初二數(shù)學(xué)教案通用(15篇)
作為一名優(yōu)秀的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。我們該怎么去寫教案呢?下面是小編為大家整理的初二數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
初二數(shù)學(xué)教案1
一、教學(xué)目標(biāo)
1.了解分式、有理式的概念。
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。
二、重點、難點
1.重點:理解分式有意義的條件,分式的值為零的條件。
2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件。
3。認知難點與突破方法
難點是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點的方法是利用分式與分數(shù)有許多類似之處,從分數(shù)入手,研究出分式的有關(guān)概念,同時還要講清分式與分數(shù)的聯(lián)系與區(qū)別。
三、例、習(xí)題的意圖分析
本章從實際問題引出分式方程=,給出分式的描述性的`定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時耽誤時間,列方程在這節(jié)課里不是重點,也不要求解這個方程。
1.本節(jié)進一步提出P4[思考]讓學(xué)生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點?它們與分數(shù)有什么相同點和不同點?
可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是(即A÷B)的形式。分數(shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。
P5[歸納]順理成章地給出了分式的定義。分式與分數(shù)有許多類似之處,研究分式往往要類比分數(shù)的有關(guān)概念,所以要引導(dǎo)學(xué)生了解分式與分數(shù)的聯(lián)系與區(qū)別。
希望老師注意:分式比分數(shù)更具有一般性,例如分式可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數(shù)。
2.P5[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分數(shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當(dāng)B≠0時,分式才有意義。
3.P5例1填空是應(yīng)用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學(xué)生比較全面地理解分式及有關(guān)的概念,也為今后求函數(shù)的自變量的取值范圍,打下良好的基礎(chǔ)。
4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補充的例2為了學(xué)生更全面地體驗分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零。這兩個條件得到的解集的公共部分才是這一類題目的解。
四、課堂引入
1.讓學(xué)生填寫P4[思考],學(xué)生自己依次填出:
2.學(xué)生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程。
設(shè)江水的流速為x千米/時。
初二數(shù)學(xué)教案2
重難點分析
本節(jié)的重點是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。
本節(jié)的難點是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對角線的條件,在實際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注意以下問題:
1.矩形的知識,學(xué)生在小學(xué)時接觸過一些,可由小學(xué)學(xué)過的知識作為引入。
2.矩形在現(xiàn)實中的實例較多,在講解矩形的性質(zhì)和判定時,教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實例來進行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識.
3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學(xué)過程中的道具,既增強了學(xué)生的動手能力和參與感,有在教學(xué)中有切實的體例,使學(xué)生對知識的掌握更輕松些.
4. 在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個學(xué)生分別對事先準(zhǔn)備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.
5. 由于矩形的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進行具體的證明.
6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
矩形教學(xué)設(shè)計
教學(xué)目標(biāo)
1.知道矩形的`定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。
2.能運用以上性質(zhì)進行簡單的證明和計算。
此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點。
引導(dǎo)性材料
想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來說明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。
小學(xué)里已學(xué)過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學(xué)里已學(xué)過)等特殊性質(zhì),那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應(yīng)畫在哪里?
(讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)
演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當(dāng)平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。
問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?
說明與建議:教師的演示應(yīng)充分展現(xiàn)變化過程,從而讓學(xué)生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學(xué)生能正確地給出矩形的定義。
問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質(zhì)呢?
說明與建議:讓學(xué)生分組探索,有必要時,教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形有一個角是直角矩形的四個角都相等(矩形性質(zhì)定理1),要學(xué)生給以證明(即課本例1后練習(xí)第1題)。
學(xué)生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質(zhì)上是一致的,所以不必另列為一個性質(zhì)。
學(xué)生探索矩形的四條對角線的大小關(guān)系時,如有困難,可引導(dǎo)學(xué)生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質(zhì)定理2。
問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?
說明與建議:(1)讓學(xué)生先觀察圖4.5-3,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學(xué)生自己給出如下證明:
證明:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD(矩形的對角線相等)。
,AO=CO
在Rt△ABC中,BO是斜邊AC上的中線,且 。
直角三角形斜邊上的中線等于斜邊的一半。
例題解析
例1:(即課本例1)
說明:本題難度不大,又有助于學(xué)生加深對性質(zhì)定理的理解,教學(xué)中應(yīng)引導(dǎo)學(xué)生探索解法:
如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數(shù),再從已知條件AOD=120出發(fā),應(yīng)用矩形的性質(zhì)可知,ADB=30,另外,還可以引導(dǎo)學(xué)生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:
∵四邊形ABCD是矩形,
AC=BD(矩形的對角線相等)。
又 。
OA=BO,△AOB是等腰三角形,
∵AOD=120,AOB=180- 120= 60
AOB是等邊三角形。
BO=AB=4cm,
BD=2BO=244cm=8cm。
例2:(補充例題)
已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點,EF平分BED交BD于點F。
(l)猜想:EF與BD具有怎樣的關(guān)系?
(2)試證明你的猜想。
解:(l)EF垂直平分BD。
(2)證明:∵ABC=90,點E是AC的中點。
(直角三角形的斜邊上的中線等于斜邊的一半)。
同理: 。
BE=DE。
又∵EF平分BED。
EFBD,BF=DF。
說明:本例是一道不給出結(jié)論,需要學(xué)生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學(xué)生的推理(包括合情推理和邏輯推理)能力。如果學(xué)生不適應(yīng),或有困難,教師可根據(jù)實際情況加以引導(dǎo),這種訓(xùn)練,重要的不是猜對了沒有?證明了沒有?而是讓學(xué)生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過程,順便指出:求解本題的重要基礎(chǔ)是識圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個基本圖形。
課堂練習(xí)
1.課本例1后練習(xí)題第2題。
2.課本例1后練習(xí)題第4題。
小結(jié)
1.矩形的定義:
2.歸納總結(jié)矩形的性質(zhì):
對邊平行且相等
四個角都是直角
對角線平行且相等
3.直角三角形斜邊上的中線等于斜邊的一半。
4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關(guān)矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。
作業(yè)
l.課本習(xí)題4.3A組第2題。
2.課本復(fù)習(xí)題四A組第6、7題。
初二數(shù)學(xué)教案3
教學(xué)目標(biāo)
1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計量的直方圖;
2、讓學(xué)生進一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;
教學(xué)重點
掌握頻率分布直方圖概念及其應(yīng)用;
教學(xué)難點
繪制連續(xù)統(tǒng)計量的直方圖
教學(xué)過程
、瘢岢鰡栴},創(chuàng)設(shè)情境,引入新課:
問題:我們班準(zhǔn)備從63名同學(xué)中挑選出身高相差不多的40名同學(xué)參加比賽,那么這個想法可以實現(xiàn)嗎?應(yīng)該選擇身高在哪個范圍的學(xué)生參加?
63名學(xué)生的身高數(shù)據(jù)如下:
158158160168159159151158159
168158154158154169158158158
159167170153160160159159160
149163163162172161153156162
162163157162162161157157164
155156165166156154166164165
156157153165159157155164156
解:(確定組距)最大值為172,最小值為149,他們的'差為23
。ㄉ砀選的變化范圍在23厘米,)
。ǚ纸M劃記)頻數(shù)分布表:
身高(x)劃記頻數(shù)(學(xué)生人數(shù))
149≤x
152≤x
155≤x
158≤x
161≤
164≤x
167≤x
170≤x
從表中看,身高在155≤x
。ɡL制頻數(shù)分布直方圖如課本P72圖12.2-3)
探究:上面對數(shù)據(jù)分組時,組距取3,把數(shù)據(jù)分成8個組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個組,這樣做能否選出身高比較整齊的隊員?
分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。
歸納:組距和組數(shù)的確定沒有固定的標(biāo)準(zhǔn),要憑借經(jīng)驗和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當(dāng)數(shù)據(jù)在100個以內(nèi)時,根據(jù)數(shù)據(jù)的多少通常分為5~12個組。
我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。
首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數(shù)為0的點,在上方圖的左邊。147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數(shù)折線圖。
頻數(shù)折線圖也可以不通過直方圖直接畫出。
根據(jù)表12.2-2,求了各個小組兩個端點的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標(biāo),各小組對應(yīng)的頻數(shù)為縱坐標(biāo)描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數(shù)分布折線圖如課本P73圖。
II課堂小結(jié):
。1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖
。2)組距和組數(shù)沒有確定標(biāo)準(zhǔn),當(dāng)數(shù)據(jù)在1000個以內(nèi)時,通常分成5~12組
。3)如果取個長方形上邊的中點,可以得到頻數(shù)折線圖
。4)求各小組兩個斷點的平均數(shù),這些平均數(shù)叫組中值。
初二數(shù)學(xué)教案4
知識與技能
1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運算。
2.會用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡單的實際問題。
3.體驗勾股定理的探索過程,會運用勾股定理解決簡單問題。會運用勾股定理的逆定理判定直角三角形。
4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運用這些知識進行有關(guān)的證明和計算。
5.進一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的`統(tǒng)計意義,會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數(shù)據(jù)的波動情況。
過程與方法
進一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的表達能力;解決一些實際問題,體會化歸思想和函數(shù)的變化與對應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說話的習(xí)慣和實事求是的科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨立思考,主動探索的習(xí)慣。
情感、態(tài)度與價值觀
豐富學(xué)生從事數(shù)學(xué)活動的經(jīng)驗和體驗,通過對問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過對知識方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對教學(xué)活動中的困難,能通過合作交流解決遇到的困難。
初二數(shù)學(xué)教案5
一、相交線:
性質(zhì):兩條直線相交,有且只有一個交點。
二、對頂角、鄰補角:
1.對頂角:如圖,直線AB和CD相交于點O,∠1與∠2有公共頂點O,它們的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
說明:兩個角是對頂角必需滿足兩個條件:(1)有公共頂點;(2)兩邊互為反向延長線。
2.鄰補角:如圖,∠1和∠2有一條公共邊OC,它們的另一條邊OA、OB互為反向延長線,顯然它們互補。具有這種關(guān)系的兩個角叫做互為鄰補角。
3.性質(zhì):(1)對頂角相等;(2)互為鄰補角的兩個角的和等于。
三、有關(guān)垂線的概念和性質(zhì):1.概念:如果兩條直線相交所成的四個角中,有一角是直角,就說這兩條直線互相垂直,其中的一條叫做另一條直線的垂線,它們的交點叫做垂足。
說明:垂直是相交的一種特殊情況。
2.點到直線的距離:直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
說明:垂線是直線,而垂線段是一條線段,點到直線的距離不是指垂線段,而是指垂線段的長度。
3.平行線間的距離:同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做這兩條平行線間的距離。平行線間的距離處處相等。
4.性質(zhì):(1)互相垂直的兩條直線相交所成的四個角都是直角;(2)過直線上一點或直線外一點畫已知直線的垂線,并且只能畫出一條垂線;(3)連結(jié)直線外一點與直線上各點的所有線段中,垂線段最短。簡單地說:垂線段最短;(4)平行線間的距離處處相等。
四、同位角、內(nèi)錯角、同旁內(nèi)角:
如圖,直線AB、CD被第三條直線EF所截,構(gòu)成八個角,簡稱“三線八角”。
1.同位角:∠1與∠5,∠2與∠6,∠3與∠7,∠4與∠8,它們分別在AB、CD同側(cè),且在EF同側(cè)。同位角呈“F”形;
2.內(nèi)錯角:∠3與∠5,∠4與∠6,它們分夾在AB、CD之間,同時又各在EF兩側(cè)。內(nèi)錯角呈“Z”形;
3.同旁內(nèi)角:∠4與∠5,∠3與∠6,它們分別夾在AB、CD之間,同時又在EF同側(cè)。同旁內(nèi)角呈“U”形。
說明:(1)同位角、內(nèi)錯角、同旁內(nèi)角是指具有特殊位置關(guān)系的兩個角;
。2)這三類角都是由兩條直線被第三條直線所截形成的;
。3)同位角特征:截線同旁,被截兩線的同方向;內(nèi)錯角特征:截線兩旁,被截兩線段之間;同旁內(nèi)角特征:截線同旁,被截兩線段之間;
。4)兩條直線被第三條直線所截成的八個角中,同位角4對,內(nèi)錯角2對,同旁內(nèi)角2對。
常見考法
(1)對頂角、鄰補角、同位角、內(nèi)錯角和同旁內(nèi)角,在中考中必有所涉及,一般是綜合其它知識一起考查;(2)垂線段最短的性質(zhì)在生活中有廣泛應(yīng)用,在中考中一般以填空、作圖出現(xiàn),主是根據(jù)要求作出垂線段或用性質(zhì)解釋理由。
誤區(qū)提醒
。1)對頂角、鄰補角以及垂線的概念理解有誤;(2)在復(fù)雜圖形中辨認同位角、內(nèi)錯角、同旁內(nèi)角時產(chǎn)生遺漏或錯認。
【典型例題】如圖,∠BAC=90°,AD⊥BC,則下面的結(jié)論中,正確的個數(shù)是()個。
、冱cB到AC的垂線段是線段AB;
、诰段AC是點C到AB的垂線段;
、劬段AD是點D到BC的垂線段;
、芫段BD是點B到AD的垂線段;
A.1B.2C.3D.4
【解析】③是錯誤的,其余的均是正確的,故本題選C
一、目標(biāo)與要求
1.理解對頂角和鄰補角的概念,能在圖形中辨認;
2.掌握對頂角相等的性質(zhì)和它的推證過程;
3.通過在圖形中辨認對頂角和鄰補角,培養(yǎng)學(xué)生的識圖能力。
二、重點
在較復(fù)雜的圖形中準(zhǔn)確辨認對頂角和鄰補角;
兩條直線互相垂直的概念、性質(zhì)和畫法;
同位角、內(nèi)錯角、同旁內(nèi)角的概念與識別。
三、難點
在較復(fù)雜的圖形中準(zhǔn)確辨認對頂角和鄰補角;
對點到直線的距離的概念的理解;
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì);
能區(qū)分平行線的性質(zhì)和判定,平行線的性質(zhì)與判定的混合應(yīng)用。
四、知識框架
五、知識點、概念總結(jié)
1.鄰補角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
3.對頂角和鄰補角的.關(guān)系
4.垂直:兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。
5.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
6.垂足:如果兩直線的夾角為直角,那么就說這兩條直線互相垂直,它們的交點叫做垂足。
7.垂線性質(zhì)
(1)在同一平面內(nèi),過一點有且只有一條直線與已知直線垂直。
(2)連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
(3)點到直線的距離:直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
8.同位角、內(nèi)錯角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。
同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。
9.平行:在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。
10.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
11.命題:判斷一件事情的語句叫命題。
12.真命題:正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立。
13.假命題:條件和結(jié)果相矛盾的命題是假命題。
14.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
15.對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。
16.定理與性質(zhì)
對頂角的性質(zhì):對頂角相等。
17.垂線的性質(zhì):
性質(zhì)1:過一點有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
18.平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
19.平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補。
20.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內(nèi)錯角相等,兩直線平行。
判定3:同旁內(nèi)角相等,兩直線平行。充要條件。
初二數(shù)學(xué)教案6
教學(xué)建議
知識結(jié)構(gòu):
重點難點分析:
是商的二次根式的性質(zhì)及利用性質(zhì)進行二次根式的化簡與運算,利用分母有理化化簡.商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運算的運用是關(guān)鍵,從化簡與運算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握.
教學(xué)難點是二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.二次根式的除法與乘法既有聯(lián)系又有區(qū)別,強調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號.由于分母有理化難度和復(fù)雜性大,要讓學(xué)生首先理解分母有理化的意義及計算結(jié)果形式.
教法建議:
1. 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,通過前一節(jié)的復(fù)習(xí),讓學(xué)生通過具體實例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì).教師在此過程中給與適當(dāng)?shù)?指導(dǎo),提出問題讓學(xué)生有一定的探索方向.
2. 本節(jié)內(nèi)容可以分為三課時,第一課時討論商的算術(shù)平方根的性質(zhì),并運用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時討論二次根式的除法法則,并運用這一法則進行簡單的二次根式的除法運算以及二次根式的乘除混合運算,這一課時運算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分數(shù)的情況;第三課時討論分母有理化的概念及方法,并進行二次根式的乘除法運算,把運算結(jié)果分母有理化.這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,因此及彼,層層展開.
3. 引導(dǎo)學(xué)生思考想一想中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,教師組織學(xué)生思考、討論過程中,鼓勵學(xué)生大膽猜想,積極探索,運用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維.
教學(xué)設(shè)計示例
一、教學(xué)目標(biāo)
1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進行二次根式的化簡與運算;
2.會進行簡單的二次根式的除法運算;
3.使學(xué)生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4. 培養(yǎng)學(xué)生利用二次根式的除法公式進行化簡與計算的能力;
5. 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力;
6. 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性.
二、教學(xué)重點和難點
1.重點:會利用商的算術(shù)平方根的性質(zhì)進行二次根式的化簡,會進行簡單的二次根式的除法運算,還要使學(xué)生掌握二次根式的除法采用分母有理化的方法進行.
2.難點:二次根式的除法與商的算術(shù)平方根的關(guān)系及應(yīng)用.
三、教學(xué)方法
從特殊到一般總結(jié)歸納的方法以及類比的方法,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)
內(nèi)容可引導(dǎo)學(xué)生自學(xué),進行總結(jié)對比.
四、教學(xué)手段
利用投影儀.
五、教學(xué)過程
(一) 引入新課
學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a0,b0)是用什么樣的方法引出的?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)
學(xué)生觀察下面的例子,并計算:
由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:
(二)新課
商的算術(shù)平方根.
一般地,有 (a0,b0)
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.
讓學(xué)生討論這個式子成立的條件是什么?a0,b0,對于為什么b0,要使學(xué)生通過討論明確,因為b=0時分母為0,沒有意義.
引導(dǎo)學(xué)生從運算順序看,等號左邊是將非負數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,等號右邊是先分別求被除數(shù)、除數(shù)的算術(shù)平方根,然后再求兩個算術(shù)平方根的商,根據(jù)商的算術(shù)平方根的性質(zhì)可以進行簡單的二次根式的化簡與運算.
例1 化簡:
(1) ; (2) ; (3) ;
解∶(1)
(2)
(3)
說明:如果被開方數(shù)是帶分數(shù),在運算時,一般先化成假分數(shù);本節(jié)根號下的字母均為正數(shù).
例2 化簡:
(1) ; (2) ;
解:(1)
(2)
讓學(xué)生觀察例題中分母的特點,然后提出, 的問題怎樣解決?
再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決.
學(xué)生討論本節(jié)課所學(xué)內(nèi)容,并進行小結(jié).
(三)小結(jié)
1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)
2.會利用商的算術(shù)平方根的性質(zhì)進行簡單的二次根式的化簡.
(四)練習(xí)
1.化簡:
(1) ; (2) ; (3) .
2.化簡:
(1) ; (2) ; (3)
六、作業(yè)
教材P.183習(xí)題11.3;A組1.
七、板書設(shè)計
初二數(shù)學(xué)教案7
一、利用勾股定理進行計算
1.求面積
例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。
析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時D也為底邊的中點,這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。
2.求邊長
例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。
析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點B作BD⊥AC,交AC的延長線于D點,構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
點評:這兩道題有一個共同的`特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請同學(xué)們要留心。
二、利用勾股定理的逆定理判斷直角三角形
例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。
析解:由于所給條件是關(guān)于a,b,c的一個等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因為(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。
點評:用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。
三、利用勾股定理說明線段平方和、差之間的關(guān)系
例4:如圖3,在△ABC中,∠C=90?,D是AC的中點,DE⊥AB于E點,試說明:BC2=BE2-AE2。
析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。
點評:若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時,則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。
初二數(shù)學(xué)教案8
教學(xué)設(shè)計思想:
本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動性。
教學(xué)目標(biāo)
知識與技能:
1.總結(jié)出平行四邊形的三種判定方法;
2.應(yīng)用平行四邊形的判定解決實際問題;
3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;
4.總結(jié)三角形與平行四邊形的相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。
過程與方法:
1.經(jīng)歷平行四邊形判別條件的`探索過程,逐步掌握說理的基本方法。
2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。
情感態(tài)度價值觀:
1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習(xí)慣;
2.通過探索式證明法開拓思路,發(fā)展思維能力;
3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。
教學(xué)重難點
重點:1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。
難點:1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。
教學(xué)方法
小組討論、合作探究
課時安排
3課時
教學(xué)媒體
課件、
教學(xué)過程
第一課時
(一)引入
師:上節(jié)課我們已經(jīng)知道了平行四邊形的邊、角及對角線所具有的性質(zhì),請同學(xué)們回憶一下都有哪些?
初二數(shù)學(xué)教案9
一、教學(xué)目標(biāo)
1. 掌握等腰梯形的判定方法.
2. 能夠運用等腰梯形的性質(zhì)和判定進行有關(guān)問題的論證和計算,進一步培養(yǎng)學(xué)生的分析能力和計算能力.
3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想
二、教法設(shè)計
小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固
三、重點、難點
1.教學(xué)重點:等腰梯形判定.
2.教學(xué)難點:解決梯形問題的.基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線).
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
多媒體,小黑板,常用畫圖工具
六、師生互動活動設(shè)計
教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線
七、教學(xué)步驟
【復(fù)習(xí)提問】
1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?
2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?
3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?
我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.
【引人新課】
等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.
前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.
例1已知:如圖,在梯形 中, , ,求證: .
分析:我們學(xué)過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉(zhuǎn)化為等腰三角形的兩個底角,定理就容易證明了.
(引導(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)
(1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .
又由 得 ,因此可得 .
(2)作高 、 ,通過證 推出 .
(3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .
(證明過程略).
例3 求證:對角線相等的梯形是等腰梯形.
已知:如圖,在梯形 中, , .
求證: .
分析:證明本題的關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.
在 和 中,已有兩邊對應(yīng)相等,別人要能證 ,就可通過證 得到 .
(引導(dǎo)學(xué)生說出證明思路,教師板書證明過程)
證明:過點 作 ,交 延長線于 ,得 ,
∴ .
∵ , ∴
∴
∵ , ∴
又∵ 、 ,∴
∴ .
說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結(jié)論雖不能直接引用,但可以為以后解題提供思路.
例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計算這個等腰梯形的周長和面積.
分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.
畫法:①畫 ,使 .
.
②延長 到 使 .
、鄯謩e過 、 作 , , 、 交于點 .
四邊形 就是所求的等腰梯形.
解:梯形 周長 .
答:梯形周長為26cm,面積為 .
【總結(jié)、擴展】
小結(jié):(由學(xué)生總結(jié))
(l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.
(2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)
八、布置作業(yè)
l.已知:如圖,梯形 中, , 、 分別為 、 中點,且 ,求證:梯形 為等腰梯形.
九、板書設(shè)計
十、隨堂練習(xí)
教材P177中l(wèi);P179中B組2
初二數(shù)學(xué)教案10
一、教材分析:
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。
教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
二、教學(xué)重點:
勾股定理的證明和應(yīng)用。
三、教學(xué)難點:
勾股定理的證明。
四、教法和學(xué)法:
教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
五、教學(xué)程序:
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
(一)創(chuàng)設(shè)情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。(二)初步感知理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
(三)質(zhì)疑解難討論歸納:1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;(1)這兩個圖形有什么特點?(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習(xí)強化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
(五)歸納總結(jié)練習(xí)反饋
引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
本課意在創(chuàng)設(shè)愉悅和諧的'樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。
六、教學(xué)目標(biāo):
1.經(jīng)歷運用拼圖的方法說明勾股定理是正確的過程,在數(shù)學(xué)活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣。
2.掌握勾股定理和他的簡單應(yīng)用
重點難點:
重點:能熟練運用拼圖的方法證明勾股定理
難點:用面積證勾股定理
教學(xué)過程
七、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學(xué)交流。在同學(xué)操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?
(同學(xué)們回答有這幾種可能:(1) (2) )
在同學(xué)交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。
=請同學(xué)們對上面的式子進行化簡,得到:即=
這就可以從理論上說明勾股定理存在。請同學(xué)們?nèi)ビ脛e的拼圖方法說明勾股定理。
八、講例
1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?
分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。
解:由勾股定理得
即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:
答:飛機每個小時飛行540千米。
九、議一議
展示投影2(書中的圖1—9)
觀察上圖,應(yīng)用數(shù)格子的方法判斷圖中的三角形的三邊長是否滿足
同學(xué)在議論交流形成共識之后,老師總結(jié)。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、作業(yè)
1、 1、課文P11§1.2 1 、2
2、選用作業(yè)。
初二數(shù)學(xué)教案11
1。教材分析
。1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理。因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
2。教法建議
。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
。2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的`有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
。3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認識。
。4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點
1。使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。
2。了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應(yīng)用。
。ǘ┠芰τ(xùn)練點
1。通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。
2。通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸思想。
3。會根據(jù)比較簡單的條件畫出指定的四邊形。
4。講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學(xué)生滲透類比思想。
。ㄈ┑掠凉B透點
使學(xué)生認識到這些四邊形都是常見的,研究他們都有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識的興趣。
。ㄋ模┟烙凉B透點
通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。
二、學(xué)法引導(dǎo)
類比、觀察、引導(dǎo)、講解
三、重點難點疑點及解決辦法
1。教學(xué)重點:四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題。
2。教學(xué)難點:理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。
3。疑點及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角。
四、課時安排
2課時
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設(shè)計
教師引入新課,學(xué)生觀察圖形,類比三角形知識導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。
第一課時
七、教學(xué)步驟
【復(fù)習(xí)引入】
在小學(xué)里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一
章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題。
【引入新課】
用投影儀打出課前畫好的教材中P119的圖。
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個圖形)。
【講解新課】
1。四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學(xué)生在書上畫出上述概念),講解這些概念時:
。1)要結(jié)合圖形。
。2)要與三角形類比。
。3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖42中的點 。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。
(4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關(guān)系。
。5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖41。
。6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4—4,圖4—5。
2。四邊形內(nèi)角和定理
教師問:
。1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?
。2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?
。3)若在四邊形ABCD如圖4—7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形。
我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:
①2180=360如圖4
、4180—360=360如圖4—7。
例1 已知:如圖48,直線 于B、 于C。
求證:(1) (2) 。
本例題是四邊形內(nèi)角和定理的應(yīng)用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應(yīng)用,作兩三步推理就可以證出。
【總結(jié)、擴展】
1。四邊形的有關(guān)概念。
2。四邊形對角線的作用。
3。四邊形內(nèi)角和定理。
八、布置作業(yè)
教材P128中1(1)、2、 3。
九、板書設(shè)計
四邊形(一)
四邊形有關(guān)概念
四邊形內(nèi)角和
例1
十、隨堂練習(xí)
教材P122中1、2、3。
初二數(shù)學(xué)教案12
新課指南
1.知識與技能:(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;(2)掌握整式、同類項及合并同類項法則和去括號法則;(3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力.
2.過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學(xué)會列簡單的代數(shù)式.在具體情境中體會同類項的意義及合并同類項、去括號法則的必要性,總結(jié)合并同類項及去括號的法則,并利用它們進行整式的加減運算和解決簡單的實際問題.
3.情感態(tài)度與價值觀:通過對整式加減的學(xué)習(xí),深入體會代數(shù)式在實際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識打下良好的基礎(chǔ),同時,也使我們體會到數(shù)學(xué)知識的產(chǎn)生來源于實際生產(chǎn)和生活的需求,反之,它又服務(wù)于實際生活的'方方面面.
4.重點與難點:重點是用含有字母的式子表式規(guī)律,理解整式的意義,合并同類項的法則和去括號的法則.難點是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識別整式的項、系數(shù)等知識.
教材解讀精華要義
數(shù)學(xué)與生活
如圖15-1所示,用同樣規(guī)格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.
思考討論由圖15-1可以看到,當(dāng)n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?
知識詳解
知識點1代數(shù)式
用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù).的字母連接起來的式子叫做代數(shù)式.單獨的一個數(shù)或一個字母也是代數(shù)式.
例如:5,a,(a+b),ab,a2-2ab+b2等等.
知識點2列代數(shù)式時應(yīng)該注意的問題
(1)數(shù)與字母、字母與字母相乘時常省略“×”號或用“·”.
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)數(shù)字通常寫在字母前面.
如:mn×(-5)=-5mn,3×(a+b)=3(a+b).
(3)帶分數(shù)與字母相乘時要化成假分數(shù).
如:2×ab=ab,切勿錯誤寫成“2ab”.
(4)除法常寫成分數(shù)的形式.
如:S÷x=.
初二數(shù)學(xué)教案13
新課指南
1、知識與技能:
(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;
(2)掌握整式、同類項及合并同類項法則和去括號法則;
(3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力。
2、過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學(xué)會列簡單的代數(shù)式。在具體情境中體會同類項的意義及合并同類項、去括號法則的必要性,總結(jié)合并同類項及去括號的法則,并利用它們進行整式的加減運算和解決簡單的`實際問題。
3、情感態(tài)度與價值觀:通過對整式加減的學(xué)習(xí),深入體會代數(shù)式在實際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識打下良好的基礎(chǔ),同時,也使我們體會到數(shù)學(xué)知識的產(chǎn)生來源于實際生產(chǎn)和生活的需求,反之,它又服務(wù)于實際生活的方方面面。
4、重點與難點:重點是用含有字母的式子表式規(guī)律,理解整式的意義,合并同類項的法則和去括號的法則。難點是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準(zhǔn)確識別整式的項、系數(shù)等知識。
教材解讀精華要義
數(shù)學(xué)與生活
如圖15-1所示,用同樣規(guī)格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊。
思考討論由圖15-1可以看到,當(dāng)n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當(dāng)n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當(dāng)n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚。綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊。這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?
知識詳解
知識點1代數(shù)式
用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)。的字母連接起來的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。
例如:5,a,(a+b),ab,a2-2ab+b2等等。
知識點2列代數(shù)式時應(yīng)該注意的問題
。1)數(shù)與字母、字母與字母相乘時常省略“×”號或用“·”。
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)數(shù)字通常寫在字母前面。
如:mn×(-5)=-5mn,3×(a+b)=3(a+b)。
。3)帶分數(shù)與字母相乘時要化成假分數(shù)。
如:2×ab=ab,切勿錯誤寫成“2ab”。
(4)除法常寫成分數(shù)的形式。
如:S÷x=。
初二數(shù)學(xué)教案14
教學(xué)目標(biāo)
知識與技能目標(biāo)
1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。
2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的.四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
3.逐步掌握說理的基本方法。
過程與方法目標(biāo)
1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。
2.鼓勵學(xué)生用多種方法進行說理。
情感與態(tài)度目標(biāo)
1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。
2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強學(xué)生的自我評價意識。
教材分析
教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。
教學(xué)重點:平行四邊形的判別方法。
教學(xué)難點:利用平行四邊形的判別方法進行正確的說理。
學(xué)情分析
初二學(xué)生對平面圖形的認識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。
教學(xué)流程
一、創(chuàng)設(shè)情境,引入新課
師:請同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
學(xué)生活動:學(xué)生按小組進行探索。
初二數(shù)學(xué)教案15
初二上冊數(shù)學(xué)知識點總結(jié):等腰三角形
一、等腰三角形的性質(zhì):
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的`高相互重合.
4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
5、等邊三角形的性質(zhì):
、俚冗吶切稳叾枷嗟.
②等邊三角形三個內(nèi)角都相等,都等于60°
、鄣冗吶切蚊織l邊上都存在三線合一.
、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).
6.基本判定:
、诺妊切蔚呐卸ǎ
、儆袃蓷l邊相等的三角形是等腰三角形.
、谌绻粋三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
、频冗吶切蔚呐卸ǎ
、偃龡l邊都相等的三角形是等邊三角形.
、谌齻角都相等的三角形是等邊三角形.
、塾幸粋角是60°的等腰三角形是等邊三角形.
【初二數(shù)學(xué)教案】相關(guān)文章:
初二數(shù)學(xué)教案11-02
初二數(shù)學(xué)教案12-12
初二數(shù)學(xué)教案《菱形》08-22
【熱】初二數(shù)學(xué)教案12-23
初二數(shù)學(xué)教案【精】12-20
初二數(shù)學(xué)教案【熱門】12-22
初二數(shù)學(xué)教案【推薦】12-18
【推薦】初二數(shù)學(xué)教案12-23