四年級下冊數(shù)學《三角形內角和》教案7篇【推薦】
作為一位不辭辛勞的人民教師,時常會需要準備好教案,教案是備課向課堂教學轉化的關節(jié)點。那么教案應該怎么寫才合適呢?下面是小編幫大家整理的四年級下冊數(shù)學《三角形內角和》教案,歡迎大家借鑒與參考,希望對大家有所幫助。
四年級下冊數(shù)學《三角形內角和》教案1
探索與發(fā)現(xiàn):三角形內角和
課型
新授課
設計說明
本節(jié)課是在學生已經(jīng)掌握了鈍角、銳角、直角、平角及三角形分類的基礎上,讓學生通過直觀操作來認識和學習的。
1.重視知識的探究與發(fā)現(xiàn)。
在教學中,概念的形成沒有直接給出,而是整節(jié)課都是在引導學生的實驗操作、活動探究中進行。在探究活動中,不但重視知識的形成過程,而且注意留給學生充分進行主動探究和交流的空間,讓學生歸納出三角形內角和等于180°。
2.重視學生的合作探究學習。
使學生能夠積極主動地參與到數(shù)學活動中,能在實踐中感知、發(fā)表自己的見解,學生感受到通過自己的努力取得成功所帶來的滿足感,同時也培養(yǎng)了學生的探究能力和創(chuàng)新能力。
課前準備
教師準備:PPT課件 量角器 直尺 三角尺
學生準備:量角器 三角尺
教學過程
一、常識導入。(3分鐘)
1.介紹帕斯卡:早在300多年前有一個科學家,他在12歲時驗證了任意三角形的內角和都是180°,他就是法國科學家、物理學家帕斯卡。
2.導入新課:這節(jié)課我們也來驗證一下三角形的內角和。
1.傾聽教師的介紹,了解帕斯卡。
2.明確本節(jié)課的學習內容。
1.填空。
(1)有一個角是鈍角的三角形是( )三角形;有一個角是直角的三角形是( )三角形;三個角都是銳角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分鐘)
(一)量算法。
1.探究特殊三角形的內角和。
(1)出示一副三角尺,引導學生說一說各個角的度數(shù)。
(2)引導學生算一算它們的內角和各是多少度。
(3)引導學生得出結論。
2.探究一般三角形的內角和。
(1)引導學生猜一猜其他三角形的內角和是多少度。
(2)組織學生驗證一般三角形的內角和是180°。
、僖龑W生量出每個內角的度數(shù),再計算三個內角的和。
②引導學生分工合作,把結果填入記錄表中。
③引導學生說說自己的發(fā)現(xiàn)。
(3)引導學生明確由于測量有誤差,實際上三角形的內角和是180°。
(二)剪拼法。
1.組織學生用剪拼的方法求三角形的內角和。
2.引導學生總結發(fā)現(xiàn)。
3.課件演示,得出三角形的內角和是180°的結論。
(三)折拼法。
1.引導學生結合剪拼法嘗試折拼法。
2.引導學生得出結論。
3.課件演示折拼法。
(一)1.(1)說出每個三角尺中各個角的度數(shù)。
、90°;60°;30°。
、90°;45°;45°。
(2)獨立算出每個三角尺的內角和。
(3)得出結論:這兩個三角尺的內角和都是180°。
2.(1)同桌之間互相說說自己的看法。
猜測:一種是內角和可能是180°,另一種是內角和一定是180°。
(2)小組合作進行探究,量一量,算一算,說一說。
三角形種類 | 每個內角 的度數(shù) | 三個內 角的和 | ||
銳角三角形 | 65° | 46° | 68° | 179° |
鈍角三角形 | 110° | 25° | 46° | 181° |
等腰三角形 | 70° | 55° | 55° | 180° |
等邊三角形 | 60° | 60° | 60° | 180° |
通過觀察發(fā)現(xiàn):三角形的`內角和都在180°左右。
(3)聽老師講解,明確三角形的內角和是180°。
(二)1.把一個三角形的三個內角剪下來,小組內拼合。在拼合過程中要注意:頂點重合,三個角拼合。
2.發(fā)現(xiàn)三角形的三個內角正好拼成了一個平角,也就是180°。
3.觀看課件演示,明確三角形的三個內角拼成了一個平角,所以它的內角和是180°。
(三)1.動手折一折、拼一拼。
2.得出結論:三角形的三個內角拼在一起正好是一個平角,所以三角形的內角和是180°。
3.觀看課件演示,再次明確三角形的內角和是180°。
2.算一算。
在一個直角三角形中,已知一個銳角是35°,另一個銳角是多少度?
3.在能組成三角形的三個角的后面畫“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一個三角形,其中一個角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三個內角,請你計算出每個三角形中∠1的度數(shù)。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、鞏固練習。(16分鐘)
把正確答案的序號填在括號里。
1.把兩個小三角形合成一個大三角形,這個大三角形的內角和是( )。
A.90° B.180° C.360°
2.一個三角形中有兩個銳角,則第三個角( )。
A.也是銳角
B.一定是直角
C.一定是鈍角
D.無法確定
小組合作,選一選,明確答案。
1.明確任何一個三角形的內角和都是180°,三角形的內角和與三角形的大小無關。
2.通過討論,明確任何一個三角形都至少有兩個銳角,所以無法確定。
6.如下圖,在直角三角形中,已知∠2=30°,不計算,你知道∠1的度數(shù)嗎?
四、課堂總結,拓展延伸。(3分鐘)
1.總結本節(jié)課的學習內容。
2.布置課后作業(yè)。
談自己本節(jié)課的收獲。
四年級下冊數(shù)學《三角形內角和》教案2
設計說明
在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去探究、發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探究的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。
遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角板上每個角的度數(shù)都比較熟悉,從這里入手,先讓學生算出每塊三角板上三個內角的和是180°,進而引發(fā)學生猜想:其他三角形的內角和也是180°嗎?接著引導學生小組合作,任意畫出不同類型的三角形,通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差)。再引導學生通過剪拼的方法發(fā)現(xiàn)各類三角形的三個內角都可以拼成一個平角。然后利用課件演示進一步驗證,由此獲得三角形的內角和是180°的結論。這一系列的活動潛移默化地向學生滲透了轉化的數(shù)學思想,為后面的學習奠定了必要的基礎。最后安排了三個層次的練習,逐層加深。在練習的過程中,既激發(fā)了學生主動解題的積極性,拓展了學生的思維,又兼顧到了智力水平發(fā)展較快的學生。
課前準備
教師準備 多媒體課件
學生準備 三角板
教學過程
⊙復習導入
師:請同學們回憶一下,我們以前學過哪些平面圖形?(長方形、正方形、平行四邊形、三角形等)
師:這些是我們早已認識的平面圖形,那么你們知道長方形有什么特征嗎?(學生匯報:長方形的對邊相等,有四個角,且四個角都是直角)
師:這四個角一共是多少度?(360°)
師:你是怎么算的?(90°×4=360°)
師:請看大屏幕。(課件演示三條線段圍成三角形的過程)三條線段圍成三角形后,在三角形內形成了三個角(課件分別顯示出三個角的弧線),我們把三角形里面的這三個角叫做三角形的內角。
師:通過剛才的回憶,同學們知道長方形四個內角的和是360°,那么三角形的內角和又是多少呢?這節(jié)課我們就來探究三角形的內角和。(板書課題)
設計意圖:通過復習學過的平面圖形,喚醒學生的認知。借助長方形四個角都是直角的特征,學生通過計算很容易知道長方形的內角和是360°,從而質疑三角形的內角和是多少。這樣以問題情境開始,既豐富了學生的感官認識,又激發(fā)了學生的探究欲望。
⊙探究新知
1.探究特殊三角形的內角和。
師:(課件出示一塊三角板)大家熟悉這塊三角板嗎?請拿出形狀與這塊一樣的三角板,并和同桌互相說一說各個角的度數(shù)。(課件出示由三角板抽象出的三角形)
師:這個三角形三個角的度數(shù)和是多少?(180°)你是怎樣知道的?(90°+45°+45°=180°)
明確:把三角形三個內角的度數(shù)合起來就叫做三角形的內角和。
師:(課件出示由另一塊三角板抽象出的三角形)這個三角形的內角和是多少度?(90°+60°+30°=180°)
師:從剛才兩個三角形內角和的計算中你發(fā)現(xiàn)了什么?(這兩個三角形的內角和都是180°,且這兩個三角形都是直角三角形)
2.探究一般三角形的內角和。
(1)剛才我們探究了直角三角形的內角和是180°,那么其他任意三角形的內角和又是多少度呢?請大家猜一猜。(大多數(shù)學生認為也是180°)
(2)操作、驗證一般三角形的內角和是180°。
師:剛才大多數(shù)同學認為三角形的內角和是180°,但也有幾個同學不敢肯定,那么我們用什么方法來驗證這個猜想是否正確呢?
、傩〗M合作,探究驗證方法。
師:請每位同學先獨立思考,然后把你的想法在小組內交流,看一看哪個小組想出的方法最多。
、诮涣鲄R報。
預設
組1:我們小組用量角器把三角形的三個內角的`度數(shù)分別量出來,再加起來看一看是不是等于180°。
組2:我們小組猜想三角形的內角和是180°,而平角的度數(shù)也是180°,如果三角形的三個內角剛好能拼成一個平角,那么就說明三角形的內角和是180°。所以我們小組把三角形的三個內角剪下來,拼一拼,看一看能不能拼成一個平角。
③動手操作,驗證猜想。
師:請同學們選擇一種你喜歡的方法來驗證我們剛才的猜想,驗證完,將你的結論在小組內交流。(出示課堂活動卡,教師巡視,參與各小組的驗證活動,并給予適當?shù)闹笇?
師小結:大家剛才量出來的結果或拼出來的結果都在180°左右,其實三角形的內角和就是180°,因為在測量或操作的過程中會產(chǎn)生誤差,所以數(shù)據(jù)會有一些偏差。
3.得出結論。
師:根據(jù)上面的驗證,我們可以得出一個怎樣的結論?(三角形的內角和是180°,教師板書:三角形的內角和是180°)
設計意圖:學生通過操作、思考、反饋等過程,真正經(jīng)歷了有效的探究活動,先由直角三角形算出其內角和,再用猜想、操作、驗證等方法推導出一般三角形的內角和,最后歸納得出所有三角形的內角和都是180°。在這個過程中,學生不僅體會到了數(shù)學學習中歸納的思想方法,還感受到了數(shù)學與生活的密切聯(lián)系。
四年級下冊數(shù)學《三角形內角和》教案3
教學內容:
小學數(shù)學教材第八冊 P145—P146
教學目的:
1.通過教學向學生滲透“認識來源于實踐,服務于實踐”的觀點。
2.使學生通過學習“三角形內角和”能解決一些實際問題。
3.進一步培養(yǎng)學生動手操作的能力。
教學重點:
對三角形內角和知識的實際運用。
教學難點:通過動手操作驗證三角形的內角和是180°
教 法:實驗法,演示法
教具準備:三種類型的三角形各一個。
學具準備:三角形紙片若干。
教學過程:
一、課前一練
說說我們學過的有關三角形的知識。
二、導入
在新課開始之前,我們先來做一個小游戲,請同學們在練習本上任意畫一個三角形,量出它三個角的度數(shù)。
(生畫,量)
現(xiàn)在請你注意報上兩角的度數(shù),老師就能迅速的說出第三角的度數(shù),誰想試試?
(生報,師速答)
你們想不想知道老師有什么法寶,能這么快說出第三個角的度數(shù)?通過這節(jié)數(shù)學課的學習,你就可以揭開這個奧秘了。(板書“三角形的內角和”)
看到這個題目,你想知道些什么呢?
生:三角形的內角和是多少度?
生:什么叫三角形的內角和?
生:我們學習三角形的內角和有什么用處?
通過這節(jié)課的學習,我們就要知道,三角形的內角和是多少度以及它在實際生活中的應用。
三、新授
我們要學習三角形的內角和,就要首行弄清什么是三角形的內角和。
生:“內”是里的意思,“內角”就是三角形里面的角。
生:(邊指邊說)“內角和”就是將三角形里面的角相加的度數(shù)。
生:我還有補充。三角形的內角和是三個角相加的度數(shù)。
說的真好。我們來看自學提示:
1.銳角三角形的內角和是多少度?
2.直角三角形的內角和是多少度?
3.鈍角三角形和內角和是多少度?
4.你從中能得出什么結論?
下面打開書P145,自學開始。
匯報自學成果
生:我通過度量得到P145的第一個三角形的三個角的度數(shù)分別為它們的和是180°
生:我跟他的結果不一樣,我量的三角度數(shù)分別為56°50° 74° 它們的和是180°
生:我度量結果是179°
我們在進行度量的時候,由于工具的誤差以及我們視力的限制,經(jīng)常會出現(xiàn)一些小誤差,有沒有什么方法可以避免這種誤差呢?
生:老師,我不是通過度量,我是通過折紙的方法得出結論的。(邊說邊演示)。我拿一個銳角三角形,把上面的角沿虛線橫折,使它的點落到底邊上,再將剩下的兩個角橫折過來,使三個角正好拼在一起,這三個角組成了一個平角,所以我得出結論:銳角三角形的內角和是180°
生:老師,我也是這樣折的。
師:請你到投影上演示一下。大家看他演示,你們同意他的說法嗎?
生:同意。
師:好。那么我們可以得出結論:銳角三角形的內角和是180°
。ㄙN三角形,板180°)
生:自學直角三角形的內角和,我也采用了拼折的方法,我將直角三角形的兩個銳角折向直角,三角頂點重合,我發(fā)現(xiàn)兩個銳角正好組成了一個直角,再加上直角,它的內角和是180°
(貼三角形,板180°)
生:我不是像你那樣折的。我在拼折的`時候發(fā)現(xiàn)兩個直角三角形正好可以拼成一個長方形,長方形的四個角都是直角,所心內角和是
360°。再除以2,就得到直角三角形的內角和是180°
生:老師,我覺得他們的方法太麻煩了,我將我手中的鈍角三角形的三個角撕下來,再把它們的頂點重合,也組成了一個平角,就可以證明鈍角三角形的內角和也是180°了。
師:你真有創(chuàng)新精神,你們得出的結論和他一樣嗎?
生:一樣。
師:好。鈍角形的內角和也是180°。那么你從中能得出什么結論呢?
生:三角形的內角和是180°。
生:我有補充,三角形按角分可以分為三類,鈍角三角形,直角三角形呼銳角三角形。我們已經(jīng)通過各種各樣的方法證明了這三種類型的三角形的內角和都是180°,所以可以得出上面的結論。
師:說的真好,我們給他鼓掌。(板“三角形內角和是180°)根據(jù)這個結論,如果知道了三角形中兩個角的度數(shù),就可以求出第三個角的度數(shù)?赐队。
在三角形中,∠1=78°,∠2=44°求∠3的度數(shù)
迅速做出答案
∠3=180°-∠1-∠2
=180°-78°-44°
=58°
生:老師,現(xiàn)在我也能根據(jù)兩角度數(shù)迅速判斷出第三角的度數(shù)了。
師:看來你已經(jīng)掌握了老師的法寶了,誰來考考他?
(生考)
師:你真聰明,我還要再考考你們。
。ㄍ队俺鍪綪146“做一做”)
生:180°-90°-65°=25°。
生:老師,我可以用一種方法直接求出得數(shù)。90°-65°=25°
師:你真聰明,現(xiàn)在同學們打開書,認真看一下這節(jié)課學習的內容,你還有哪些不明白的地方?
生:老師,三角形既然有內角,那一定也有外角了,什么是三角形的外角?外角和多少呢?
將三角形的一邊延長,就得到了三角形的外角,三角形的外角是多少度呢?有興趣的同學可以課后繼續(xù)研究。
四、鞏固練習
下面我們運用這節(jié)課學習的內容做幾個小練習。(略)
(生做,一生到投影上量,上下對照)
2.搶答:
已知∠1,∠2,∠3是三角形的三個內角。
。1)∠1=38° ∠2=49°求∠3
。2)∠2=65° ∠3=73°求∠1
已知∠1和∠2是直角三角形中的兩個銳角
。1)∠1=50°求∠2
。2)∠2=48°求∠1
3.已知等腰三角形的一個底角是70°,它的頂角是多少度?(一生到投影做,其余在本上做)
4.思考題
你能根據(jù)書中P149的17題推導出多邊形的內角和公式嗎?
(小組討論)
五、小結
本節(jié)課我們學習了哪些內容?(生自由說),同學們說得真好,我們要勇于從事實中尋找規(guī)律,再將規(guī)律運用到實踐當中去。
四年級下冊數(shù)學《三角形內角和》教案4
設計理念:
本教學活動通過創(chuàng)設情境,讓學生從情境中出發(fā)經(jīng)歷猜測、驗證、交流等數(shù)學活動,培養(yǎng)學生動手實踐、自主探究與合作交流的能力。同時,讓學生充分感受到:數(shù)學源于生活,生活離不開數(shù)學,數(shù)學就在我們身邊。遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一,并在這一系列教學活動中潛移默化地向學生滲透了“轉化”數(shù)學思想,為后續(xù)學習奠定必要的基礎。
教學內容:
《義務教育課程標準實驗教科書·數(shù)學》(人教版)四年級下冊第85頁例5及相應練習。
學情與教材分析:
該內容是本冊教材第五單元關于三角形內角和的教學。它安排在三角形的分類之后,組織學生對不同形狀和不同大小三角形度量內角的度數(shù)。通過度量,各種三角形內角和之和都接近180°,引發(fā)學生對三角形內角和探究的欲望,應用折疊、拼湊等方法驗證。教材重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生進行自主探索和交流的.空間,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內角和是180°。
教學目標:
1、通過量、剪、拼等方法,探索和發(fā)現(xiàn)三角形內角和是180°。
2、在操作活動中,培養(yǎng)學生的合作能力、動手操作能力,發(fā)展學生的空間觀念,并應用新知識解決問題。
3、使學生有科學實驗態(tài)度,激發(fā)學生主動學習數(shù)學的興趣,體驗數(shù)學學習成功的喜悅。
教學重點:
引導學生發(fā)現(xiàn)三角形內角和是180°。
教學難點:
用不同方法驗證三角形的內角和是180°。
教學用具:
三種不同類型三角形,多媒體課件。
教學過程:
一、創(chuàng)設情境,揭示課題。
與學生交流。(同學們,星期天你們喜歡玩什么? )
小明打破一塊三角形玻璃的情景。(課件出示)
(學生猜一猜,他會帶哪一塊到玻璃店配玻璃)
、劢榻B三角形內角及三角形內角和的含義。
④設疑揭題。
從剛才的情境中,我們知道,破掉的三角形玻璃,只要知道其中的兩內角,就能配出和原來一樣的玻璃。究竟有什么奧妙?這節(jié)課我們就一起來研究有關三角形內角和的知識。
【設計意圖:以小明打破玻璃為載體,引入本課的學習,增強了學生的好奇心與探究欲,使學生全身心地投入到學習活動中來。拉近了數(shù)學課堂與現(xiàn)實生活的距離,激起學生濃厚的學習興趣!
二、自主探索、驗證猜想。
1、猜一猜。
猜一猜,它們的內角和到底是誰的大呢?(板貼三種不同類型三角形)
2、量一量。
用量角器來量一量,算一算。
合作要求:
三種三角形和一張表格,四人小組合作,你們覺得怎樣分工度量的速度會最快?
溫馨提示:
測量的同學:量出每個角的度數(shù),把它寫在三角形里面。三個角的度數(shù)都量好后,再匯報給記錄的同學登記。
記錄的同學:監(jiān)督小組其他同學量得是不是很準確、真實。不能改掉小組成員度量出來的數(shù)據(jù)。(開始)
量一量、算一算不同類型三角形內角和各是多少度?
⑵小組合作探究
、菂R報交流
【學生匯報中可能會出現(xiàn)答案不是唯一的情況,如:180°、179°、181°等。】
。4)說一說。
師:觀察這些測量結果你能發(fā)現(xiàn)什么(三角形內角和大約是180°左右)?
3、驗證。
。1)剪拼、撕拼
用度量的方法驗證,得到的結果不統(tǒng)一。有沒有比度量更精確的驗證方法?也就是不用度量你能用別的方法驗證嗎?
【學情預設:生:把三角形的三個角剪下來,再拼成一個角!
。2)折拼
用剪拼的方法是比較精確,美中不足就是把三角形給剪了或是撕了。有沒有更好驗證方法?(用折的方法—課件演示)
。3)觀察小結。
現(xiàn)在大家知道這幾個三角形的內角和是多少度嗎?
任何三角形的內角和都是180°。
4、揭疑解惑。
小明為什么帶只剩兩個角的三角形玻璃到玻璃店配玻璃?
【設計意圖:探索是數(shù)學的生命線。本環(huán)節(jié)以學生探索活動為主,讓學生在“量一量”、“折一折、拼一拼”中充分的探索活動中發(fā)現(xiàn)問題、提出問題、舉例驗證、建立模型,讓學生在“做數(shù)學”過程中理解和掌握新知識,為學生建立良好的學習空間!
四、鞏固深化。
師:學會了知識,我們就要懂得去運用。下面,我們就根據(jù)三角形的內角和的知識來解決一些相關數(shù)學問題。
1、選一選。哪三個角能組成一個三角形的三個內角?(課件出示)
2、算一算。求出三角形三個角的度數(shù)。(課件出示)
猜一猜。三角形中有一個角是60°,猜一猜它是什么三角形。
【設計意圖:練習設計力求形式多樣,循序漸進,既鞏固新知,又促進學生發(fā)散思維能力!
五、回顧實踐、全課總結
同學們通過這堂課的活動學習,說說你感受最深的是什么?讓老師和同學們分享你的收獲!
六、課后思考、拓展延伸。
一個三角形,剪掉一個角,剩下圖形的內角和是多少?
。▓D略,等腰三角形,剪掉一個底角)
四年級下冊數(shù)學《三角形內角和》教案5
教學目標:
1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數(shù)學思想。
3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
教學重點:
探究發(fā)現(xiàn)和驗證“三角形的內角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。
教學難點:
對不同探究方法的指導和學生對規(guī)律的靈活應用。
教學準備:
多媒體課件、學具。
教學過程
一、創(chuàng)設情境,激趣引入。
認識三角形內角
1、提問:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?
2、請看屏幕(課件演示三條線段圍成三角形的過程)。三條線段圍成三角形后,在三角形內形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的`這三個角分別叫做三角形的內角。三個內角的度數(shù)和就是三角形的內角和。
(設計意圖:讓學生整體感知三角形內角和的知識,有效地避免了新知識的橫空出現(xiàn)。)
二、動手操作,探究新知。
1、猜想
先后出示兩個直角三角形,讓學生說出各個內角的度數(shù),并求出這兩個直角三角形的內角和。
提問:從剛才的計算結果中,你想說些什么呢?
(引出猜想:三角形的內角和是180°)
(設計意圖:引導學生提出合理猜測:三角形的內角和是180°。)
2、驗證
這只是我們的猜想,事實上是不是這樣的呢?還需要我們進行驗證。想想,你有什么辦法驗證三角形的內角和是不是180°呢?
(引導學生說出量一量、拼一拼、畫一畫等方法)
提問:現(xiàn)實中的三角形有千千萬萬,是不是我們都要對其進行一一驗證呢?
引導學生回答出只要在銳角三角形、鈍角三角形和直角三角形三種三角形分別進行驗證就行。
組織學生以小組為單位進行動手操作驗證。(每個小組都有三種三角形,讓學生選擇一種三角形,用自己喜歡的方法進行驗證,把驗證的過程和結果在小組里進行討論交流。最后,小組派代表進行匯報)
(設計意圖:讓學生帶著問題動手、動口、動腦,調動多種感官參與數(shù)學學習活動,通過操作、剪拼、驗證,讓學生去探索、去實驗、去發(fā)現(xiàn),從而讓學生在動手操作積極探索的活動過程中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。)
3、總結
通過驗證,你們得出了什么結論呢?(板書:結論:三角形的內角和是180°)
三、應用延伸,解決問題。
1、求三角形中一個未知角的度數(shù)。
(1)在三角形中,已知∠1=70°,∠2=50°,求∠3。
(2)在三角形中,已知∠1=78°,∠2=44°,求∠3。
(3)選算式:(1)∠A=180°-55°(2)∠A=180°-90°-55°(3)∠A=90°-55°
(分別請同學們板演,并說出解題思路。)
2、判斷
(1) 一個三角形的三個內角度數(shù)是:80° 、75° 、 24° 。 ( )
(2)三角形越大,它的內角和就越大。 ( )
(3)一個三角形至少有兩個角是銳角。 ( )
(4)鈍角三角形的兩個銳角和大于90°。 ( )
(請同學回答,并說出判斷的依據(jù))
3、解決生活實際問題。
爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是70°,它的頂角呢?
(讓學生結合題意畫圖,再說出答題的思路)
4、拓展練習。
利用三角形內角和是180°,求出下面四邊形、六邊形的內角和?
圖 形
名 稱 三角形 四邊形 五邊形 六邊形
有幾個三角形
內角和
(設計意圖:習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中, 能充分注意溝通知識之間的內在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。)
四、全課總結,梳理反思。
今天你學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎么樣?
(設計意圖:引導學生回顧與反思學習過程,進一步梳理知識,優(yōu)化認知,感悟學習方法,從學會走向會學,帶著收獲的喜悅結束本節(jié)課的學習。)
五、板書設計:
三角形的內角和
猜想:三角形的內角和是180°。
驗證:量一量、拼一拼、畫一畫
直角三角形
銳角三角形
鈍角三角形
結論:三角形的內角和是180°。
四年級下冊數(shù)學《三角形內角和》教案6
教學內容:
p.28、29
教材簡析:
本節(jié)課的教學先通過計算三角尺的3個內角的度數(shù)的和,激發(fā)學生的好奇心,進而引發(fā)三角形內角和是180度的猜想,再通過組織操作活動驗證猜想,得出結論。
教學目標:
1、讓學生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內角和是180。
2、讓學生學會根據(jù)三角形的內角和是180 這一知識求三角形中一個未知角的度數(shù)。
3、激發(fā)學生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。
教學準備:
三角板,量角器、點子圖、自制的三種三角形紙片等。
教學過程:
一、提出猜想
老師取一塊三角板,讓學生分別說說這三個角的度數(shù),再加一加,分別得到這樣的2個算式:90+60+30=180,90+45+45=180
看了這2個算式你有什么猜想?
。ㄈ切蔚娜齻角加起來等于180度)
二、驗證猜想
1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。
老師注意巡視和指導。交流各自加得的結果,說說你的發(fā)現(xiàn)。
2、折、拼:學生用自己事先剪好的圖形,折一折。
指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。
繼續(xù)用該方法折鈍角三角形,得到同樣的結果。
直角三角形的折法有不同嗎?
通過交流使學生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的.度數(shù)和也是180度。
3、撕、拼:可能有個別學生對折的方法感到有困難。那么還可以用撕的方法。
在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。
小結:我們可以用多種方法,得到同樣的結果:三角形的內角和是180。
4、試一試
三角形中,角1=75,角2=39,角3=( )
算一算,量一量,結果相同嗎?
三、完成想想做做
1、算出下面每個三角形中未知角的度數(shù)。
在交流的時候可以分別學生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。
指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。
2、一塊三角尺的內角和是180 ,用兩塊完全一樣的三角尺拼成一個三角形,這個三角形的內角和是多少度?
可先猜想:兩個三角形拼在一起,會不會它的內角和變成1802=360 呢?為什么?
然后再分別算一算圖上的這三個三角形的內角和。得出結論:三角形不論大小,它的內角和都是180 。
3、用一張正方形紙折一折,填一填。
4、說理:一個直角三角形中最多有幾個直角?為什么?
一個鈍角三角形中最多有幾個直角?為什么?
四、布置作業(yè)
第4、5題
四年級下冊數(shù)學《三角形內角和》教案7
教學內容
探索與發(fā)現(xiàn):三角形內角和(教材24~26頁)。
教學目標
1.知識目標:讓學生通過“測量、撕拼、折疊、猜想、驗證”等方法,探索并發(fā)現(xiàn)“三角形內角和等于180°”。
2.技能目標:能運用三角形內角和的性質解決一些簡單的問題。
3.情感目標:在活動中,讓學生體驗主動探究數(shù)學規(guī)律的樂趣,激發(fā)學生學習數(shù)學的熱情。
重點難點
教學重點:探索并發(fā)現(xiàn)三角形內角和等于180°。
教學難點:掌握探究方法,學會運用三角形內角和的性質。
學具準備
各種 三 角形、剪刀、量角 器、課件。
教學 過程
一、創(chuàng)設情境,揭示課題。
1.播放課件,提問: 這些三角形在爭論什么?
教師:是在爭論關于自己內角和的大小。
2.教師:什么是三角形的內角和?( 板書:內角和)
講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數(shù)加起來就是三角形的內角和。
二、自主探究,合作交流。
(一)提出問題。
1.你認為誰說得對?你是怎么想的?
2.你有什么辦法可以比較一下這些三角形的內角和呢?
學生可能會說:用量角器量一量三個內角各是多少度,把它們加起來,再比較。
(二)探索與發(fā)現(xiàn)。
1.初步探索。
。1)量一量。
了解活動要求:
A.在練習本上畫一個三角形,量一量三角形三個內角的度數(shù)并標注。(測量時要認真,力求準確。)
B.把測量結果記錄在表 格中,并計算三角形內角和。
C.討論:從剛才的測量和計算結果中,你發(fā)現(xiàn)了什么?(引導學生發(fā)現(xiàn)每個三角形 的三個內角和都在180°左右。)
(2)提出猜想。
剛才我們通過測量和計算發(fā)現(xiàn)了三角形內角和都在180°度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?
2.動手操作,驗證猜想。
教師:這個猜想是否成立呢?我們要想辦法來驗證一下。
教師引導:180°,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?
。1)小組合作,討論驗證方法。
。2)分組匯報,討論質疑。
學生可能會出現(xiàn)的方法:
、偎浩吹姆椒。
把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是180°。
教師:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?
②折一折的方法。
把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與
角1的頂點互相重合,證明了各種三角形內角和都等于180°。
3.課件演示,歸納總結,得出結論。
(1)引導學生得出結論。
孩子們,三角形內角和到底等于多少度呢?“
學生一定會高興地喊:“180°!”
。2)總結方法,齊讀結論。
教 師:我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的.得到了這個結論,讓我們?yōu)樽约旱某晒恼疲?/p>
。3)解釋測量誤差。
教師:為什么我們剛才通過測量,計算出來的三角形內角和不是正好180°呢?
那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一的誤差。實際上,三角形內角和就等于180°。
三、探究結果匯報。
教師:現(xiàn)在你知道這些三角形誰說得對了嗎?(都不對。
學生:因為三角形內角和等于1 80°。 (齊讀)
教師小結:三角形的形狀和大小雖然不同,但 是三角形的內角和都是180度。
四、課堂應用,鞏固加深。
1.試一試。
數(shù)學課本25頁。
2.練一練。
。1)數(shù)學書25頁第一題。(生獨立解決。)
。2)數(shù)學書25頁第二題。(動手量一量。)
拼成的四邊形的內角和是( )。
拼成的三角形的內角和是( )。
五、課堂作業(yè)設計。
教材26頁4、5、6題。
【四年級下冊數(shù)學《三角形內角和》教案】相關文章:
《三角形內角和》數(shù)學教案06-13
數(shù)學教案-三角形的內角和08-16
《三角形內角和》數(shù)學教案02-15
小學數(shù)學《三角形的內角和》教案03-08
《三角形內角和》數(shù)學教案【優(yōu)秀】06-16
《三角形內角和》數(shù)學教案12篇03-26