3

  1.教學(xué)目標(biāo)

  (1)知識(shí)目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;

  2.會(huì)由圓的方程寫(xiě)出圓的半徑和圓心,能根據(jù)條件寫(xiě)出圓的方程.

  (2)能力目標(biāo): 1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問(wèn)題的能力;

  2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;

  3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

  (3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

  2.教學(xué)重點(diǎn).難點(diǎn)

  (1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

  (2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

  當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.

  3.教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境(啟迪思維)

  問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  [引導(dǎo)] 畫(huà)圖建系

  [學(xué)生活動(dòng)]:嘗試寫(xiě)出曲線的方程(對(duì)求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

  解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。

  (二)深入探究(獲得新知)

  問(wèn)題二:1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時(shí)又如何呢?

  [學(xué)生活動(dòng)] 探究圓的方程。

  [教師預(yù)設(shè)] 方法一:坐標(biāo)法

  如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應(yīng)用舉例(鞏固提高)

  i.直接應(yīng)用(內(nèi)化新知)

  問(wèn)題三:1.寫(xiě)出下列各圓的方程(課本p77練習(xí)1)

  (1)圓心在原點(diǎn),半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過(guò)點(diǎn) ,圓心在點(diǎn) .

  2.根據(jù)圓的方程寫(xiě)出圓心和半徑

  (1) ; (2) .

  ii.靈活應(yīng)用(提升能力)

  問(wèn)題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導(dǎo)]由問(wèn)題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過(guò)圓上一點(diǎn) 的切線方程.

  [學(xué)生活動(dòng)]探究方法

  [教師預(yù)設(shè)]

  方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的.結(jié)論嗎?

  已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線的方程是: .

  iii.實(shí)際應(yīng)用(回歸自然)

  問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(zhǎng)度(精確到0.01m).

  [多媒體課件演示創(chuàng)設(shè)實(shí)際問(wèn)題情境]

  (四)反饋訓(xùn)練(形成方法)

  問(wèn)題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過(guò)點(diǎn)(-2,3)的切線方程.

  4.已知圓的方程為 ,求過(guò)點(diǎn) 的切線方程.

高中數(shù)學(xué)教案4

  教學(xué)目標(biāo)

  1使學(xué)生理解本章的知識(shí)結(jié)構(gòu),并通過(guò)本章的知識(shí)結(jié)構(gòu)掌握本章的全部知識(shí);

  2對(duì)線段、射線、直線、角的概念及它們之間的關(guān)系有進(jìn)一步的認(rèn)識(shí);

  3掌握本章的全部定理和公理;

  4理解本章的數(shù)學(xué)思想方法;

  5了解本章的題目類型。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn)是理解本章的知識(shí)結(jié)構(gòu),掌握本章的全部定和公理;難點(diǎn)是理解本章的數(shù)學(xué)思想方法。

  教學(xué)設(shè)計(jì)過(guò)程

  一、本章的知識(shí)結(jié)構(gòu)

  二、本章中的概念

  1直線、射線、線段的概念。

  2線段的中點(diǎn)定義。

  3角的兩個(gè)定義。

  4直角、平角、周角、銳角、鈍角的概念。

  5互余與互補(bǔ)的角。

  三、本章中的公理和定理

  1直線的公理;線段的公理。

  2補(bǔ)角和余角的性質(zhì)定理。

  四、本章中的主要習(xí)題類型

  1對(duì)直線、射線、線段的概念的理解。

  例1下列說(shuō)法中正確的是( )。

  A延長(zhǎng)射線OP B延長(zhǎng)直線CD

  C延長(zhǎng)線段CD D反向延長(zhǎng)直線CD

  解:C因?yàn)樯渚和直線是可以向一方或兩方無(wú)限延伸的,所以任何延長(zhǎng)射線或直線的說(shuō)法都是錯(cuò)誤的。而線段有兩個(gè)端點(diǎn),可以向兩方延長(zhǎng)。

  例2如圖1-57中的線段共有多少條?

  解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,F(xiàn)G。

  2線段的和、差、倍、分。

  例3已知線段AB,延長(zhǎng)AB到C,使AC=2BC,反向延長(zhǎng)AB到D使AD= BC,那么線段AD是線段AC的( )。

  A.B. C. D.

  解:B如圖1-58,因?yàn)锳D是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

  例4如圖1-59,B為線段AC上的一點(diǎn),AB=4cm,BC=3cm,M,N分別為AB,BC的中點(diǎn),求MN的長(zhǎng)。

  解:因?yàn)锳B=4,M是AB的中點(diǎn),所以MB=2,又因?yàn)镹是BC的中點(diǎn),所以BN=1.5。則MN=2+1.5=3.5

  3角的概念性質(zhì)及角平分線。

  例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的度數(shù)。

  解:因?yàn)镺D是∠AOB的平分線,所以∠BOD= ∠AOB;又因?yàn)镺E是∠BOC的平分線,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,

  所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

  則∠EOD=90°。

  例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數(shù)的比是多少?

  解:因?yàn)椤螦OB=90°,又∠AOD=150°,所以∠BOD=60°。

  又∠COD=90°,所以∠COB=30°。

  則∠AOC=60°,(同角的余角相等)

  ∠AOC與∠COB的度數(shù)的比是2∶1。

  4互余與互補(bǔ)角的性質(zhì)。

  例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數(shù)。

  解:因?yàn)镃OD為直線,∠BOE=90°,∠BOD=45°,

  所以∠COE=180°-90°-45°=45°

  又AOB為直線,∠BOE=90°,∠COE=45°

  故∠COA=180°-90°-45°=45°,

  而AOB為直線,∠BOD=45°,

  因此∠AOD=180°-45°=135°。

  例8一個(gè)角是另一個(gè)角的3倍,且小有的余角與大角的余角之差為20°,求這兩個(gè)角的度數(shù)。

  解:設(shè)第一個(gè)角為x°,則另一個(gè)角為3x°,

  依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

  答:一個(gè)角為10°,另一個(gè)角為30°。

  5度分秒的換算及和、差、倍、分的計(jì)算。

  例9 (1)將4589°化成度、分、秒的形式。

  (2)將80°34′45″化成度。

  (3)計(jì)算:(36°55′40″-23°56′45″)。

  解:(1)45°53′24″。

  (2)約為8058°。

  (3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進(jìn)位,做除法后得9°44′11″)

  五、本章中所學(xué)到的數(shù)學(xué)思想

  1運(yùn)動(dòng)變化的`觀點(diǎn):幾何圖形不是孤立和靜止的,也應(yīng)看作不斷發(fā)展和變化的,如線段向一個(gè)方向延長(zhǎng),就發(fā)展成為射線;射線向另一方向延長(zhǎng)就發(fā)展成直線。又如射線饒它的端點(diǎn)旋轉(zhuǎn)就形成角;角的終邊不斷旋轉(zhuǎn)就變化成直角、平角和周角。從圖形的運(yùn)動(dòng)中可以看到變化,從變化中看到聯(lián)系和區(qū)別及特性。

  2數(shù)形結(jié)合的思想:在幾何的知識(shí)中經(jīng)常遇到計(jì)算問(wèn)題,對(duì)形的研究離不開(kāi)數(shù)。正如數(shù)學(xué)家華羅庚所說(shuō):“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難如微”。本章的知識(shí)中,將線段的長(zhǎng)度用數(shù)量表示,利用方程的方法解決余角與補(bǔ)角的問(wèn)題。因此我們對(duì)幾何的學(xué)習(xí)不能與代數(shù)的學(xué)習(xí)截然分開(kāi),在形的問(wèn)題難以解決時(shí),發(fā)揮數(shù)的功能,在數(shù)的問(wèn)題遇到困難時(shí),畫(huà)出與它相關(guān)的圖形,都會(huì)給問(wèn)題的解決帶來(lái)新的思路。從幾何的起始課,就注意數(shù)形結(jié)合,就會(huì)養(yǎng)成良好的思維習(xí)慣。

  3聯(lián)系實(shí)際,從實(shí)際事物中抽象出數(shù)學(xué)模型。數(shù)學(xué)的產(chǎn)生來(lái)源于生產(chǎn)和生活實(shí)踐,因此學(xué)習(xí)數(shù)學(xué)不能脫離實(shí)際生活,尤其是幾乎何的學(xué)習(xí)更離不開(kāi)實(shí)際生活。一方面要讓學(xué)生知道本章的主要內(nèi)容是線和角,都在生活中有大量的原型存在,另一方面又要引導(dǎo)學(xué)生將所學(xué)的知識(shí)去解決某些簡(jiǎn)單的實(shí)際問(wèn)題,這才是理論聯(lián)系實(shí)際的觀點(diǎn)。

  六、本章的疑點(diǎn)和誤點(diǎn)分析

  概念在應(yīng)用中的混淆。

  例10判斷正誤:

  (1)在∠AOB的邊OA的延長(zhǎng)線上取一點(diǎn)D。

  (2)大于90°的角是鈍角。

  (3)任何一個(gè)角都可以有余角。

  (4)∠A是銳角,則∠A的所有余角都相等。

  (5)兩個(gè)銳角的和一定小于平角。

  (6)直線MN是平角。

  (7)互補(bǔ)的兩個(gè)角的和一定等于平角。

  (8)如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角就沒(méi)有余角。

  (9)鈍角一定大于它的補(bǔ)角。

  (10)經(jīng)過(guò)三點(diǎn)一定可以畫(huà)一條直線。

  解:(1)錯(cuò)。因?yàn)榻堑膬蛇吺巧渚,而射線是可以向一方無(wú)限延伸的,所以就不能再說(shuō)射線的延長(zhǎng)線了。

  (2)錯(cuò)。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。

  (3)錯(cuò)。余角的定義是:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角互為余角。因此大于直角的角沒(méi)有余角。

  (4)對(duì).∠A的所有余角都是90°-∠A。

  (5)對(duì).若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.

  (6)錯(cuò)。平角是一個(gè)角就要有頂點(diǎn),而直線上沒(méi)有表示平角頂點(diǎn)的點(diǎn)。如果在直線上標(biāo)出表示角的頂點(diǎn)的點(diǎn),就可以了。

  (7)對(duì)。符合互補(bǔ)的角的定義。

  (8)對(duì)。如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角一定是鈍角,而鈍角是沒(méi)有余角的。

  (9)對(duì)。因?yàn)殁g角的補(bǔ)角是銳角,鈍角一定大于銳角。

  (10)錯(cuò)。這個(gè)題應(yīng)該分情況討論:如果這三點(diǎn)在同一條直線上,這個(gè)結(jié)論是正確的。如果這三個(gè)點(diǎn)不在同一條直線上,那么過(guò)這三個(gè)點(diǎn)就不能畫(huà)一條直線。

  板書(shū)設(shè)計(jì)

  回顧與反思

  (一)知識(shí)結(jié)構(gòu)(四)主要習(xí)題類型(五)本章的數(shù)學(xué)思想

  略例1 1

  · 2

  (二)本章概念· 3

  略· (六)疑誤點(diǎn)分析

  (三)本章的公理和定理·

  例9

高中數(shù)學(xué)教案5

  [核心必知]

  1、預(yù)習(xí)教材,問(wèn)題導(dǎo)入

  根據(jù)以下提綱,預(yù)習(xí)教材P6~P9,回答下列問(wèn)題、

 。1)常見(jiàn)的程序框有哪些?

  提示:終端框(起止框),輸入、輸出框,處理框,判斷框、

  (2)算法的基本邏輯結(jié)構(gòu)有哪些?

  提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)、

  2、歸納總結(jié),核心必記

 。1)程序框圖

  程序框圖又稱流程圖,是一種用程序框、流程線及文字說(shuō)明來(lái)表示算法的圖形、

  在程序框圖中,一個(gè)或幾個(gè)程序框的組合表示算法中的一個(gè)步驟;帶有方向箭頭的流程線將程序框連接起來(lái),表示算法步驟的執(zhí)行順序、

 。2)常見(jiàn)的程序框、流程線及各自表示的功能

  圖形符號(hào)名稱功能

  終端框(起止框)表示一個(gè)算法的起始和結(jié)束

  輸入、輸出框表示一個(gè)算法輸入和輸出的'信息

  處理框(執(zhí)行框)賦值、計(jì)算

  判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”

  流程線連接程序框

  ○連接點(diǎn)連接程序框圖的兩部分

  (3)算法的基本邏輯結(jié)構(gòu)

 、偎惴ǖ娜N基本邏輯結(jié)構(gòu)

  算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬(wàn)別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的

 、陧樞蚪Y(jié)構(gòu)

  順序結(jié)構(gòu)是由若干個(gè)依次執(zhí)行的步驟組成的這是任何一個(gè)算法都離不開(kāi)的基本結(jié)構(gòu),用程序框圖表示為:

  [問(wèn)題思考]

 。1)一個(gè)完整的程序框圖一定是以起止框開(kāi)始,同時(shí)又以起止框表示結(jié)束嗎?

  提示:由程序框圖的概念可知一個(gè)完整的程序框圖一定是以起止框開(kāi)始,同時(shí)又以起止框表示結(jié)束、

 。2)順序結(jié)構(gòu)是任何算法都離不開(kāi)的基本結(jié)構(gòu)嗎?

  提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開(kāi)的基本結(jié)構(gòu)、

  [課前反思]

  通過(guò)以上預(yù)習(xí),必須掌握的幾個(gè)知識(shí)點(diǎn):

  (1)程序框圖的概念:

 。2)常見(jiàn)的程序框、流程線及各自表示的功能:

 。3)算法的三種基本邏輯結(jié)構(gòu):

 。4)順序結(jié)構(gòu)的概念及其程序框圖的表示:

  問(wèn)題背景:計(jì)算1×2+3×4+5×6+…+99×100。

  [思考1]能否設(shè)計(jì)一個(gè)算法,計(jì)算這個(gè)式子的值。

  提示:能。

  [思考2]能否采用更簡(jiǎn)潔的方式表述上述算法過(guò)程。

  提示:能,利用程序框圖。

  [思考3]畫(huà)程序框圖時(shí)應(yīng)遵循怎樣的規(guī)則?

  名師指津:

 。1)使用標(biāo)準(zhǔn)的框圖符號(hào)。

 。2)框圖一般按從上到下、從左到右的方向畫(huà)。

 。3)除判斷框外,其他程序框圖的符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn),判斷框是一個(gè)具有超過(guò)一個(gè)退出點(diǎn)的程序框。

 。4)在圖形符號(hào)內(nèi)描述的語(yǔ)言要非常簡(jiǎn)練清楚。

 。5)流程線不要忘記畫(huà)箭頭,因?yàn)樗欠从沉鞒虉?zhí)行先后次序的,如果不畫(huà)出箭頭就難以判斷各框的執(zhí)行順序。

高中數(shù)學(xué)教案6

  一、教學(xué)目標(biāo)

  1、知識(shí)與能力目標(biāo)

  ①使學(xué)生理解數(shù)列極限的概念和描述性定義。

  ②使學(xué)生會(huì)判斷一些簡(jiǎn)單數(shù)列的極限,了解數(shù)列極限的“e—N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。

 、弁ㄟ^(guò)觀察運(yùn)動(dòng)和變化的過(guò)程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。

  2、過(guò)程與方法目標(biāo)

  培養(yǎng)學(xué)生的極限的思想方法和獨(dú)立學(xué)習(xí)的能力。

  3、情感、態(tài)度、價(jià)值觀目標(biāo)

  使學(xué)生初步認(rèn)識(shí)有限與無(wú)限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn)。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):數(shù)列極限的概念和定義。

  教學(xué)難點(diǎn):數(shù)列極限的“ε―N”定義的理解。

  三、教學(xué)對(duì)象分析

  這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門(mén)課,對(duì)于學(xué)生來(lái)說(shuō)是一個(gè)全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過(guò)渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時(shí)對(duì)極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問(wèn)題,很少涉及“無(wú)限”的問(wèn)題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無(wú)限增大時(shí),數(shù)列{an}中的項(xiàng)an無(wú)限趨近于常數(shù)A,也就是an與A的差的絕對(duì)值無(wú)限趨近于0”,并能用這個(gè)定義判斷一些簡(jiǎn)單數(shù)列的極限。但要使他們?cè)谝还?jié)課內(nèi)掌握“ε—N”語(yǔ)言求極限要求過(guò)高。因此不宜講得太難,能夠通過(guò)具體的幾個(gè)例子,歸納研究一些簡(jiǎn)單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識(shí)什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。

  四、教學(xué)策略及教法設(shè)計(jì)

  本課是采用啟發(fā)式講授教學(xué)法,通過(guò)多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過(guò)學(xué)生比較熟悉的一個(gè)實(shí)際問(wèn)題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過(guò)具體的兩個(gè)比較簡(jiǎn)單的數(shù)列,運(yùn)用多媒體課件演示向?qū)W生展示了數(shù)列中的各項(xiàng)隨著項(xiàng)數(shù)的增大,無(wú)限地趨向于某個(gè)常數(shù)的過(guò)程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個(gè)數(shù)列的特征,從而得出數(shù)列極限的一個(gè)描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對(duì)數(shù)列極限有了直觀上的認(rèn)識(shí),接著讓學(xué)生根據(jù)數(shù)列中各項(xiàng)的情況判斷一些簡(jiǎn)單的數(shù)列的極限。從而達(dá)到深化定義的.效果。最后進(jìn)行練習(xí)鞏固,通過(guò)這樣的一個(gè)完整的教學(xué)過(guò)程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個(gè)新的概念,為下節(jié)課的極限的運(yùn)算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識(shí)打下基礎(chǔ)。在整個(gè)教學(xué)過(guò)程中注意突出重點(diǎn),突破難點(diǎn),達(dá)到教學(xué)目標(biāo)的要求。

  五、教學(xué)過(guò)程

  1、創(chuàng)設(shè)情境

  課件展示創(chuàng)設(shè)情境動(dòng)畫(huà)。

  今天我們將要學(xué)習(xí)一個(gè)很重要的新的知識(shí)。

  情境

  (1)我國(guó)古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無(wú)所失矣”。

  情境

 。2)我國(guó)古代哲學(xué)家莊周所著的《莊子·天下篇》引用過(guò)一句話:一尺之棰,日取其半,萬(wàn)世不竭。也就是說(shuō)拿一根木棒,將它切成一半,拿其中一半來(lái)再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無(wú)限次地切,每次都切一半,問(wèn)是否會(huì)切完?

  大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來(lái)的少了一半,也就是說(shuō)木棒的長(zhǎng)度越來(lái)越短,但永遠(yuǎn)不會(huì)變成零。從而引出極限的概念。

  2、定義探究

  展示定義探索(一)動(dòng)畫(huà)演示。

  問(wèn)題1:請(qǐng)觀察以下無(wú)窮數(shù)列,當(dāng)n無(wú)限增大時(shí),a,I的變化趨勢(shì)有什么特點(diǎn)?

 。1)1/2,2/3,3/4,n/n—1

 。2)0.9,0.99,0.999,0.9999,1—1/10n

  問(wèn)題2:觀察課件演示,請(qǐng)分析以上兩個(gè)數(shù)列隨項(xiàng)數(shù)n的增大項(xiàng)有那些特點(diǎn)?

  師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項(xiàng)數(shù)n無(wú)限增大時(shí),項(xiàng)無(wú)限趨近于1;數(shù)列(2)項(xiàng)數(shù)n無(wú)限增大時(shí),項(xiàng)無(wú)限趨近于1。

  那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個(gè)數(shù)列只是形式不同,它們都是隨項(xiàng)數(shù)n的無(wú)限增大,項(xiàng)無(wú)限趨近于某一確定常數(shù),這個(gè)常數(shù)叫做這個(gè)數(shù)列的極限。

  那么,什么叫數(shù)列的極限呢?對(duì)于無(wú)窮數(shù)列an,如果當(dāng)n無(wú)限增大時(shí),an無(wú)限趨向于某一個(gè)常數(shù)A,則稱A是數(shù)列an的極限。

  提出問(wèn)題3:怎樣用數(shù)學(xué)語(yǔ)言來(lái)定量描述呢?怎樣用數(shù)學(xué)語(yǔ)言來(lái)描述上述數(shù)列的變化趨勢(shì)?

  展示定義探索(二)動(dòng)畫(huà)演示。

  師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點(diǎn)間距離越小,項(xiàng)與1越趨近,因此可以借助兩點(diǎn)間距離無(wú)限小的方式來(lái)描述項(xiàng)無(wú)限趨近常數(shù)。無(wú)論預(yù)先指定多么小的正數(shù)e,如取e=O—1,總能在數(shù)列中找到一項(xiàng)am,使得an項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,若取£=0.0001,則第6項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來(lái)描述數(shù)列1的極限)。

  數(shù)列的極限為:對(duì)于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時(shí),不等式|an—A|n的極限。

  課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值,并且動(dòng)畫(huà)演示數(shù)列的變化過(guò)程。如圖1所示是課件運(yùn)行時(shí)的一個(gè)畫(huà)面。

  定義探索動(dòng)畫(huà)(二)課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值和Ian一1I的值,并且動(dòng)畫(huà)演示出第an項(xiàng)和1之間的距離。如圖2所示是課件運(yùn)行時(shí)的一個(gè)畫(huà)面。

  3、知識(shí)應(yīng)用

  這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。

  例1、已知數(shù)列:

  1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計(jì)算an—0(2)第幾項(xiàng)后面的所有項(xiàng)與0的差的絕對(duì)值都小于0.017都小于任意指定的正數(shù)。

 。3)確定這個(gè)數(shù)列的極限。

  例2、已知數(shù)列:

  已知數(shù)列:3/2,9/4,15/8,2+(—1/2)n。

  猜測(cè)這個(gè)數(shù)列有無(wú)極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項(xiàng)開(kāi)始,各項(xiàng)與這個(gè)極限的差都小于0.1,從第幾項(xiàng)開(kāi)始,各項(xiàng)與這個(gè)極限的差都小于0.017

  例3、求常數(shù)數(shù)列一7,一7,一7,一7,的極限。

  4、知識(shí)小結(jié)

  這節(jié)課我們研究了數(shù)列極限的概念,對(duì)數(shù)列極限有了初步的認(rèn)識(shí)。數(shù)列極限研究的是無(wú)限變化的趨勢(shì),而通過(guò)對(duì)數(shù)列極限定義的探討,我們看到這一過(guò)程又是通過(guò)有限來(lái)把握的,有限與無(wú)限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。

  課后練習(xí):

  (1)判斷下列數(shù)列是否有極限,如果有的話請(qǐng)求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。

  (2)課本練習(xí)1,2。

  5、探究性問(wèn)題

  設(shè)計(jì)研究性學(xué)習(xí)的思考題。

  提出問(wèn)題:

  芝諾悖論:阿基里斯是《荷馬史詩(shī)》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無(wú)法超過(guò)在他前面慢慢爬行的烏龜,因?yàn)楫?dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c(diǎn)時(shí),烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過(guò)這一小段路,而烏龜又向前走了。這樣,阿基里斯可無(wú)限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎?

  這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時(shí)也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活的實(shí)質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識(shí)去解決生活中遇到的實(shí)際問(wèn)題的習(xí)慣。

高中數(shù)學(xué)教案7

  高中數(shù)學(xué)趣味競(jìng)賽題(共10題)

  1 、撒謊的有幾人

  5個(gè)高中生有,她們面對(duì)學(xué)校的新聞采訪說(shuō)了如下的話:

  愛(ài):“我還沒(méi)有談過(guò)戀愛(ài)! 靜香:“愛(ài)撒謊了!

  瑪麗:“我曾經(jīng)去過(guò)昆明! 惠美:“瑪麗在撒謊。”

  千葉子:“瑪麗和惠美都在撒謊! 那么,這5個(gè)人之中到底有幾個(gè)人在撒謊呢?

  2、她們到底是誰(shuí)

  有天使、惡魔、人三者,天使時(shí)刻都說(shuō)真話,惡魔時(shí)時(shí)刻刻都說(shuō)假話,人呢,有時(shí)候說(shuō)真話,有時(shí)候說(shuō)假話。

  穿黑色衣服的女子說(shuō):“我不是天使。” 穿藍(lán)色衣服的女子說(shuō):“我不是人。” 穿白色衣服的女子說(shuō):“我不是惡魔。”那么,這三人到底分別是誰(shuí)呢?

  3、半只小貓

  聽(tīng)說(shuō)祖父家的.波斯貓生了好多小貓,喜歡貓的我興高采烈地來(lái)到祖父家?墒牵皇O1只小貓了。

  “一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽(tīng)說(shuō)以后,馬上來(lái)買(mǎi)走了所有小貓的一半和半只! “半只?”“是啊,然后,鄰居家的老奶奶無(wú)論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?

  4、被蟲(chóng)子吃掉的算式

  一只愛(ài)吃墨水的蟲(chóng)子把下圖的算式中的數(shù)字全部吃掉了。當(dāng)然,沒(méi)有數(shù)字的部分它沒(méi)有吃(因?yàn)闆](méi)有墨水)。

  那么,請(qǐng)問(wèn)原來(lái)的算式是什么樣子的呢?

  5、巧動(dòng)火柴

  用16根火柴擺成5個(gè)正方形。請(qǐng)移動(dòng)2根火柴,

  使

  正形變成4。

  6、折過(guò)來(lái)的角

  把正三角形的紙如圖那樣折過(guò)來(lái)時(shí),角?的度數(shù)是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、!雙胞胎?

  丈夫臨死前,給有身孕的妻子留下遺言說(shuō),生的是男孩就給他財(cái)產(chǎn)的 2/3 、如果生的是女孩就給他財(cái)產(chǎn)的 2/5 、剩下的給妻子。

  結(jié)果,生出來(lái)的是孿生兄妹——雙胞胎。這可難壞了妻子,3個(gè)人怎么分財(cái)產(chǎn)好呢?

  9、贈(zèng)送和降價(jià)哪個(gè)更好?

  1罐100元的咖啡,“買(mǎi)5罐送1罐”和“買(mǎi)5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?

  10、折成15度

  用折紙做成45度很簡(jiǎn)單是吧。那么,請(qǐng)折成15度,你會(huì)嗎?

高中數(shù)學(xué)教案8

  教學(xué)目標(biāo):

  1、理解并掌握曲線在某一點(diǎn)處的切線的概念;

  2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;

  3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化

  問(wèn)題的能力及數(shù)形結(jié)合思想。

  教學(xué)重點(diǎn):

  理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。

  教學(xué)難點(diǎn):

  用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1、問(wèn)題情境。

  如何精確地刻畫(huà)曲線上某一點(diǎn)處的變化趨勢(shì)呢?

  如果將點(diǎn)P附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。

  如果將點(diǎn)P附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過(guò)點(diǎn)P的所有直線中最逼近曲線的一條直線。

  因此,在點(diǎn)P附近我們可以用這條直線來(lái)代替曲線,也就是說(shuō),點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

  2、探究活動(dòng)。

  如圖所示,直線l1,l2為經(jīng)過(guò)曲線上一點(diǎn)P的兩條直線,

 。1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;

  (2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

  (3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

  二、建構(gòu)數(shù)學(xué)

  切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無(wú)限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過(guò)點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。

  思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

  三、數(shù)學(xué)運(yùn)用

  例1 試求在點(diǎn)(2,4)處的切線斜率。

  解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),

  則割線PQ的斜率為:

  當(dāng)Q沿曲線逼近點(diǎn)P時(shí),割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;

  當(dāng)Q點(diǎn)橫坐標(biāo)無(wú)限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無(wú)限趨近于2時(shí),kPQ無(wú)限趨近于常數(shù)4。

  從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。

  解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的.斜率為:

  當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。

  練習(xí) 試求在x=1處的切線斜率。

  解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

  當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

  小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:

 。1)找到定點(diǎn)P的坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);

 。2)求出割線PQ的斜率;

 。3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。

  思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

  解 設(shè)

  所以,當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線的斜率。

  變式訓(xùn)練

  1。已知,求曲線在處的切線斜率和切線方程;

  2。已知,求曲線在處的切線斜率和切線方程;

  3。已知,求曲線在處的切線斜率和切線方程。

  課堂練習(xí)

  已知,求曲線在處的切線斜率和切線方程。

  四、回顧小結(jié)

  1、曲線上一點(diǎn)P處的切線是過(guò)點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。

  2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。

  五、課外作業(yè)

高中數(shù)學(xué)教案9

  教學(xué)目標(biāo):

 。1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題。

 。2)進(jìn)一步理解曲線的方程和方程的曲線。

 。3)初步掌握求曲線方程的方法。

 。4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力。

  教學(xué)重點(diǎn)、難點(diǎn):

  求曲線的方程。

  教學(xué)用具:

  計(jì)算機(jī)。

  教學(xué)方法:

  啟發(fā)引導(dǎo)法,討論法。

  教學(xué)過(guò)程:

  【引入】

  1、提問(wèn):什么是曲線的方程和方程的曲線。

  學(xué)生思考并回答。教師強(qiáng)調(diào)。

  2、坐標(biāo)法和解析幾何的意義、基本問(wèn)題。

  對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門(mén)科學(xué)稱為解析幾何。解析幾何的兩大基本問(wèn)題就是:

 。1)根據(jù)已知條件,求出表示平面曲線的方程。

 。2)通過(guò)方程,研究平面曲線的性質(zhì)。

  事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。

  【問(wèn)題】

  如何根據(jù)已知條件,求出曲線的方程。

  【實(shí)例分析】

  例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。

  首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決。

  解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決?墒,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎?

 。ㄍㄟ^(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。

  證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。

  設(shè)是線段的垂直平分線上任意一點(diǎn),則

  即

  將上式兩邊平方,整理得

  這說(shuō)明點(diǎn)的坐標(biāo)是方程的解。

 。2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

  設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則

  到、的距離分別為

  所以,即點(diǎn)在直線上。

  綜合(1)、(2),①是所求直線的方程。

  至此,證明完畢;仡櫳鲜鰞(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:

  解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

  由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足。顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的.思想。因此是個(gè)好方法。

  讓我們用這個(gè)方法試解如下問(wèn)題:

  例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程。

  分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。

  求解過(guò)程略。

  【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):

  分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫(xiě)出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說(shuō)得更準(zhǔn)確一點(diǎn)就是:

 。1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);

 。2)寫(xiě)出適合條件的點(diǎn)的集合

  ;

 。3)用坐標(biāo)表示條件,列出方程;

  (4)化方程為最簡(jiǎn)形式;

 。5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

  一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明。

  上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫(xiě)出集合;列方程;化簡(jiǎn);修正。

  下面再看一個(gè)問(wèn)題:

  例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程。

  【動(dòng)畫(huà)演示】用幾何畫(huà)板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系。

  解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合

  由距離公式,點(diǎn)適合的條件可表示為

 、

  將①式移項(xiàng)后再兩邊平方,得

  化簡(jiǎn)得

  由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示。

  【練習(xí)鞏固】

  題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、、,且有,求點(diǎn)軌跡方程。

  分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。

  根據(jù)條件,代入坐標(biāo)可得

  化簡(jiǎn)得

 、

  由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問(wèn)題的方法是什么?

  (2)如何求曲線的方程?

 。3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià)。各步驟的作用,哪步重要,哪步應(yīng)注意什么?

  【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;

高中數(shù)學(xué)教案10

  第一章:空間幾何體

  1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

 。1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

 。2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

  (3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

 。4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

  2.過(guò)程與方法

 。1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

 。2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

  3.情感態(tài)度與價(jià)值觀

 。1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

 。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

  難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

  三、教學(xué)用具

 。1)學(xué)法:觀察、思考、交流、討論、概括。

  (2)實(shí)物模型、投影儀

  四、教學(xué)思路

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1.教師提出問(wèn)題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。

  2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

 。ǘ⒀刑叫轮

  1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

  2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

  3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

  5.提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

  7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

  8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

  9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

  10.現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。

  1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)

  2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

  3.課本P8,習(xí)題1.1A組第1題。

  4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  5.棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

  四、鞏固深化

  練習(xí):課本P7練習(xí)1、2(1)(2)

  課本P8習(xí)題1.1第2、3、4題

  五、歸納整理

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

  六、布置作業(yè)

  課本P8練習(xí)題1.1B組第1題

  課外練習(xí)課本P8習(xí)題1.1B組第2題

  1.2.1空間幾何體的三視圖(1課時(shí))

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)掌握畫(huà)三視圖的基本技能

 。2)豐富學(xué)生的空間想象力

  2.過(guò)程與方法

  主要通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

  3.情感態(tài)度與價(jià)值觀

  (1)提高學(xué)生空間想象力

 。2)體會(huì)三視圖的作用

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):畫(huà)出簡(jiǎn)單組合體的三視圖

  難點(diǎn):識(shí)別三視圖所表示的空間幾何體

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比

  2.教學(xué)用具:實(shí)物模型、三角板

  四、教學(xué)思路

 。ㄒ唬﹦(chuàng)設(shè)情景,揭開(kāi)課題

  “橫看成嶺側(cè)看成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

  在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫(huà)出空間幾何體的三視圖嗎?

 。ǘ⿲(shí)踐動(dòng)手作圖

  1.講臺(tái)上放球、長(zhǎng)方體實(shí)物,要求學(xué)生畫(huà)出它們的三視圖,教師巡視,學(xué)生畫(huà)完后可交流結(jié)果并討論;

  2.教師引導(dǎo)學(xué)生用類比方法畫(huà)出簡(jiǎn)單組合體的三視圖

  (1)畫(huà)出球放在長(zhǎng)方體上的三視圖

 。2)畫(huà)出礦泉水瓶(實(shí)物放在桌面上)的三視圖

  學(xué)生畫(huà)完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

  作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。

  3.三視圖與幾何體之間的相互轉(zhuǎn)化。

 。1)投影出示圖片(課本P10,圖1.2-3)

  請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?

 。2)你能畫(huà)出圓臺(tái)的三視圖嗎?

 。3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?

  教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問(wèn)題的看法。

  4.請(qǐng)同學(xué)們畫(huà)出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

 。ㄈ╈柟叹毩(xí)

  課本P12練習(xí)1、2P18習(xí)題1.2A組1

 。ㄋ模w納整理

  請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

 。ㄎ澹┱n外練習(xí)

  1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫(huà)出它的三視圖。

  2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫(huà)出它的三視圖。

  1.2.2空間幾何體的'直觀圖(1課時(shí))

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

 。1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。

 。2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。

  2.過(guò)程與方法

  學(xué)生通過(guò)觀察和類比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。

  3.情感態(tài)度與價(jià)值觀

  (1)提高空間想象力與直觀感受。

 。2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。

 。3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。

  2.教學(xué)用具:三角板、圓規(guī)

  四、教學(xué)思路

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1.我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱

  把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。

  2.學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

 。ǘ┭刑叫轮

  1.例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。

  畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。

  練習(xí)反饋

  根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

  2.例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀圖

  教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

  教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。

  3.探求空間幾何體的直觀圖的畫(huà)法

 。1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體ABCD-A’B’C’D’的直觀圖。

  教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。

 。2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。

  4.平行投影與中心投影

  投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。

  5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4

  三、歸納整理

  學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟

  四、作業(yè)

  1.書(shū)畫(huà)作業(yè),課本P17練習(xí)第5題

  2.課外思考課本P16,探究(1)(2)

高中數(shù)學(xué)教案11

  一、單元教學(xué)內(nèi)容

  (1)算法的基本概念

  (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

  (3)算法的基本語(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句

  二、單元教學(xué)內(nèi)容分析

  算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來(lái)越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國(guó)古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力

  三、單元教學(xué)課時(shí)安排:

  1、算法的基本概念3課時(shí)

  2、程序框圖與算法的基本結(jié)構(gòu)5課時(shí)

  3、算法的基本語(yǔ)句2課時(shí)

  四、單元教學(xué)目標(biāo)分析

  1、通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析體會(huì)算法的思想,了解算法的含義

  2、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

  3、經(jīng)歷將具體問(wèn)題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。

  4、通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  五、單元教學(xué)重點(diǎn)與難點(diǎn)分析

  1、重點(diǎn)

  (1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會(huì)用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題

  2、難點(diǎn)

  (1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計(jì)

  六、單元總體教學(xué)方法

  本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過(guò)對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。

  七、單元展開(kāi)方式與特點(diǎn)

  1、展開(kāi)方式

  自然語(yǔ)言→程序框圖→算法語(yǔ)句

  2、特點(diǎn)

  (1)螺旋上升分層遞進(jìn)(2)整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇

  八、單元教學(xué)過(guò)程分析

  1.算法基本概念教學(xué)過(guò)程分析

  對(duì)生活中的實(shí)際問(wèn)題通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的'分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì)算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。

  2.算法的流程圖教學(xué)過(guò)程分析

  對(duì)生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)流程圖表達(dá)解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區(qū)別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會(huì)用流程圖表示算法。

  3.基本算法語(yǔ)句教學(xué)過(guò)程分析

  經(jīng)歷將具體生活中問(wèn)題的流程圖轉(zhuǎn)化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達(dá)算法,

  4.通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  九、單元評(píng)價(jià)設(shè)想

  1.重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程的評(píng)價(jià)

  關(guān)注學(xué)生在數(shù)學(xué)語(yǔ)言的學(xué)習(xí)過(guò)程中,是否對(duì)用集合語(yǔ)言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問(wèn)題充滿興趣;在學(xué)習(xí)過(guò)程中,能否體會(huì)集合語(yǔ)言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力。

  2.正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能

  關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法

高中數(shù)學(xué)教案12

  數(shù)學(xué)集合教學(xué)設(shè)計(jì)【教學(xué)目的】

 。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

 。2)使學(xué)生初步了解“屬于”關(guān)系的意義

 。3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義

  數(shù)學(xué)集合教學(xué)設(shè)計(jì)【重點(diǎn)難點(diǎn)】

  教學(xué)重點(diǎn):集合的基本概念及表示方法

  教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合

  授課類型:新授課

  課時(shí)安排:1課時(shí)

  教具:多媒體、實(shí)物投影儀

  數(shù)學(xué)集合教學(xué)設(shè)計(jì)【內(nèi)容分析】

  1、集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)

  把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子

  這節(jié)課主要學(xué)習(xí)全章的引言和集合的'基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念

  集合是集合論中的原始的、不定義的概念在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí)教科書(shū)給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集”這句話,只是對(duì)集合概念的描述性說(shuō)明

  數(shù)學(xué)集合教學(xué)設(shè)計(jì)【教學(xué)過(guò)程】

  一、復(fù)習(xí)引入:

  1、簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

  2、教材中的章頭引言;

  3、集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見(jiàn)附錄);

  4、“物以類聚”,“人以群分”;

  5、教材中例子(P4)

  二、講解新課:

  閱讀教材第一部分,問(wèn)題如下:

 。1)有那些概念?是如何定義的?

 。2)有那些符號(hào)?是如何表示的?

 。3)集合中元素的特性是什么?

  (一)集合的有關(guān)概念:

  由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集、集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素、

  定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合、

  1、集合的概念

 。1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)

  (2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

  2、常用數(shù)集及記法

 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作N,(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+

  (3)整數(shù)集:全體整數(shù)的集合記作Z ,(4)有理數(shù)集:全體有理數(shù)的集合記作Q ,(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合記作R

  注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0

 。2)非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  3、元素對(duì)于集合的隸屬關(guān)系

 。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作

  4、集合中元素的特性

  (1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

 。2)互異性:集合中的元素沒(méi)有重復(fù)

 。3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗觯?/p>

  5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q……

 、啤啊省钡拈_(kāi)口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě)

  三、練習(xí)題:

  1、教材P5練習(xí)1、2

  2、下列各組對(duì)象能確定一個(gè)集合嗎?

 。1)所有很大的實(shí)數(shù)(不確定)

 。2)好心的人(不確定)

 。3)1,2,2,3,4,5、(有重復(fù))

  3、設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是_—2,0,2__

  4、由實(shí)數(shù)x,—x,|x|,所組成的集合,最多含( A )

  (A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素

  5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

  (1)當(dāng)x∈N時(shí), x∈G;

 。2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G

  證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G

  證明(2):∵x∈G,y∈G,∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,又∵ =且不一定都是整數(shù),∴ =不一定屬于集合G

  數(shù)學(xué)集合教學(xué)設(shè)計(jì)【小結(jié)】

  1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

  2、集合元素的性質(zhì):確定性,互異性,無(wú)序性

  3、常用數(shù)集的定義及記法

高中數(shù)學(xué)教案13

  一.教材分析:

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。

  二.目標(biāo)分析:

  教學(xué)重點(diǎn).難點(diǎn)

  重點(diǎn):集合的含義與表示方法.

  難點(diǎn):表示法的恰當(dāng)選擇.

  教學(xué)目標(biāo)

  l.知識(shí)與技能

  (1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;

  (2)知道常用數(shù)集及其專用記號(hào); (3)了解集合中元素的確定性.互異性.無(wú)序性;

  (4)會(huì)用集合語(yǔ)言表示有關(guān)數(shù)學(xué)對(duì)象;

  2.過(guò)程與方法

  (1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義.

  (2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí).

  3.情感.態(tài)度與價(jià)值觀

  使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.

  三.教法分析

  1.教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué).

  四.過(guò)程分析

  (一)創(chuàng)設(shè)情景,揭示課題

  1.教師首先提出問(wèn)題:(1)介紹自己的家庭、原來(lái)就讀的'學(xué)校、現(xiàn)在的班級(jí)。

  (2)問(wèn)題:像“家庭”、“學(xué)!薄ⅰ鞍嗉(jí)”等,有什么共同特征?

  引導(dǎo)學(xué)生互相交流.與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià).

  2.活動(dòng):(1)列舉生活中的集合的例子;(2)分析、概括各實(shí)例的共同特征

  由此引出這節(jié)要學(xué)的內(nèi)容。

  設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

  (二)研探新知,建構(gòu)概念

  1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:

  (1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國(guó)古代的四大發(fā)明;

  (3)所有的安理會(huì)常任理事國(guó); (4)所有的正方形;

  (5)海南省在20xx年9月之前建成的所有立交橋;

  (6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);

  (7)國(guó)興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體.

  2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?

  3.每個(gè)小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義.一般地,指定的某些對(duì)象的全體稱為集合(簡(jiǎn)稱為集).集合中的每個(gè)對(duì)象叫作這個(gè)集合的元素.

  4.教師指出:集合常用大寫(xiě)字母A,B,C,D,?表示,元素常用小寫(xiě)字母a,b,c,d?表示.

  設(shè)計(jì)意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂(lè)于求索的精神

  (三)質(zhì)疑答辯,發(fā)展思維

  1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無(wú)序性.只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱這兩個(gè)集合相等.

  2.教師組織引導(dǎo)學(xué)生思考以下問(wèn)題:

  判斷以下元素的全體是否組成集合,并說(shuō)明理由:

  (1)大于3小于11的偶數(shù);(2)我國(guó)的小河流.讓學(xué)生充分發(fā)表自己的建解.

  3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說(shuō)明理由.教師對(duì)學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià).

  4.教師提出問(wèn)題,讓學(xué)生思考

  b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),

  高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.

  如果a是集合A的元素,就說(shuō)a屬于集合A,記作a?A.

  如果a不是集合A的元素,就說(shuō)a不屬于集合A,記作a?A.

  (2)如果用A表示“所有的安理會(huì)常任理事國(guó)”組成的集合,則中國(guó).日本與集合A的關(guān)系分別是什么?請(qǐng)用數(shù)學(xué)符號(hào)分別表示.

  (3)讓學(xué)生完成教材第6頁(yè)練習(xí)第1題.

  5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過(guò)程,然后閱讀教材中的相交內(nèi)容,寫(xiě)出常用數(shù)集的記號(hào).并讓學(xué)生完成習(xí)題1.1A組第1題.

  6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問(wèn)題:

  (1)要表示一個(gè)集合共有幾種方式?

  (2)試比較自然語(yǔ)言.列舉法和描述法在表示集合時(shí),各自的特點(diǎn)?適用的對(duì)象是什么?

  (3)如何根據(jù)問(wèn)題選擇適當(dāng)?shù)募媳硎痉?

  使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對(duì)象。

  設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。

  (四)鞏固深化,反饋矯正

  教師投影學(xué)習(xí):

  (1)用自然語(yǔ)言描述集合{1,3,5,7,9}; (2)用例舉法表示集合A?{x?N|1?x?8}

  (3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁(yè)練習(xí)第2題.

  設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對(duì)象

  (五)歸納小結(jié),布置作業(yè)

  小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問(wèn)題:

  1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容? 2.你認(rèn)為學(xué)習(xí)集合有什么意義?

  3.選擇集合的表示法時(shí)應(yīng)注意些什么?

  設(shè)計(jì)意圖:通過(guò)回顧,對(duì)概念的發(fā)生與發(fā)展過(guò)程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。

  作業(yè):1.課后書(shū)面作業(yè):第13頁(yè)習(xí)題1.1A組第4題.

  2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種

呢?如何表示?請(qǐng)同學(xué)們通過(guò)預(yù)習(xí)教材.

  五.板書(shū)分析

高中數(shù)學(xué)教案14

  教學(xué)目標(biāo):

  1。通過(guò)生活中優(yōu)化問(wèn)題的學(xué)習(xí),體會(huì)導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的作用,促進(jìn)

  學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。

  2。通過(guò)實(shí)際問(wèn)題的研究,促進(jìn)學(xué)生分析問(wèn)題、解決問(wèn)題以及數(shù)學(xué)建模能力的提高。

  教學(xué)重點(diǎn):

  如何建立實(shí)際問(wèn)題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  問(wèn)題1把長(zhǎng)為60cm的鐵絲圍成矩形,長(zhǎng)寬各為多少時(shí)面積最大?

  問(wèn)題2把長(zhǎng)為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個(gè)正方形面積之各最?

  問(wèn)題3做一個(gè)容積為256L的方底無(wú)蓋水箱,它的高為多少時(shí)材料最省?

  二、新課引入

  導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問(wèn)題。

  1。幾何方面的應(yīng)用(面積和體積等的最值)。

  2。物理方面的應(yīng)用(功和功率等最值)。

  3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤(rùn)方面最值)。

  三、知識(shí)建構(gòu)

  例1在邊長(zhǎng)為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的方底箱子,箱底的邊長(zhǎng)是多少時(shí),箱底的.容積最大?最大容積是多少?

  說(shuō)明1解應(yīng)用題一般有四個(gè)要點(diǎn)步驟:設(shè)——列——解——答。

  說(shuō)明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個(gè)極

  值及端點(diǎn)值比較即可。

  例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才

  能使所用的材料最?

  變式當(dāng)圓柱形金屬飲料罐的表面積為定值S時(shí),它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最省?

  說(shuō)明1這種在定義域內(nèi)僅有一個(gè)極值的函數(shù)稱單峰函數(shù)。

  說(shuō)明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對(duì)一般的求法加以簡(jiǎn)化,其步驟為:

  S1列:列出函數(shù)關(guān)系式。

  S2求:求函數(shù)的導(dǎo)數(shù)。

  S3述:說(shuō)明函數(shù)在定義域內(nèi)僅有一個(gè)極大(。┲担瑥亩鴶喽楹瘮(shù)的最大(。┲,必要時(shí)作答。

  例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動(dòng)勢(shì)為。外電阻為

  多大時(shí),才能使電功率最大?最大電功率是多少?

  說(shuō)明求最值要注意驗(yàn)證等號(hào)成立的條件,也就是說(shuō)取得這樣的值時(shí)對(duì)應(yīng)的自變量必須有解。

  例4強(qiáng)度分別為a,b的兩個(gè)光源A,B,它們間的距離為d,試問(wèn):在連接這兩個(gè)光源的線段AB上,何處照度最小?試就a=8,b=1,d=3時(shí)回答上述問(wèn)題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。

  例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤(rùn)函數(shù),記為。

 。1)設(shè),生產(chǎn)多少單位產(chǎn)品時(shí),邊際成本最低?

 。2)設(shè),產(chǎn)品的單價(jià),怎樣的定價(jià)可使利潤(rùn)最大?

  四、課堂練習(xí)

  1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。

  2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽? 時(shí),它的面積最大。

  3。有一邊長(zhǎng)分別為8與5的長(zhǎng)方形,在各角剪去相同的小正方形,把四邊折起做成一個(gè)無(wú)蓋小盒,要使紙盒的容積最大,問(wèn)剪去的小正方形邊長(zhǎng)應(yīng)為多少?

  4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面ABCD的面積為定值S時(shí),使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長(zhǎng)b。

  五、回顧反思

 。1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問(wèn)題的實(shí)際意義。

  (2)根據(jù)問(wèn)題的實(shí)際意義來(lái)判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較。

 。3)相當(dāng)多有關(guān)最值的實(shí)際問(wèn)題用導(dǎo)數(shù)方法解決較簡(jiǎn)單。

  六、課外作業(yè)

  課本第38頁(yè)第1,2,3,4題。

高中數(shù)學(xué)教案15

  一、預(yù)習(xí)目標(biāo)

  預(yù)習(xí)《平面向量應(yīng)用舉例》,體會(huì)向量是一種處理幾何問(wèn)題、物理問(wèn)題等的工具,建立實(shí)際問(wèn)題與向量的聯(lián)系。

  二、預(yù)習(xí)內(nèi)容

  閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問(wèn)題、物理問(wèn)題。另外,在思考一下幾個(gè)問(wèn)題:

  1、例1如果不用向量的方法,還有其他證明方法嗎?

  2、利用向量方法解決平面幾何問(wèn)題的“三步曲”是什么?

  3、例3中,

 、艦楹沃禃r(shí),|F1|最小,最小值是多少?

 、苵F1|能等于|G|嗎?為什么?

  三、提出疑惑

  同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容。

  課內(nèi)探究學(xué)案

  一、學(xué)習(xí)內(nèi)容

  1、運(yùn)用向量的有關(guān)知識(shí)(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問(wèn)題。

  2、運(yùn)用向量的有關(guān)知識(shí)解決簡(jiǎn)單的物理問(wèn)題。

  二、學(xué)習(xí)過(guò)程

  探究一:

 。1)向量運(yùn)算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會(huì)?

 。2)舉出幾個(gè)具有線性運(yùn)算的.幾何實(shí)例。

  例1、證明:平行四邊形兩條對(duì)角線的平方和等于四條邊的平方和。

  已知:平行四邊形ABCD。

  求證:

  試用幾何方法解決這個(gè)問(wèn)題,利用向量的方法解決平面幾何問(wèn)題的“三步曲”?

 。1)建立平面幾何與向量的聯(lián)系,

 。2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,

 。3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系。

  例2,如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?

  探究二:兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力。在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力。這些力的問(wèn)題是怎么回事?

  例3,在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?

  請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問(wèn)題,思考下面的問(wèn)題:

 、艦楹沃禃r(shí),|F1|最小,最小值是多少?

 、苵F1|能等于|G|嗎?為什么?

  例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對(duì)岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問(wèn)行駛航程最短時(shí),所用的時(shí)間是多少(精確到0。1min)?

  變式訓(xùn)練:兩個(gè)粒子A、B從同一源發(fā)射出來(lái),在某一時(shí)刻,它們的位移分別為,(1)寫(xiě)出此時(shí)粒子B相對(duì)粒子A的位移s;(2)計(jì)算s在方向上的投影。

  三、反思總結(jié)

  結(jié)合圖形特點(diǎn),選定正交基底,用坐標(biāo)表示向量進(jìn)行運(yùn)算解決幾何問(wèn)題,體現(xiàn)幾何問(wèn)題。

  代數(shù)化的特點(diǎn),數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運(yùn)算簡(jiǎn)練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長(zhǎng)方形、正方形、直角三角形等平行、垂直等問(wèn)題常用此法。

  本節(jié)主要研究了用向量知識(shí)解決平面幾何問(wèn)題和物理問(wèn)題;掌握向量法和坐標(biāo)法,以及用向量解決實(shí)際問(wèn)題的步驟。

【高中數(shù)學(xué)教案】相關(guān)文章:

高中數(shù)學(xué)教案04-21

高中數(shù)學(xué)教案02-21

高中數(shù)學(xué)教案12-30

高中數(shù)學(xué)教案優(yōu)秀12-10

高中數(shù)學(xué)教案【集合】02-21

【推薦】高中數(shù)學(xué)教案01-25

高中數(shù)學(xué)教案【熱門(mén)】01-25

【熱】高中數(shù)學(xué)教案01-25

高中數(shù)學(xué)教案【推薦】01-25

高中數(shù)學(xué)教案(通用)10-27