(合集)八年級數(shù)學(xué)教案
在教學(xué)工作者實(shí)際的教學(xué)活動中,往往需要進(jìn)行教案編寫工作,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。教案應(yīng)該怎么寫呢?以下是小編精心整理的八年級數(shù)學(xué)教案,希望能夠幫助到大家。
八年級數(shù)學(xué)教案1
一、教材分析:
《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級下冊第十九章第二節(jié)的內(nèi)容?v觀整個初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。
(一)知識目標(biāo):
1、要求學(xué)生掌握正方形的概念及性質(zhì);
2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡單的計(jì)算、推理、論證;
(二)能力目標(biāo):
1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、總結(jié)等能力;
2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;
(三)情感目標(biāo):
1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;
3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
二、學(xué)生分析:
該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計(jì)了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。
三、教法分析:
針對本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。
四、學(xué)法分析:
本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂趣。
五、教學(xué)程序:
第一環(huán)節(jié):相關(guān)知識回顧
以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
1、正方形的定義
引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的'菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
2、正方形的性質(zhì)
定理1:正方形的四個角都是直角,四條邊都相等;
定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
3、例題講解
求證:正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。此題是文字證明題,由學(xué)生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請其它小組的同學(xué)提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時(shí)強(qiáng)調(diào)證明格式的書寫。從而培養(yǎng)他們語言表達(dá)能力,讓學(xué)生的個性得到充分的展示
4、課堂練習(xí)
第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計(jì)算的填空題,目的是對正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。
5、課堂小結(jié)
此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實(shí)自己,達(dá)到理想中的完美。
6、作業(yè)設(shè)計(jì)
作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識。
八年級數(shù)學(xué)教案2
一、教材分析
1、特點(diǎn)與地位:重點(diǎn)中的重點(diǎn)。
本課是教材求兩結(jié)點(diǎn)之間的最短路徑問題是圖最常見的應(yīng)用的之一,在交通運(yùn)輸、通訊網(wǎng)絡(luò)等方面具有一定的實(shí)用意義。
2、重點(diǎn)與難點(diǎn):結(jié)合學(xué)生現(xiàn)有抽象思維能力水平,已掌握基本概念等學(xué)情,以及求解最短路徑問題的自身特點(diǎn),確立本課的重點(diǎn)和難點(diǎn)如下:
。1)重點(diǎn):如何將現(xiàn)實(shí)問題抽象成求解最短路徑問題,以及該問題的解決方案。
。2)難點(diǎn):求解最短路徑算法的程序?qū)崿F(xiàn)。
3、教學(xué)安排:最短路徑問題包含兩種情況:一種是求從某個源點(diǎn)到其他各結(jié)點(diǎn)的最短路徑,另一種是求每一對結(jié)點(diǎn)之間的最短路徑。根據(jù)教學(xué)大綱安排,重點(diǎn)講解第一種情況問題的解決。安排一個課時(shí)講授。教材直接分析算法,考慮實(shí)際應(yīng)用需要,補(bǔ)充旅游景點(diǎn)線路選擇的實(shí)例,實(shí)例中問題解決與算法分析相結(jié)合,逐步推動教學(xué)過程。
二、教學(xué)目標(biāo)分析
1、知識目標(biāo):掌握最短路徑概念、能夠求解最短路徑。
2、能力目標(biāo):
(1)通過將旅游景點(diǎn)線路選擇問題抽象成求最短路徑問題,培養(yǎng)學(xué)生的數(shù)據(jù)抽象能力。
。2)通過旅游景點(diǎn)線路選擇問題的解決,培養(yǎng)學(xué)生的獨(dú)立思考、分析問題、解決問題的能力。
3、素質(zhì)目標(biāo):培養(yǎng)學(xué)生講究工作方法、與他人合作,提高效率。
三、教法分析
課前充分準(zhǔn)備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學(xué)過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學(xué)法”,同時(shí)輔以多媒體課件,以啟發(fā)的方式展開教學(xué)。由于本節(jié)課的內(nèi)容屬于圖這一章的難點(diǎn),考慮學(xué)生的接受能力,注意與學(xué)生溝通,根據(jù)學(xué)生的反應(yīng)控制好教學(xué)進(jìn)度是本節(jié)課成功的關(guān)鍵。
四、學(xué)法指導(dǎo)
1、課前上次課結(jié)課時(shí)給學(xué)生布置任務(wù),使其有針對性的預(yù)習(xí)。
2、課中指導(dǎo)學(xué)生討論任務(wù)解決方法,引導(dǎo)學(xué)生分析本節(jié)課知識點(diǎn)。
3、課后給學(xué)生布置同類型任務(wù),加強(qiáng)練習(xí)。
五、教學(xué)過程分析
。ㄒ唬┱n前復(fù)習(xí)(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。
教學(xué)方法及注意事項(xiàng):
。1)采用提問方式,注意及時(shí)小結(jié),提問的目的是幫助學(xué)生回憶概念。
。2)提示學(xué)生“溫故而知新”,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
。ǘ⿲(dǎo)入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個點(diǎn)間最短距離的實(shí)際需要,引出本課教學(xué)內(nèi)容“求最短路徑問題”。教學(xué)方法及注意事項(xiàng):
。1)先講實(shí)例,再指出概念,既可以吸引學(xué)生注意力,激發(fā)學(xué)習(xí)興趣,又可以實(shí)現(xiàn)教學(xué)內(nèi)容的自然過渡。
(2)此處使用案例教學(xué)法,不在于問題的`求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。
。ㄈ┲v授新課(25~30分鐘)
1、求某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑(重點(diǎn))主要采用案例教學(xué)法,提出旅游景點(diǎn)選擇的例子,解決如何選擇代價(jià)小、景點(diǎn)多的路線。
。1)將實(shí)際問題抽象成圖中求任一結(jié)點(diǎn)到其他結(jié)點(diǎn)最短路徑問題。(3~5分鐘)教學(xué)方法及注意事項(xiàng):
①主要采用講授法,將實(shí)際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標(biāo)號表示某一景點(diǎn),用箭頭表示從某景點(diǎn)到其他景點(diǎn)是否存在旅游線路,并且將旅途費(fèi)用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。
、谧⒁馐痉懂媹D只進(jìn)行一部分,讓學(xué)生獨(dú)立思考、自主完成余下部分的轉(zhuǎn)化。
、奂皶r(shí)總結(jié),原型抽象(景點(diǎn)作為圖的結(jié)點(diǎn),景點(diǎn)間的線路作為圖的邊,旅途費(fèi)用作為邊的權(quán)值),將案例求解問題抽象成求圖中某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑問題。
、芾枚嗝襟w課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學(xué)做準(zhǔn)備。
教學(xué)方法及注意事項(xiàng):
、賳l(fā)式教學(xué),如何實(shí)現(xiàn)按路徑長度遞增產(chǎn)生最短路徑?
、诮Y(jié)合案例分析求解最短路徑過程中(重點(diǎn))注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學(xué)生獨(dú)立思考完成。
。ㄋ模┱n堂小結(jié)(3~5分鐘)
1、明確本節(jié)課重點(diǎn)
2、提示學(xué)生,這種方式形成的圖又可以解決哪類實(shí)際問題呢?
。ㄎ澹┎贾米鳂I(yè)
1、書面作業(yè):復(fù)習(xí)本次課內(nèi)容,準(zhǔn)備一道備用習(xí)題,靈活把握時(shí)間安排。
六、教學(xué)特色
以旅游路線選擇為主線,靈活采用案例教學(xué)、示范教學(xué)、多媒體課件等多種手段輔助教學(xué),使枯燥的理論講解生動起來。在順利開展教學(xué)的同時(shí),體現(xiàn)所講內(nèi)容的實(shí)用性,提高學(xué)生的學(xué)習(xí)興趣。
八年級數(shù)學(xué)教案3
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的性質(zhì)。
2.內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).
對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
。2)會運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;
。3)了解代數(shù)式的概念.
2.目標(biāo)解析
。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);
。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;
(3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點(diǎn),得出代數(shù)式的概念.
三、教學(xué)問題診斷分析
二次根式的性質(zhì)是二次根式化簡和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.
四、教學(xué)過程設(shè)計(jì)
1.探究性質(zhì)1
問題1 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個非負(fù)數(shù)的算術(shù)平方根的平方.
問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計(jì)算
。1) ;(2) .
師生活動:學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運(yùn)用.
2.探究性質(zhì)2
問題4 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.
問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計(jì)算
。1) ;(2) .
師生活動:學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運(yùn)用.
3.歸納代數(shù)式的.概念
問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?
師生活動:學(xué)生概括式子的共同特征,得出代數(shù)式的概念.
【設(shè)計(jì)意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運(yùn)用
。1)算一算:
【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.
(2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?
【設(shè)計(jì)意圖】通過此問題的設(shè)計(jì),加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
。3)談一談你對 與 的認(rèn)識.
【設(shè)計(jì)意圖】加深學(xué)生對二次根式性質(zhì)的理解.
5.總結(jié)反思
。1)你知道了二次根式的哪些性質(zhì)?
。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡需要注意什么?
。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?
。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認(rèn)識.
6.布置作業(yè):教科書習(xí)題16.1第2,4題.
五、目標(biāo)檢測設(shè)計(jì)
1. ; ; .
【設(shè)計(jì)意圖】考查對二次根式性質(zhì)的理解.
2.下列運(yùn)算正確的是( )
A. B. C. D.
【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡的能力.
3.若 ,則 的取值范圍是 .
【設(shè)計(jì)意圖】考查學(xué)生對一個數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.
4.計(jì)算: .
【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.
八年級數(shù)學(xué)教案4
學(xué)習(xí)目標(biāo)
1、通過運(yùn)算多項(xiàng)式乘法,來推導(dǎo)平方差公式,學(xué)生的認(rèn)識由一般法則到特殊法則的能力。
2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。
3、初步學(xué)會運(yùn)用平方差公式進(jìn)行計(jì)算。
學(xué)習(xí)重難點(diǎn)重點(diǎn):
平方差公式的`推導(dǎo)及應(yīng)用。
難點(diǎn)是對公式中a,b的廣泛含義的理解及正確運(yùn)用。
自學(xué)過程設(shè)計(jì)教學(xué)過程設(shè)計(jì)
看一看
認(rèn)真閱讀教材,記住以下知識:
文字?jǐn)⑹銎椒讲罟剑篲________________
用字母表示:________________
做一做:
1、完成下列練習(xí):
、(m+n)(p+q)
②(a+b)(x-y)
、(2x+3y)(a-b)
、(a+2)(a-2)
⑤(3-x)(3+x)
、(2m+n)(2m-n)
想一想
你還有哪些地方不是很懂?請寫出來。
_______________________________
_______________________________
________________________________、
1、下列計(jì)算對不對?若不對,請?jiān)跈M線上寫出正確結(jié)果、
(1)(x-3)(x+3)=x2-3( ),__________;
(2)(2x-3)(2x+3)=2x2-9( ),_________;
(3)(-x-3)(x-3)=x2-9( ),_________;
(4)(2xy-1)(2xy+1)=2xy2-1( ),________、
2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;
(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、
3、計(jì)算:50×49=_________、
應(yīng)用探究
1、幾何解釋平方差公式
展示:邊長a的大正方形中有一個邊長為b的小正方形。
(1)請計(jì)算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計(jì)算)。
(2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?
2、用平方差公式計(jì)算
(1)103×93 (2)59、8×60、2
拓展提高
1、閱讀題:
我們在計(jì)算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時(shí),發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計(jì)算、解答過程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請?jiān)囋嚳?
2、仔細(xì)觀察,探索規(guī)律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)試求25+24+23+22+2+1的值;
(2)寫出22006+22005+22004+…+2+1的個位數(shù)、
堂堂清
一、選擇題
1、下列各式中,能用平方差公式計(jì)算的是( )
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b)、
八年級數(shù)學(xué)教案5
一、教學(xué)目標(biāo)
1、認(rèn)識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。
2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實(shí)際問題中分析并做出決策。
3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1、重點(diǎn):認(rèn)識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表
2、難點(diǎn):利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
3、難點(diǎn)的突破方法:
首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時(shí),可用中位數(shù)描述其趨勢。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時(shí),人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計(jì)算很少不受極端值的影響。
教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時(shí)眾數(shù)就是這多個數(shù)據(jù)。
在利用中位數(shù)、眾數(shù)分析實(shí)際問題時(shí),應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實(shí)例,使同學(xué)在分析不同實(shí)例中有所體會。
三、例習(xí)題的意圖分析
1、教材P143的例4的意圖
(1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計(jì)學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計(jì)總體的情況。
(2)、這個例題另一個意圖是交待了當(dāng)數(shù)據(jù)個數(shù)為偶數(shù)時(shí),中位數(shù)的求法和解題步驟。(因?yàn)樵谇懊嬗薪榻B中位數(shù)求法,這里不再重述)
(3)、問題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計(jì)一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計(jì)學(xué)中的一個重要的數(shù)據(jù)代表。
(4)、這個例題再一次體現(xiàn)了統(tǒng)計(jì)學(xué)知識與實(shí)際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。
四、課堂引入
嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的.這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
五、例習(xí)題的分析
教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。
六、隨堂練習(xí)
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計(jì)了這15個人的銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。
假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售定額定為320件,你認(rèn)為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據(jù)表格回答問題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進(jìn)貨,6月份在有限的資金下進(jìn)貨單位將如何決定?
答案:1. (1)210件、210件(2)不合理。因?yàn)?5人中有13人的銷售額達(dá)不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因?yàn)樗仁侵形粩?shù)又是眾數(shù),是大部分人能達(dá)到的額定。
2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進(jìn)1.2匹,由于資金有限就要少進(jìn)2匹空調(diào)。
七、課后練習(xí)
1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是
2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )
A.97、96 B.96、96.4 C.96、97 D.98、97
4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
5.隨機(jī)抽取我市一年(按365天計(jì))中的30天平均氣溫狀況如下表:
溫度(℃) -8 -1 7 15 21 24 30
天數(shù)3 5 5 7 6 2 2
請你根據(jù)上述數(shù)據(jù)回答問題:
(1).該組數(shù)據(jù)的中位數(shù)是什么?
(2).若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達(dá)到市民“滿意溫度”的大約有多少天?
答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天
八年級數(shù)學(xué)教案6
一、教材的地位和作用
現(xiàn)實(shí)生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對稱”的知識,進(jìn)一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實(shí)生活的需要,而且從思想方法和知識儲備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)、
性質(zhì)“等腰三角形的兩個底角相等”是幾何論證過程中,證明“兩個角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個角相等”等結(jié)論的重要理論依據(jù)、
教學(xué)重點(diǎn):
1、讓學(xué)生主動經(jīng)歷思考和探索的過程、
2、掌握等腰三角形性質(zhì)及其應(yīng)用、
教學(xué)難點(diǎn):等腰三角形性質(zhì)的理解和探究過程、
二、學(xué)情分析
本年級的學(xué)生已經(jīng)研究過一般三角形的性質(zhì),積累了一定的經(jīng)驗(yàn),動手能力強(qiáng),善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因?yàn)榛A(chǔ)不同,在學(xué)習(xí)中必然會出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過程中著重關(guān)注的一點(diǎn)、
三、目標(biāo)分析
知識與技能
1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)
2、了解等邊三角形的概念并探索其性質(zhì)
3、運(yùn)用等腰三角形的性質(zhì)解決問題
過程與方法
1、通過觀察等腰三角形的對稱性,發(fā)展學(xué)生的形象思維、
2、探索等腰三角形的性質(zhì)時(shí),經(jīng)歷了觀察、動手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)過程,積累數(shù)學(xué)活動經(jīng)驗(yàn),發(fā)展了學(xué)生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運(yùn)用數(shù)學(xué)語言合乎邏輯的進(jìn)行討論和質(zhì)疑,提高了數(shù)學(xué)語言表達(dá)能力、
情感態(tài)度價(jià)值觀:
1、通過情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識到學(xué)習(xí)等腰三角形的必要性、
2、通過等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識到科學(xué)結(jié)論的.發(fā)現(xiàn),是一個不斷完善的過程,培養(yǎng)學(xué)生堅(jiān)強(qiáng)的意志品質(zhì)、
3、通過小組合作,發(fā)展學(xué)生互幫互助的精神,體驗(yàn)合作學(xué)習(xí)中的樂趣和成就感、
四、教法分析
根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗(yàn)——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、
設(shè)計(jì)意圖
同學(xué)們,我們在七年級已研究了一般三角形的性質(zhì),今天我們一起來探究特殊的三角形:等腰三角形、
等腰三角形的定義
有兩條邊相等的三角形叫做等腰三角形、
等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、
提出問題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?
首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的
通過學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、
剪紙游戲
你能利用手中的這個矩形紙片剪出一個等腰三角形嗎?注意安全呦!
學(xué)情分析:
大部分學(xué)生會有自己的想法,根據(jù)軸對稱圖形的性質(zhì),利用對折紙片,再“剪一刀”就是就得到了兩條“腰”;
可能還有的同學(xué)會利用正方形的折法,獲得特殊的等腰直角三角形;
可能還有同學(xué)先畫圖,再依線條剪得、
在這個過程中,注重落實(shí)三維目標(biāo)、讓學(xué)生在獲取新知的過程中更好的認(rèn)識自我,建立自信、我不失時(shí)機(jī)的對學(xué)生給予鼓勵和表揚(yáng),使活動更加深入,課堂充滿愉悅和溫馨、
知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的理性思考、
我設(shè)計(jì)了問題:你是如何想到的?為的是剖析學(xué)生的思維過程:“折疊”就是為了得到“對稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實(shí)際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、
提出問題:
等腰三角形還有什么性質(zhì)?請?zhí)岢瞿愕牟孪,?yàn)證你的猜想?并填寫在學(xué)案上、
合作小組活動規(guī)則:
1、有主記錄員記錄小組的結(jié)論;
2、定出小組的主發(fā)言人(其它同學(xué)可作補(bǔ)充);
3、小組探究出的結(jié)論是什么?
4、說明你們小組所獲得結(jié)論的理由、
等腰三角形的性質(zhì):
性質(zhì)一:等腰三角形的兩個底角相等(簡稱“等邊對等角”)、
性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、
學(xué)情分析:這個環(huán)節(jié)是本節(jié)課的重點(diǎn),也是教學(xué)難點(diǎn)、盡管在教學(xué)過程中,因?yàn)閷W(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識的形成過程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、
通過設(shè)置恰當(dāng)?shù)膭邮謱?shí)踐活動,引導(dǎo)學(xué)生經(jīng)歷觀察、動手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)探究活動,這種探究的學(xué)習(xí)過程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、
(1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達(dá)的,盡量讓學(xué)生表達(dá);能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、
這種教學(xué)方式,把學(xué)習(xí)的過程真正還給學(xué)生,不怕學(xué)生說不好,不怕學(xué)生出問題,其實(shí)學(xué)生說不好的地方、學(xué)生出問題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點(diǎn)、著眼點(diǎn)、增長點(diǎn)、
(2)教師在這個過程中,充分聽取和參與學(xué)生的小組討論,對有困難的學(xué)生,及時(shí)指導(dǎo)、
鞏固知識
1、等腰三角形頂角為70°,它的另外兩個內(nèi)角的度數(shù)分別為________;
2、等腰三角形一個角為70°,它的另外兩個內(nèi)角的度數(shù)分別為_____;
3、等腰三角形一個角為100°,它的另外兩個內(nèi)角的度數(shù)分別為_____、
內(nèi)化知識
1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?
知識遷移
等邊三角形有什么特殊的性質(zhì)?簡單地?cái)⑹隼碛伞?/p>
等邊三角形的性質(zhì)定理:
等邊三角形的各角都相等,并且每一個角都等于60°、
拓展延伸
如圖2,在△ABC中,AB=AC,點(diǎn)D,E在BC上,AD=AE,你能說明BD=EC?
由于學(xué)生之間存在知識基礎(chǔ)、經(jīng)驗(yàn)和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識,使學(xué)困生達(dá)到簡單運(yùn)用水平,中等生達(dá)到綜合運(yùn)用水平,優(yōu)等生達(dá)到創(chuàng)建水平、
暢談收獲
總結(jié)活動情況,重在肯定與鼓勵、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識,運(yùn)用的數(shù)學(xué)思想方法,新舊知識的聯(lián)系等方面進(jìn)行反思,提高學(xué)生自主建構(gòu)知識網(wǎng)絡(luò)、分析解決問題的能力、
幫助學(xué)生梳理知識,回顧探究過程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、
反思過程不僅是學(xué)生學(xué)習(xí)過程的繼續(xù),更重要的是一種提高和發(fā)展自己的過程、
基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4
八年級數(shù)學(xué)教案7
八年級下數(shù)學(xué)教案-變量與函數(shù)(2)
一、教學(xué)目的
1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。
2.使學(xué)生理解求自變量的取值范圍的兩個依據(jù)。
3.使學(xué)生掌握關(guān)于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。
4.通過求函數(shù)中自變量的取值范圍使學(xué)生進(jìn)一步理解函數(shù)概念。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):函數(shù)自變量取值的求法。
難點(diǎn):函靈敏處變量取值的確定。
三、教學(xué)過程
復(fù)習(xí)提問
1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內(nèi)容?
2.什么叫分式?當(dāng)x取什么數(shù)時(shí),分式x+2/2x+3有意義?
。ù穑悍帜咐锖凶帜傅挠欣硎浇蟹质,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的'條件是什么?
(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)
4.舉出一個函數(shù)的實(shí)例,并指出式中的變量與常量、自變量與函數(shù)。
新課
1.結(jié)合同學(xué)舉出的實(shí)例說明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。
2.結(jié)合同學(xué)舉出的實(shí)例,說明函數(shù)的自變量取值范圍有時(shí)要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:
。1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達(dá)式)有意義。
。2)自變量取值范圍要使實(shí)際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯(lián)想:請同學(xué)按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點(diǎn):
(1)例3中的4個小題歸納起來仍是三類題型。
。2)求函數(shù)值的問題實(shí)際是求代數(shù)式值的問題。
補(bǔ)充例題
求下列函數(shù)當(dāng)x=3時(shí)的函數(shù)值:
。1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。
。ù穑海1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結(jié)
1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。
2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):
(1)要使函數(shù)的解析式有意義。
①函數(shù)的解析式是整式時(shí),自變量可取全體實(shí)數(shù);
、诤瘮(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母≠0;
③函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)≥0。
。2)對于反映實(shí)際問題的函數(shù)關(guān)系,應(yīng)使實(shí)際問題有意義。
3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。
練習(xí):P94中1,2,3。
作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。
四、教學(xué)注意問題
1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。
2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。
3.注意培養(yǎng)學(xué)生對于“具體問題要具體分析”的良好學(xué)習(xí)方法。比如對于有實(shí)際意義來確定,由于實(shí)際問題千差萬別,所以我們就要具體分析,靈活處置。
八年級數(shù)學(xué)教案8
一、教學(xué)目標(biāo):
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.
2、會求一組數(shù)據(jù)的極差.
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法
1、重點(diǎn):會求一組數(shù)據(jù)的極差.
2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn).
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的'每日最高氣溫,如何對這兩段時(shí)間的氣溫進(jìn)行比較呢?
從表中你能得到哪些信息?
比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計(jì)算可以看出,對于2月下旬的這段時(shí)間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說,兩個時(shí)段的氣溫情況沒有什么差異呢?
根據(jù)兩段時(shí)間的氣溫情況可繪成的折線圖.
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析
問題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計(jì)知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。
八年級數(shù)學(xué)教案9
【教學(xué)目標(biāo)】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)重難點(diǎn)】
重點(diǎn):理解分式有意義的條件,分式的值為零的條件.
難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)過程】
一、課堂導(dǎo)入
1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的'最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時(shí).
輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.
3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當(dāng)B≠0時(shí),分式才有意義.
二、例題講解
例1:當(dāng)x為何值時(shí),分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.
(補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的值為0?
(1);(2);(3).
【分析】分式的值為0時(shí),必須同時(shí)滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當(dāng)x取何值時(shí),下列分式有意義?
3.當(dāng)x為何值時(shí),分式的值為0?
四、小結(jié)
談?wù)勀愕氖斋@.
五、布置作業(yè)
課本128~129頁練習(xí).
八年級數(shù)學(xué)教案10
一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計(jì)算的.知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。
根與系數(shù)的關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個重要定理。這是因?yàn)橥ㄟ^韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對后面函數(shù)的學(xué)習(xí)研究也是作用非凡。
通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。
通過韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。
(二)重點(diǎn)、難點(diǎn)
一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。
(三)教學(xué)目標(biāo)
1、知識目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。
八年級數(shù)學(xué)教案11
一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運(yùn)動稱為平移。
1、平移
2、平移的性質(zhì):
⑴經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行且相等;
⑵對應(yīng)線段平行且相等,對應(yīng)角相等。
、瞧揭撇桓淖儓D形的大小和形狀(只改變圖形的位置)。
(4)平移后的圖形與原圖形全等。
3、簡單的平移作圖
、俅_定個圖形平移后的位置的條件:
⑴需要原圖形的位置;
、菩枰揭频姆较;
、切枰揭频木嚯x或一個對應(yīng)點(diǎn)的位置。
、谧髌揭坪蟮膱D形的方法:
、耪页鲫P(guān)鍵點(diǎn);
、谱鞒鲞@些點(diǎn)平移后的對應(yīng)點(diǎn);
⑶將所作的對應(yīng)點(diǎn)按原來方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點(diǎn)沿某個方向轉(zhuǎn)動一個角度,這樣的'圖形運(yùn)動稱為旋轉(zhuǎn),這個定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。
1、旋轉(zhuǎn)
2、旋轉(zhuǎn)的性質(zhì)
、判D(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
、菩D(zhuǎn)過程中,圖形上每一個點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。
、侨我庖粚(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
⑷旋轉(zhuǎn)前后的兩個圖形全等。
3、簡單的旋轉(zhuǎn)作圖
、乓阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。
、埔阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
、俅_定組合圖案中的“基本圖案”
②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
、厶剿髟搱D案的形成過程,類型有:
、牌揭谱儞Q;
⑵旋轉(zhuǎn)變換;
、禽S對稱變換;
、刃D(zhuǎn)變換與平移變換的組合;
、尚D(zhuǎn)變換與軸對稱變換的組合;
、瘦S對稱變換與平移變換的組合。
八年級數(shù)學(xué)教案12
數(shù)據(jù)的波動
教學(xué)目標(biāo):
1、經(jīng)歷數(shù)據(jù)離散程度的探索過程
2、了解刻畫數(shù)據(jù)離散程度的三個量度極差、標(biāo)準(zhǔn)差和方差,能借助計(jì)算器求出相應(yīng)的數(shù)值。
教學(xué)重點(diǎn):會計(jì)算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。
教學(xué)難點(diǎn):理解數(shù)據(jù)離散程度與三個差之間的關(guān)系。
教學(xué)準(zhǔn)備:計(jì)算器,投影片等
教學(xué)過程:
一、創(chuàng)設(shè)情境
1、投影課本P138引例。
(通過對問題串的解決,使學(xué)生直觀地估計(jì)從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時(shí)讓學(xué)生初步體會平均水平相近時(shí),兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個量度極差)
2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個統(tǒng)計(jì)量。
二、活動與探究
如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)
問題:1、丙廠這20只雞腿質(zhì)量的`平均數(shù)和極差是多少?
2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的差距。
3、在甲、丙兩廠中,你認(rèn)為哪個廠雞腿質(zhì)量更符合要求?為什么?
(在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個丙廠,其平均質(zhì)量和極差與甲廠相同,此時(shí)導(dǎo)致學(xué)生思想認(rèn)識上的矛盾,為引出另兩個刻畫數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。
三、講解概念:
方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2
設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為
則s2= ,
而s= 稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)
從上面計(jì)算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
四、做一做
你能用計(jì)算器計(jì)算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?
(通過對此問題的解決,使學(xué)生回顧了用計(jì)算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟)
五、鞏固練習(xí):課本第172頁隨堂練習(xí)
六、課堂小結(jié):
1、怎樣刻畫一組數(shù)據(jù)的離散程度?
2、怎樣求方差和標(biāo)準(zhǔn)差?
七、布置作業(yè):習(xí)題5.5第1、2題。
八年級數(shù)學(xué)教案13
一、目標(biāo)要求
1.理解掌握分式乘除法運(yùn)算法則。
2.能熟練地運(yùn)用分式乘除法運(yùn)算法則進(jìn)行分式的乘除運(yùn)算。
二、重點(diǎn)難點(diǎn)
重點(diǎn)是分式乘除法法則。
難點(diǎn)是分子或分母為多項(xiàng)式的分式的乘除法。
1.分式的乘除法法則:
。1)分式乘以分式,用分子的積做積的分子,分母的積做積的分母,用式子表示為=;
(2)分式除以分式,把除式的分子、分母顛倒位置后與被除式相乘,用式子表示為÷ = = 。
2.遇到分式的乘方、乘、除法的混合運(yùn)算,首先要注意運(yùn)算順序,即先乘方、后乘除,而除法運(yùn)算又應(yīng)根據(jù)其法則轉(zhuǎn)化為乘法運(yùn)算;其次要注意運(yùn)算符號法則與分式的符號法則,最后在約分時(shí)要注意分子與分母是為積的形式,若不是則應(yīng)進(jìn)行因式分解。
3.分式的運(yùn)算中不能去分母,因?yàn)槿シ帜甘堑仁降男再|(zhì),而分式不是等式,分式的運(yùn)算只是對分式進(jìn)行恒等變形。
三、解題方法指導(dǎo)
【例1】計(jì)算:
。1)3x2y (-);
。2)6x3y2÷(-) ÷x2;
。3)( )÷(-)(-)
分析:分式的分子與分母是單項(xiàng)式的乘除,先將除法轉(zhuǎn)化為乘法,根據(jù)分式的乘法法則,先確定結(jié)果的符號,然后將系數(shù)相乘除,其余的因式按指數(shù)法則運(yùn)算。
解:
。1)原式=-3x2y =-1。
。2)原式=6x3y2(-)
=-6x3y2 =-。
(3)原式=(-)(-)(-)
=-=-。
【例2】計(jì)算:
(1)÷ 。
。2)÷(x+3)
分析:分式的乘除混合運(yùn)算,首先將除法轉(zhuǎn)化為乘法,將分子、分母因式分解后進(jìn)行約分。
解:
。1)原式=
。2)原式= ÷(x+3)
注意:
(1)分式的分子、分母是多項(xiàng)式時(shí),一般先按某一字母的`降冪排列,再分解因式,并在運(yùn)算過程中約分,使運(yùn)算簡化。
。2)分式除法中,除式是整式時(shí),可以看作分母是1的式子。要注意乘除法是屬于同一級運(yùn)算,必須嚴(yán)格按從左到右的順序。
四、激活思維訓(xùn)練
▲知識點(diǎn):分式的乘除法運(yùn)算
【例】已知m=,求代數(shù)式÷的值。
分析:首先應(yīng)將代數(shù)式化簡,然后把已知條件變形后代入,即可求出其值。
解:÷ =
=(m+2)(m-2)=m2-4。
∵ m=,∴ m2=1。
∴原式=m2-4=1-4=-3。
五、基礎(chǔ)知識檢測
六、創(chuàng)新能力運(yùn)用
參考答案
【基礎(chǔ)知識檢測】
1.(1)分子的積做分子、分母的積做分母、分子、分母,相乘
2.(1)D(2)D
八年級數(shù)學(xué)教案14
●教學(xué)目標(biāo)
(一)教學(xué)知識點(diǎn)
1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個三角形是否相似.
2.能根據(jù)相似比進(jìn)行計(jì) 算.
(二)能力訓(xùn)練要求
1.能根據(jù)定義判斷兩個三角形是否相似,訓(xùn)練 學(xué)生的判斷能力.
2.能根據(jù)相似比求長度和角度,培養(yǎng)學(xué)生的運(yùn)用能力.
(三)情感與價(jià)值觀要求
通過與相似多邊形有關(guān)概念的類比,滲透類比的教學(xué)思想,并領(lǐng)會特殊與一般的關(guān)系.
●教學(xué)重點(diǎn) 相似三角形的定義及運(yùn)用.
●教學(xué)難點(diǎn) 根據(jù)定義求線段長或角的.度數(shù).
●教學(xué)過程
、.創(chuàng)設(shè)問題情境,引入新課
今天, 我們就來研究相似三角形.
、.新課講解
1.相似三角形的定義及記法
三角對應(yīng)相等,三邊 對應(yīng)成比例的兩個三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF
其中對應(yīng)頂點(diǎn)要寫在對應(yīng)位置,如A與D,B與E,C與F相對應(yīng).AB∶DE等于相似比.
2.想一想
如果△ABC∽△DEF,那么哪些角是對應(yīng)角?哪些邊是對應(yīng)邊?對應(yīng) 角 有什么關(guān)系?對應(yīng)邊呢?
所以 D、E、F. .
3.議一議,學(xué)生討論
(1)兩個全等三角形一定相似嗎?為什么?
(2)兩個直角三角 形一 定相似嗎?兩個等腰直角三角形呢?為 什么?
(3)兩個等腰三角形一定相似嗎?兩個等邊三角形呢?為什么?
結(jié)論:兩 個全等三角形一定相似.
兩個 等腰直角三角形一定相似.兩個等邊三角形一定相似.兩個直角三角形和兩個等腰三角形不一定相似.
4.例題
例1、有一塊呈三角形形狀 的草坪,其中一邊的長是20 m,在這個草坪的圖紙上,這條邊長5 cm,其他兩邊的 長都是3.5 cm,求該草坪其他兩邊的實(shí)際長度.
例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,
ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長.
5.想一想
在例2的條件下,圖中有哪些線段成比例?
Ⅲ.課堂練習(xí) P129
、.課時(shí)小結(jié)
相似三角形的 判定方法定義法.
、.課后作業(yè)
八年級數(shù)學(xué)教案15
一、教材分析教材的地位和作用:
本節(jié)內(nèi)容是第一課時(shí)《軸對稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認(rèn)識軸對稱的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),使學(xué)生從對圖形的感性認(rèn)識上升到對軸對稱的理性認(rèn)識,為進(jìn)一步學(xué)習(xí)軸對稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。
二、學(xué)情分析
八年級學(xué)生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實(shí)例和動手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。
三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定
根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下:
(一)教學(xué)目標(biāo):
1、知識技能
(1)理解并掌握軸對稱圖形的概念,對稱軸;能準(zhǔn)確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.
(2)理解并掌握軸對稱的概念,對稱軸;了解對稱點(diǎn).
(3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別.
2、過程與方法目標(biāo)
經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動手實(shí)踐能力、抽象思維和語言表達(dá)能力.
3、情感、態(tài)度與價(jià)值觀
通過對生活中數(shù)學(xué)問題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,在自主探究、合作交流的過程中,體會數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的情感和欣賞圖形的對稱美。
(二)教學(xué)重點(diǎn):軸對稱圖形和軸對稱的有關(guān)概念.
(三)教學(xué)難點(diǎn):軸對稱圖形與軸對稱的聯(lián)系、區(qū)別
.四、教法和學(xué)法設(shè)計(jì)
本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級學(xué)生的知識結(jié)構(gòu)和心理特征。我選擇的:
【教法策略】采用以直觀演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動,激發(fā)學(xué)生探求知識的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動探索問題的積極狀態(tài),使不同層次學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。
【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
【輔助策略】我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強(qiáng)直觀效果,提高課堂效率
五、說程序設(shè)計(jì):
新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀察、試驗(yàn)、猜測、驗(yàn)證、推理與交流等數(shù)學(xué)活動。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個教學(xué)過程進(jìn)行了設(shè)計(jì)。
(一)、觀圖激趣、設(shè)疑導(dǎo)入。
出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時(shí)蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。
[設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,
(二)、實(shí)踐探索、感悟特征.
《活動一(課件演示)觀察這些圖形有什么特點(diǎn)?》在這個環(huán)節(jié)中我首先出示一組常見的具有代表性的.典型的軸對稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。
為了進(jìn)一步認(rèn)識軸對稱圖形的特點(diǎn)又出示了一組練習(xí)
(練習(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸
[設(shè)計(jì)意圖]通過這個練習(xí)題不僅讓學(xué)生鞏固了軸對稱圖形的概念,而且讓學(xué)生認(rèn)識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學(xué)生認(rèn)識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。
(練習(xí)2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進(jìn)一步鞏固了軸對稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時(shí)通過展示各國的國旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識面。
(三)、動手操作、再度探索新知。
將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學(xué)中注重學(xué)生活動,鼓勵學(xué)生親自實(shí)踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動手能力,從而引出軸對稱概念。
再次引導(dǎo)學(xué)生討論、歸納得出軸對稱的概念……。之后再結(jié)合動畫演示加深對軸對稱概念的理解,進(jìn)而引出對稱軸、對稱點(diǎn)的概念.并結(jié)合圖形加以認(rèn)識。
(四)、鞏固練習(xí)、升華新知。
出示幾幅圖形,請同學(xué)們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,
在這組練習(xí)中讓學(xué)生動手、動口、動眼、動腦,充分調(diào)動了學(xué)生的各種感官參與學(xué)習(xí),既加深了對兩個概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。
(課件演示)軸對稱圖形及兩個圖形成軸對稱區(qū)別與聯(lián)系
(五)、綜合練習(xí)、發(fā)展思維。
1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。
2、判斷:
生活中不僅有些物體的形狀是軸對稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。
(1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?
0123456789ABCDEFGH
3、像這樣寫法的漢字哪些是軸對稱圖形?
口工用中由日直水清甲
(這幾道題的練習(xí)做到了知識性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)
(六)歸納小結(jié)、布置作業(yè)
[設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評價(jià)。作業(yè)布置要有層次,照顧學(xué)生個體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!
六、設(shè)計(jì)說明
這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過六個環(huán)節(jié)的教學(xué)設(shè)計(jì),通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對稱圖形與關(guān)于直線成軸對稱兩個概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動口、動手、動眼、動腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對本節(jié)課的理解和說明。
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級《函數(shù)》數(shù)學(xué)教案08-17
八年級數(shù)學(xué)教案12-09
人教版八年級數(shù)學(xué)教案11-04
八年級數(shù)學(xué)教案【精】12-04
八年級下冊數(shù)學(xué)教案01-01
八年級上冊數(shù)學(xué)教案12-11