高二數(shù)學(xué)教案[優(yōu)選15篇]
作為一名優(yōu)秀的教育工作者,時(shí)常會(huì)需要準(zhǔn)備好教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。教案應(yīng)該怎么寫呢?下面是小編幫大家整理的高二數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
高二數(shù)學(xué)教案1
教學(xué)目標(biāo)
(1)使學(xué)生了解并會(huì)用二元一次不等式表示平面區(qū)域以及用二元一次不等式組表示平面區(qū)域;
(2)了解線性規(guī)化的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問(wèn)題、可行解、可行域以及最優(yōu)解等基本概念;
。3)了解線性規(guī)化問(wèn)題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問(wèn)題;
。4)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的 數(shù)學(xué) 思想,提高學(xué)生“建!焙徒鉀Q實(shí)際問(wèn)題的能力;
。5)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生 學(xué)習(xí) 數(shù)學(xué) 的興趣和“用 數(shù)學(xué) ”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
教科書首先通過(guò)一個(gè)具體問(wèn)題,介紹了二元一次不等式表示平面區(qū)域.再通過(guò)一個(gè)具體實(shí)例,介紹了線性規(guī)化問(wèn)題及有關(guān)的幾個(gè)基本概念及一種基本解法-圖解法,并利用幾道例題說(shuō)明線性規(guī)化在實(shí)際中的應(yīng)用.
二、重點(diǎn)、難點(diǎn)分析
本小節(jié)的重點(diǎn)是二元一次不等式(組)表示平面的區(qū)域.
對(duì)學(xué)生來(lái)說(shuō),二元一次不等式(組)表示平面的區(qū)域是一個(gè)比較陌生、抽象的概念,按高二學(xué)生現(xiàn)有的知識(shí)和認(rèn)知水平難以透徹理解,因此 學(xué)習(xí) 二元一次不等式(組)表示平面的區(qū)域分為兩個(gè)大的層次:
(1)二元一次不等式表示平面區(qū)域.首先通過(guò)建立新舊知識(shí)的聯(lián)系,自然地給出概念.明確二元一次不等式在平面直角坐標(biāo)系中表示直線某一側(cè)所有點(diǎn)組成的平面區(qū)域不包含邊界直線(畫成虛線).其次再擴(kuò)大到所表示的平面區(qū)域是包含邊界直線且要把邊界直線畫成實(shí)線.
(2)二元一次不等式組表示平面區(qū)域.在理解二元一次不等式表示平面區(qū)域含義的基礎(chǔ)上,畫不等式組所表示的平面區(qū)域,找出各個(gè)不等式所表示的平面區(qū)域的公共部分.這是學(xué)生對(duì)代數(shù)問(wèn)題等價(jià)轉(zhuǎn)化為幾何問(wèn)題以及 數(shù)學(xué) 建模方法解決實(shí)際問(wèn)題的.基礎(chǔ).
難點(diǎn)是把實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并給出解答.
對(duì)許多學(xué)生來(lái)說(shuō),從抽象到的化歸并不比從具體到抽象遇到的問(wèn)題少,學(xué)生解 數(shù)學(xué) 應(yīng)用題的最常見困難是不會(huì)將實(shí)際問(wèn)題提煉成 數(shù)學(xué) 問(wèn)題,即不會(huì)建模.所以把實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題作為本節(jié)的難點(diǎn),并緊緊圍繞如何引導(dǎo)學(xué)生根據(jù)實(shí)際問(wèn)題中的已知條件,找出約束條件和目標(biāo)函數(shù),然后利用圖解法求出最優(yōu)解作為突破這個(gè)難點(diǎn)的關(guān)鍵.
對(duì)學(xué)生而言解決應(yīng)用問(wèn)題的障礙主要有三類:
①不能正確理解題意,弄清各元素之間的關(guān)系;
、诓荒芊智鍐(wèn)題的主次關(guān)系,因而抓不住問(wèn)題的本質(zhì),無(wú)法建立 數(shù)學(xué) 模型;
③孤立地考慮單個(gè)的問(wèn)題情景,不能多方聯(lián)想,形成正遷移.針對(duì)這些障礙以及題目本身文字過(guò)長(zhǎng)等因素,將本課設(shè)計(jì)為計(jì)算機(jī)輔助教學(xué),從而將實(shí)際問(wèn)題鮮活直觀地展現(xiàn)在學(xué)生面前,以利于理解;分析完題后,能夠抓住問(wèn)題的本質(zhì)特征,從而將實(shí)際問(wèn)題抽象概括為線性規(guī)劃問(wèn)題.另外,利用計(jì)算機(jī)可以較快地幫助學(xué)生掌握尋找整點(diǎn)最優(yōu)解的方法.
三、教法建議
(1)對(duì)學(xué)生來(lái)說(shuō),二元一次不等式(組)表示平面的區(qū)域是一個(gè)比較陌生的概念,不象二元一次方程表示直線那樣已早有所知,為使學(xué)生對(duì)這一概念的引進(jìn)不感到突然,應(yīng)建立新舊知識(shí)的聯(lián)系,以便自然地給出概念
(2)建議將本節(jié)新課講授分為五步(思考、嘗試、猜想、證明、歸納)來(lái)進(jìn)行,目的是為了分散難點(diǎn),層層遞進(jìn),突出重點(diǎn),只要學(xué)生對(duì)舊知識(shí)掌握較好,完全有可能由學(xué)生主動(dòng)去探求新知,得出結(jié)論.
。3)要舉幾個(gè)典型例題,特別是似是而非的例子,對(duì)理解二元一次不等式(組)表示的平面區(qū)域的含義是十分必要的.
。4)建議通過(guò)本節(jié)教學(xué)著重培養(yǎng)學(xué)生掌握“數(shù)形結(jié)合”的 數(shù)學(xué) 思想,盡管側(cè)重于用“數(shù)”研究“形”,但同時(shí)也用“形”去研究“數(shù)”,這對(duì)培養(yǎng)學(xué)生觀察、聯(lián)想、猜測(cè)、歸納等 數(shù)學(xué) 能力是大有益處的.
。5)對(duì)作業(yè)、思考題、研究性題的建議:
、僮鳂I(yè)主要訓(xùn)練學(xué)生規(guī)范的解題步驟和作圖能力;
、谒伎碱}主要供學(xué)有余力的學(xué)生課后完成;
③研究性題綜合性較大,主要用于拓寬學(xué)生的思維.
。6)若實(shí)際問(wèn)題要求的最優(yōu)解是整數(shù)解,而我們利用圖解法得到的解為非整數(shù)解(近似解),應(yīng)作適當(dāng)?shù)恼{(diào)整,其方法應(yīng)以與線性目標(biāo)函數(shù)的直線的距離為依據(jù),在直線的附近尋求與此直線距離最近的整點(diǎn),不要在用圖解法所得到的近似解附近尋找.
如果可行域中的整點(diǎn)數(shù)目很少,采用逐個(gè)試驗(yàn)法也可.
。7)在線性規(guī)劃的實(shí)際問(wèn)題中,主要掌握兩種類型:一是給定一定數(shù)量的人力、物力資源,問(wèn)怎樣運(yùn)用這些資源能使完成的任務(wù)量最大,收到的效益最大;二是給定一項(xiàng)任務(wù)問(wèn)怎樣統(tǒng)籌安排,能使完成的這項(xiàng)任務(wù)耗費(fèi)的人力、物力資源最小.
高二數(shù)學(xué)教案2
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
熟練掌握三角函數(shù)式的求值
教學(xué)重難點(diǎn)
熟練掌握三角函數(shù)式的求值
教學(xué)過(guò)程
【知識(shí)點(diǎn)精講】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
注意點(diǎn):靈活角的.變形和公式的變形
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
【例題選講】
課堂小結(jié)】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
注意點(diǎn):靈活角的變形和公式的變形
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
高二數(shù)學(xué)教案3
第1課時(shí)算法的概念
[核心必知]
1.預(yù)習(xí)教材,問(wèn)題導(dǎo)入
根據(jù)以下提綱,預(yù)習(xí)教材P2~P5,回答下列問(wèn)題.
(1)對(duì)于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在數(shù)學(xué)中算法通常指什么?
提示:在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問(wèn)題的明確和有限的步驟.
2.歸納總結(jié),核心必記
(1)算法的概念
12世紀(jì)
的算法指的是用阿拉伯?dāng)?shù)字進(jìn)行算術(shù)運(yùn)算的過(guò)程
續(xù)表
數(shù)學(xué)中
的算法通常是指按照一定規(guī)則解決某一類問(wèn)題的明確和有限的步驟
現(xiàn)代算法通?梢跃幊捎(jì)算機(jī)程序,讓計(jì)算機(jī)執(zhí)行并解決問(wèn)題
(2)設(shè)計(jì)算法的目的
計(jì)算機(jī)解決任何問(wèn)題都要依賴于算法.只有將解決問(wèn)題的過(guò)程分解為若干個(gè)明確的步驟,即算法,并用計(jì)算機(jī)能夠接受的“語(yǔ)言”準(zhǔn)確地描述出來(lái),計(jì)算機(jī)才能夠解決問(wèn)題.
[問(wèn)題思考]
(1)求解某一個(gè)問(wèn)題的算法是否是的?
提示:不是.
(2)任何問(wèn)題都可以設(shè)計(jì)算法解決嗎?
提示:不一定.
[課前反思]
通過(guò)以上預(yù)習(xí),必須掌握的幾個(gè)知識(shí)點(diǎn):
(1)算法的概念:;
(2)設(shè)計(jì)算法的目的:.
[思考1]應(yīng)從哪些方面來(lái)理解算法的概念?
名師指津:對(duì)算法概念的三點(diǎn)說(shuō)明:
(1)算法是指可以用計(jì)算機(jī)來(lái)解決的某一類問(wèn)題的程序或步驟,這些程序或步驟必須是明確的和有效的,而且能夠在有限步驟之內(nèi)完成.
(2)算法與一般意義上具體問(wèn)題的解法既有聯(lián)系,又有區(qū)別,它們之間是一般和特殊的關(guān)系,也是抽象與具體的關(guān)系.算法的獲得要借助一般意義上具體問(wèn)題的求解方法,而任何一個(gè)具體問(wèn)題都可以利用這類問(wèn)題的一般算法來(lái)解決.
(3)算法一方面具有具體化、程序化、機(jī)械化的特點(diǎn),同時(shí)又有高度的抽象性、概括性、精確性,所以算法在解決問(wèn)題中更具有條理性、邏輯性的特點(diǎn).
[思考2]算法有哪些特征?
名師指津:(1)確定性:算法的每一個(gè)步驟都是確切的,能有效執(zhí)行且得到確定結(jié)果,不能模棱兩可.
(2)有限性:算法應(yīng)由有限步組成,至少對(duì)某些輸入,算法應(yīng)在有限多步內(nèi)結(jié)束,并給出計(jì)算結(jié)果.
(3)邏輯性:算法從初始步驟開始,分為若干明確的步驟,每一步都只能有一個(gè)確定的繼任者,只有執(zhí)行完前一步才能進(jìn)入到后一步,并且每一步都確定無(wú)誤后,才能解決問(wèn)題.
(4)不性:求解某一個(gè)問(wèn)題的算法不一定只有的一個(gè),可以有不同的算法.
(5)普遍性:很多具體的問(wèn)題,都可以設(shè)計(jì)合理的算法去解決.
V講一講
1.以下關(guān)于算法的.說(shuō)法正確的是()
A.描述算法可以有不同的方式,可用自然語(yǔ)言也可用其他語(yǔ)言
B.算法可以看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列只能解決當(dāng)前問(wèn)題
C.算法過(guò)程要一步一步執(zhí)行,每一步執(zhí)行的操作必須確切,不能含混不清,而且經(jīng)過(guò)有限步或無(wú)限步后能得出結(jié)果
D.算法要求按部就班地做,每一步可以有不同的結(jié)果
[嘗試解答]算法可以看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或計(jì)算序列能夠解決一類問(wèn)題,故B不正確.
算法過(guò)程要一步一步執(zhí)行,每一步執(zhí)行操作,必須確切,只能有結(jié)果,而且經(jīng)過(guò)有限步后,必須有結(jié)果輸出后終止,故C、D都不正確.
描述算法可以有不同的語(yǔ)言形式,如自然語(yǔ)言、框圖語(yǔ)言等,故A正確.
答案:A
判斷算法的關(guān)注點(diǎn)
(1)明確算法的含義及算法的特征;
(2)判斷一個(gè)問(wèn)題是否是算法,關(guān)鍵看是否有解決一類問(wèn)題的程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步內(nèi)完成.
V練一練
1.(20xx?西南師大附中檢測(cè))下列描述不能看作算法的是()
A.洗衣機(jī)的使用說(shuō)明書
B.解方程x2+2x-1=0
C.做米飯需要刷鍋、淘米、添水、加熱這些步驟
D.利用公式S=πr2計(jì)算半徑為3的圓的面積,就是計(jì)算π×32
解析:選BA、C、D都描述了解決問(wèn)題的過(guò)程,可以看作算法,而B只描述了一個(gè)事例,沒有說(shuō)明怎樣解決問(wèn)題,不是算法.
假設(shè)家中生火泡茶有以下幾個(gè)步驟:
a.生火b.將水倒入鍋中c.找茶葉d.洗茶壺、茶碗e.用開水沖茶
[思考1]你能設(shè)計(jì)出在家中泡茶的步驟嗎?
名師指津:a→a→c→d→e
[思考2]設(shè)計(jì)算法有什么要求?
名師指津:(1)寫出的算法必須能解決一類問(wèn)題;
(2)要使算法盡量簡(jiǎn)單、步驟盡量少;
(3)要保證算法步驟有效,且計(jì)算機(jī)能夠執(zhí)行.
V講一講
2.寫出解方程x2-2x-3=0的一個(gè)算法.
[嘗試解答]法一:算法如下.
第一步,將方程左邊因式分解,得(x-3)(x+1)=0;①
第二步,由①得x-3=0,②或x+1=0;③
第三步,解②得x=3,解③得x=-1.
法二:算法如下.
第一步,移項(xiàng),得x2-2x=3;①
第二步,①式兩邊同時(shí)加1并配方,得(x-1)2=4;②
第三步,②式兩邊開方,得x-1=±2;③
第四步,解③得x=3或x=-1.
法三:算法如下.
第一步,計(jì)算方程的判別式并判斷其符號(hào)Δ=(-2)2+4×3=16>0;
第二步,將a=1,b=-2,c=-3,代入求根公式x1,x2=-b±b2-4ac2a,得x1=3,x2=-1.
設(shè)計(jì)算法的步驟
(1)認(rèn)真分析問(wèn)題,找出解決此題的一般數(shù)學(xué)方法;
(2)借助有關(guān)變量或參數(shù)對(duì)算法加以表述;
(3)將解決問(wèn)題的過(guò)程劃分為若干步驟;
(4)用簡(jiǎn)練的語(yǔ)言將步驟表示出來(lái).V
練一練
2.設(shè)計(jì)一個(gè)算法,判斷7是否為質(zhì)數(shù).
解:第一步,用2除7,得到余數(shù)1,所以2不能整除7.
第二步,用3除7,得到余數(shù)1,所以3不能整除7.
第三步,用4除7,得到余數(shù)3,所以4不能整除7.
第四步,用5除7,得到余數(shù)2,所以5不能整除7.
第五步,用6除7,得到余數(shù)1,所以6不能整除7.
因此,7是質(zhì)數(shù).
V講一講
3.一次青青草原草原長(zhǎng)包包大人帶著灰太狼、懶羊羊和一捆青草過(guò)河.河邊只有一條船,由于船太小,只能裝下兩樣?xùn)|西.在無(wú)人看管的情況下,灰太狼要吃懶羊羊,懶羊羊要吃青草,請(qǐng)問(wèn)包包大人如何才能帶著他們平安過(guò)河?試設(shè)計(jì)一種算法.
[思路點(diǎn)撥]先根據(jù)條件建立過(guò)程模型,再設(shè)計(jì)算法.
[嘗試解答]包包大人采取的過(guò)河的算法可以是:
第一步,包包大人帶懶羊羊過(guò)河;
第二步,包包大人自己返回;
第三步,包包大人帶青草過(guò)河;
第四步,包包大人帶懶羊羊返回;
第五步,包包大人帶灰太狼過(guò)河;
第六步,包包大人自己返回;
第七步,包包大人帶懶羊羊過(guò)河.
實(shí)際問(wèn)題算法的設(shè)計(jì)技巧
(1)弄清題目中所給要求.
(2)建立過(guò)程模型.
(3)根據(jù)過(guò)程模型建立算法步驟,必要時(shí)由變量進(jìn)行判斷.
V練一練
3.一位商人有9枚銀元,其中有1枚略輕的是假銀元,你能用天平(無(wú)砝碼)將假銀元找出來(lái)嗎?
解:法一:算法如下.
第一步,任取2枚銀元分別放在天平的兩邊,若天平左、右不平衡,則輕的一枚就是假銀元,若天平平衡,則進(jìn)行第二步.
第二步,取下右邊的銀元放在一邊,然后把剩下的7枚銀元依次放在右邊進(jìn)行稱量,直到天平不平衡,偏輕的那一枚就是假銀元.
法二:算法如下.
第一步,把9枚銀元平均分成3組,每組3枚.
第二步,先將其中兩組放在天平的兩邊,若天平不平衡,則假銀元就在輕的那一組;否則假銀元在未稱量的那一組.
第三步,取出含假銀元的那一組,從中任取2枚銀元放在天平左、右兩邊稱量,若天平不平衡,則假銀元在輕的那一邊;若天平平衡,則未稱量的那一枚是假銀元.
高二數(shù)學(xué)教案4
課題:命題
課時(shí):001
課型:新授課
教學(xué)目標(biāo)
1、知識(shí)與技能:理解命題的概念和命題的構(gòu)成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;
2、過(guò)程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問(wèn)題和解決問(wèn)題的能力;
。场⑶楦、態(tài)度與價(jià)值觀:通過(guò)學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):命題的概念、命題的構(gòu)成
難點(diǎn):分清命題的條件、結(jié)論和判斷命題的真假
教學(xué)過(guò)程
一、復(fù)習(xí)回顧
引入:初中已學(xué)過(guò)命題的知識(shí),請(qǐng)同學(xué)們回顧:什么叫做命題?
二、新課教學(xué)
下列語(yǔ)句的表述形式有什么特點(diǎn)?你能判斷他們的真假嗎?
。1)若直線a∥b,則直線a與直線b沒有公共點(diǎn).
。2)2+4=7.
(3)垂直于同一條直線的兩個(gè)平面平行.
。4)若x2=1,則x=1.
。5)兩個(gè)全等三角形的面積相等.
(6)3能被2整除.
討論、判斷:學(xué)生通過(guò)討論,總結(jié):所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。
教師的引導(dǎo)分析:所謂判斷,就是肯定一個(gè)事物是什么或不是什么,不能含混不清。
抽象、歸納:
1、命題定義:一般地,我們把用語(yǔ)言、符號(hào)或式子表達(dá)的.,可以判斷真假的陳述句叫做命題.
命題的定義的要點(diǎn):能判斷真假的陳述句.
在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,請(qǐng)學(xué)生舉幾個(gè)數(shù)學(xué)命題的例子.教師再與學(xué)生共同從命題的定義,判斷學(xué)生所舉例子是否是命題,從“判斷”的角度來(lái)加深對(duì)命題這一概念的理解.
例1:判斷下列語(yǔ)句是否為命題?
。1)空集是任何集合的子集.
(2)若整數(shù)a是素?cái)?shù),則是a奇數(shù).
。3)指數(shù)函數(shù)是增函數(shù)嗎?
。4)若平面上兩條直線不相交,則這兩條直線平行.
。5)=-2.
。6)x>15.
讓學(xué)生思考、辨析、討論解決,且通過(guò)練習(xí),引導(dǎo)學(xué)生總結(jié):判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看兩點(diǎn):第一是“陳述句”,第二是“可以判斷真假”,這兩個(gè)條件缺一不可.疑問(wèn)句、祈使句、感嘆句均不是命題.
解略。
引申:以前,同學(xué)們學(xué)習(xí)了很多定理、推論,這些定理、推論是否是命題?同學(xué)們可否舉出一些定理、推論的例子來(lái)看看?
通過(guò)對(duì)此問(wèn)的思考,學(xué)生將清晰地認(rèn)識(shí)到定理、推論都是命題.
過(guò)渡:同學(xué)們都知道,一個(gè)定理或推論都是由條件和結(jié)論兩部分構(gòu)成(結(jié)合學(xué)生所舉定理和推論的例子,讓學(xué)生分辨定理和推論條件和結(jié)論,明確所有的定理、推論都是由條件和結(jié)論兩部分構(gòu)成)。緊接著提出問(wèn)題:命題是否也是由條件和結(jié)論兩部分構(gòu)成呢?
2、命題的構(gòu)成――條件和結(jié)論
定義:從構(gòu)成來(lái)看,所有的命題都具由條件和結(jié)論兩部分構(gòu)成.在數(shù)學(xué)中,命題常寫成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結(jié)論.
例2:指出下列命題中的條件p和結(jié)論q,并判斷各命題的真假.
(1)若整數(shù)a能被2整除,則a是偶數(shù).
。ǎ玻┤羲倪呅惺橇庑,則它的對(duì)角線互相垂直平分.
。ǎ常┤鬭>0,b>0,則a+b>0.
。ǎ矗┤鬭>0,b>0,則a+b<0.
(5)垂直于同一條直線的兩個(gè)平面平行.
此題中的(1)(2)(3)(4),較容易,估計(jì)學(xué)生較容易找出命題中的條件p和結(jié)論q,并能判斷命題的真假。其中設(shè)置命題(3)與(4)的目的在于:通過(guò)這兩個(gè)例子的比較,學(xué)更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結(jié)果是對(duì)的還是錯(cuò)的。
此例中的命題(5),不是“若P,則q”的形式,估計(jì)學(xué)生會(huì)有困難,此時(shí),教師引導(dǎo)學(xué)生一起分析:已知的事項(xiàng)為“條件”,由已知推出的事項(xiàng)為“結(jié)論”.
解略。
過(guò)渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結(jié)論是正確的,而有些命題的結(jié)論是錯(cuò)誤的,那么我們就有了對(duì)命題的一種分類:真命題和假命題.
3、命題的分類
真命題:如果由命題的條件P通過(guò)推理一定可以得出命題的結(jié)論q,那么這樣的命題叫做真命題.
假命題:如果由命題的條件P通過(guò)推理不一定可以得出命題的結(jié)論q,那么這樣的命題叫做假命題.
強(qiáng)調(diào):
。ǎ保┳⒁饷}與假命題的區(qū)別.如:“作直線AB”.這本身不是命題.也更不是假命題.
。ǎ玻┟}是一個(gè)判斷,判斷的結(jié)果就有對(duì)錯(cuò)之分.因此就要引入真命題、假命題的的概念,強(qiáng)調(diào)真假命題的大前提,首先是命題。
判斷一個(gè)數(shù)學(xué)命題的真假方法:
。ǎ保⿺(shù)學(xué)中判定一個(gè)命題是真命題,要經(jīng)過(guò)證明.
。ǎ玻┮袛嘁粋(gè)命題是假命題,只需舉一個(gè)反例即可.
例3:把下列命題寫成“若P,則q”的形式,并判斷是真命題還是假命題:
。1)面積相等的兩個(gè)三角形全等。
。2)負(fù)數(shù)的立方是負(fù)數(shù)。
。3)對(duì)頂角相等。
分析:要把一個(gè)命題寫成“若P,則q”的形式,關(guān)鍵是要分清命題的條件和結(jié)論,然后寫成“若條件,則結(jié)論”即“若P,則q”的形式.解略。
三、鞏固練習(xí):
P4第2,3。
四、作業(yè):
P8:習(xí)題1.1A組~第1題
五、教學(xué)反思
師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容.
1、什么叫命題?真命題?假命題?
2、命題是由哪兩部分構(gòu)成的?
3、怎樣將命題寫成“若P,則q”的形式.
4、如何判斷真假命題.
高二數(shù)學(xué)教案5
教學(xué) 目標(biāo):
(1)掌握?qǐng)A的一般方程及其特點(diǎn).
。2)能將圓的一般方程轉(zhuǎn)化為圓的標(biāo)準(zhǔn)方程,從而求出圓心和半徑.
。3)能用待定系數(shù)法,由已知條件求出圓的一般方程.
(4)通過(guò)本節(jié)課學(xué)習(xí),進(jìn)一步掌握配方法和待定系數(shù)法.
教學(xué) 重點(diǎn):
。1)用配方法,把圓的一般方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求出圓心和半徑.
。2)用待定系數(shù)法求圓的方程.
教學(xué) 難點(diǎn):
圓的一般方程特點(diǎn)的研究.
教學(xué) 用具:
計(jì)算機(jī).
教學(xué) 方法:
啟發(fā)引導(dǎo)法,討論法.
教學(xué) 過(guò)程 :
【引入】
前邊已經(jīng)學(xué)過(guò)了圓的標(biāo)準(zhǔn)方程
把它展開得
任何圓的方程都可以通過(guò)展開化成形如
①
的方程
【問(wèn)題1】
形如①的方程的曲線是否都是圓?
師生共同討論分析:
如果①表示圓,那么它一定是某個(gè)圓的標(biāo)準(zhǔn)方程展開整理得到的.我們把它再寫成原來(lái)的形式不就可以看出來(lái)了嗎?運(yùn)用配方法,得
、
顯然②是不是圓方程與 是什么樣的數(shù)密切相關(guān),具體如下:
(1)當(dāng) 時(shí),②表示以 為圓心、以 為半徑的圓;
(2)當(dāng) 時(shí),②表示一個(gè)點(diǎn) ;
(3)當(dāng) 時(shí),②不表示任何曲線.
總結(jié):任意形如①的方程可能表示一個(gè)圓,也可能表示一個(gè)點(diǎn),還有可能什么也不表示.
圓的一般方程的定義:
當(dāng) 時(shí),①表示以 為圓心、以 為半徑的圓,
此時(shí)①稱作圓的一般方程.
即稱形如 的方程為圓的一般方程.
【問(wèn)題2】圓的一般方程的特點(diǎn),與圓的標(biāo)準(zhǔn)方程的異同.
。1) 和 的系數(shù)相同,都不為0.
。2)沒有形如 的二次項(xiàng).
圓的一般方程與一般的二元二次方程
③
相比較,上述(1)、(2)兩個(gè)條件僅是③表示圓的必要條件,而不是充分條件或充要條件.
圓的一般方程與圓的標(biāo)準(zhǔn)方程各有千秋:
。1)圓的標(biāo)準(zhǔn)方程帶有明顯的幾何的影子,圓心和半徑一目了然.
。2)圓的一般方程表現(xiàn)出明顯的代數(shù)的形式與結(jié)構(gòu),更適合方程理論的運(yùn)用.
【實(shí)例分析】
例1:下列方程各表示什么圖形.
。1) ;
(2) ;
。3) .
學(xué)生演算并回答
(1)表示點(diǎn)(0,0);
。2)配方得 ,表示以 為圓心,3為半徑的圓;
。3)配方得 ,當(dāng) 、 同時(shí)為0時(shí),表示原點(diǎn)(0,0);當(dāng) 、 不同時(shí)為0時(shí),表示以 為圓心, 為半徑的圓.
例2:求過(guò)三點(diǎn) , , 的圓的方程,并求出圓心坐標(biāo)和半徑.
分析:由于學(xué)習(xí)了圓的標(biāo)準(zhǔn)方程和圓的一般方程,那么本題既可以用標(biāo)準(zhǔn)方程求解,也可以用一般方程求解.
解:設(shè)圓的方程為
因?yàn)?、 、 三點(diǎn)在圓上,則有
解得: , ,
所求圓的方程為
可化為
圓心為 ,半徑為5.
請(qǐng)同學(xué)們?cè)儆脴?biāo)準(zhǔn)方程求解,比較兩種解法的區(qū)別.
【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):
(1)求圓的方程多用待定系數(shù)法.其步驟為:由題意設(shè)方程(標(biāo)準(zhǔn)方程或一般方程);根據(jù)條件列出關(guān)于待定系數(shù)的方程組;解方程組求出系數(shù),寫出方程.
。2)如何選用圓的標(biāo)準(zhǔn)方程和圓的一般方程.一般地,易求圓心和半徑時(shí),選用標(biāo)準(zhǔn)方程;如果給出圓上已知點(diǎn),可選用一般方程.
下面再看一個(gè)問(wèn)題:
例3: 經(jīng)過(guò)點(diǎn) 作圓 的割線,交圓 于 、 兩點(diǎn),求線段 的中點(diǎn) 的`軌跡.
解:圓 的方程可化為 ,其圓心為 ,半徑為2.設(shè) 是軌跡上任意一點(diǎn).
∵
∴
即
化簡(jiǎn)得
點(diǎn) 在曲線上,并且曲線為圓 內(nèi)部的一段圓。
【練習(xí)鞏固】
。1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結(jié)果為4,-6,-3)
。2)求經(jīng)過(guò)三點(diǎn) 、 、 的圓的方程.
分析:用圓的一般方程,代入點(diǎn)的坐標(biāo),解方程組得圓的方程為 .
。3)課本第79頁(yè)練習(xí)1,2.
【小結(jié)】師生共同總結(jié):
。1)圓的一般方程及其特點(diǎn).
(2)用配方法化圓的一般方程為圓的標(biāo)準(zhǔn)方程,求圓心坐標(biāo)和半徑.
。3)用待定系數(shù)法求圓的方程.
【作業(yè)】課本第82頁(yè)5,6,7,8.
【 板書 設(shè)計(jì)】
圓的一般方程
圓的一般方程
例1:
例2:
例3:
練習(xí):
小結(jié):
作業(yè):
高二數(shù)學(xué)教案6
第06課時(shí)
2、2、3 直線的參數(shù)方程
學(xué)習(xí)目標(biāo)
1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2. 初步掌握運(yùn)用參數(shù)方程解決問(wèn)題,體會(huì)用參數(shù)方程解題的簡(jiǎn)便性。
學(xué)習(xí)過(guò)程
一、學(xué)前準(zhǔn)備
復(fù)習(xí):
1、若由 共線,則存在實(shí)數(shù) ,使得 ,
2、設(shè) 為 方向上的 ,則 =︱ ︱ ;
3、經(jīng)過(guò)點(diǎn) ,傾斜角為 的直線的普通方程為 。
二、新課導(dǎo)學(xué)
探究新知(預(yù)習(xí)教材P35~P39,找出疑惑之處)
1、選擇怎樣的參數(shù),才能使直線上任一點(diǎn)M的坐標(biāo) 與點(diǎn) 的坐標(biāo) 和傾斜角 聯(lián)系起來(lái)呢?由于傾斜角可以與方向聯(lián)系, 與 可以用距離或線段 數(shù)量的大小聯(lián)系,這種方向有向線段數(shù)量大小啟發(fā)我們想到利用向量工具建立直線的參數(shù)方程。
如圖,在直線上任取一點(diǎn) ,則 = ,
而直線
的單位方向
向量
=( , )
因?yàn)?,所以存在實(shí)數(shù) ,使得 = ,即有 ,因此,經(jīng)過(guò)點(diǎn)
,傾斜角為 的直線的參數(shù)方程為:
2.方程中參數(shù)的幾何意義是什么?
應(yīng)用示例
例1.已知直線 與拋物線 交于A、B兩點(diǎn),求線段AB的長(zhǎng)和點(diǎn) 到A ,B兩點(diǎn)的距離之積。(教材P36例1)
解:
例2.經(jīng)過(guò)點(diǎn) 作直線 ,交橢圓 于 兩點(diǎn),如果點(diǎn) 恰好為線段 的中點(diǎn),求直線 的方程.(教材P37例2)
解:
反饋練習(xí)
1.直線 上兩點(diǎn)A ,B對(duì)應(yīng)的參數(shù)值為 ,則 =( )
A、0 B、
C、4 D、2
2.設(shè)直線 經(jīng)過(guò)點(diǎn) ,傾斜角為 ,
(1)求直線 的'參數(shù)方程;
(2)求直線 和直線 的交點(diǎn)到點(diǎn) 的距離;
(3)求直線 和圓 的兩個(gè)交點(diǎn)到點(diǎn) 的距離的和與積。
三、總結(jié)提升
本節(jié)小結(jié)
1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?
答:1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2. 初步掌握運(yùn)用參數(shù)方程解決問(wèn)題,體會(huì)用參數(shù)方程解題的簡(jiǎn)便性。
學(xué)習(xí)評(píng)價(jià)
一、自我評(píng)價(jià)
你完成本節(jié)導(dǎo)學(xué)案的情況為( )
A.很好 B.較好 C. 一般 D.較差
課后作業(yè)
1. 已知過(guò)點(diǎn) ,斜率為 的直線和拋物線 相交于 兩點(diǎn),設(shè)線段 的中點(diǎn)為 ,求點(diǎn) 的坐標(biāo)。
2.經(jīng)過(guò)點(diǎn) 作直線交雙曲線 于 兩點(diǎn),如果點(diǎn) 為線段 的中點(diǎn),求直線 的方程
3.過(guò)拋物線 的焦點(diǎn)作傾斜角為 的弦AB,求弦AB的長(zhǎng)及弦的中點(diǎn)M到焦點(diǎn)F的距離。
高二數(shù)學(xué)教案7
一、課前準(zhǔn)備:
【自主梳理】
1.對(duì)數(shù):
(1) 一般地,如果 ,那么實(shí)數(shù) 叫做________________,記為________,其中 叫做對(duì)數(shù)的_______, 叫做________.
(2)以10為底的對(duì)數(shù)記為________,以 為底的對(duì)數(shù)記為_______.
(3) , .
2.對(duì)數(shù)的運(yùn)算性質(zhì):
(1)如果 ,那么 ,
.
(2)對(duì)數(shù)的換底公式: .
3.對(duì)數(shù)函數(shù):
一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是______.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì):
a1 0
圖象性
質(zhì) 定義域:___________
值域:_____________
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)_________
x(1,+)時(shí)________ x(0,1)時(shí)_________
x(1,+)時(shí)________
在___________上是增函數(shù) 在__________上是減函數(shù)
【自我檢測(cè)】
1. 的定義域?yàn)開________.
2.化簡(jiǎn): .
3.不等式 的解集為________________.
4.利用對(duì)數(shù)的換底公式計(jì)算: .
5.函數(shù) 的奇偶性是____________.
6.對(duì)于任意的 ,若函數(shù) ,則 與 的大小關(guān)系是___________________________.
二、課堂活動(dòng):
【例1】填空題:
(1) .
(2)比較 與 的大小為___________.
(3)如果函數(shù) ,那么 的最大值是_____________.
(4)函數(shù) 的奇偶性是___________.
【例2】求函數(shù) 的定義域和值域.
【例3】已知函數(shù) 滿足 .
(1)求 的解析式;
(2)判斷 的奇偶性;
(3)解不等式 .
課堂小結(jié)
三、課后作業(yè)
1. .略
2.函數(shù) 的定義域?yàn)開______________.
3.函數(shù) 的值域是_____________.
4.若 ,則 的取值范圍是_____________.
5.設(shè) 則 的大小關(guān)系是_____________.
6.設(shè)函數(shù) ,若 ,則 的取值范圍為_________________.
7.當(dāng) 時(shí),不等式 恒成立,則 的取值范圍為______________.
8.函數(shù) 在區(qū)間 上的值域?yàn)?,則 的最小值為____________.
9.已知 .
(1)求 的定義域;
(2)判斷 的奇偶性并予以證明;
(3)求使 的 的取值范圍.
10.對(duì)于函數(shù) ,回答下列問(wèn)題:
(1)若 的定義域?yàn)?,求實(shí)數(shù) 的取值范圍;
(2)若 的值域?yàn)?,求實(shí)數(shù) 的`取值范圍;
(3)若函數(shù) 在 內(nèi)有意義,求實(shí)數(shù) 的取值范圍.
四、糾錯(cuò)分析
錯(cuò)題卡 題 號(hào) 錯(cuò) 題 原 因 分 析
高二數(shù)學(xué)教案:對(duì)數(shù)與對(duì)數(shù)函數(shù)
一、課前準(zhǔn)備:
【自主梳理】
1.對(duì)數(shù)
(1)以 為底的 的對(duì)數(shù), ,底數(shù),真數(shù).
(2) , .
(3)0,1.
2.對(duì)數(shù)的運(yùn)算性質(zhì)
(1) , , .
(2) .
3.對(duì)數(shù)函數(shù)
, .
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì)
a1 0
圖象性質(zhì) 定義域:(0,+)
值域:R
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)y0
x(1,+)時(shí)y0 x(0,1)時(shí)y0
x(1,+)時(shí)y0
在(0,+)上是增函數(shù) 在(0,+)上是減函數(shù)
【自我檢測(cè)】
1. 2. 3.
4. 5.奇函數(shù) 6. .
二、課堂活動(dòng):
【例1】填空題:
(1)3.
(2) .
(3)0.
(4)奇函數(shù).
【例2】解:由 得 .所以函數(shù) 的定義域是(0,1).
因?yàn)?,所以,當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?;當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?.
【例3】解:(1) ,所以 .
(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱,所以
,所以 為奇函數(shù).
(3) ,所以當(dāng) 時(shí), 解得
當(dāng) 時(shí), 解得 .
高二數(shù)學(xué)教案8
教學(xué)目標(biāo)
1、知識(shí)與技能:
。1)推廣角的概念、引入大于角和負(fù)角;
。2)理解并掌握正角、負(fù)角、零角的定義;
(3)理解任意角以及象限角的概念;
(4)掌握所有與角終邊相同的角(包括角)的表示方法;
(5)樹立運(yùn)動(dòng)變化觀點(diǎn),深刻理解推廣后的角的概念;
(6)揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣;
。7)創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí)。
2、過(guò)程與方法:
通過(guò)創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時(shí)針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個(gè)終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。
3、情態(tài)與價(jià)值:
通過(guò)本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)角的概念有了一個(gè)新的認(rèn)識(shí),即有正角、負(fù)角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會(huì)運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)認(rèn)識(shí)事物。
教學(xué)重難點(diǎn)
重點(diǎn):理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。
難點(diǎn):終邊相同的角的表示。
教學(xué)工具
投影儀等。
教學(xué)過(guò)程
【創(chuàng)設(shè)情境】
思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了1.25小時(shí),你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時(shí)間校準(zhǔn)以后,分針轉(zhuǎn)了多少度?
我們發(fā)現(xiàn),校正過(guò)程中分針需要正向或反向旋轉(zhuǎn),有時(shí)轉(zhuǎn)不到一周,有時(shí)轉(zhuǎn)一周以上,這就是說(shuō)角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。
【探究新知】
1、初中時(shí),我們已學(xué)習(xí)了角的概念,它是如何定義的'呢?
[展示投影]角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形。如圖1.1—1,一條射線由原來(lái)的位置,繞著它的端點(diǎn)o按逆時(shí)針?lè)较蛐D(zhuǎn)到終止位置OB,就形成角a。旋轉(zhuǎn)開始時(shí)的射線叫做角的始邊,OB叫終邊,射線的端點(diǎn)o叫做叫a的頂點(diǎn)。
2、如上述情境中所說(shuō)的校準(zhǔn)時(shí)鐘問(wèn)題以及在體操比賽中我們經(jīng)常聽到這樣的術(shù)語(yǔ):“轉(zhuǎn)體”(即轉(zhuǎn)體2周),“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,都是遇到大于的角以及按不同方向旋轉(zhuǎn)而成的角。同學(xué)們思考一下:能否再舉出幾個(gè)現(xiàn)實(shí)生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,這些說(shuō)明了什么問(wèn)題?又該如何區(qū)分和表示這些角呢?
[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時(shí)成不同的角,這些都說(shuō)明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫正角(positiveangle),按順時(shí)針?lè)较蛐D(zhuǎn)所形成的角叫負(fù)角(negativeangle)。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個(gè)零角(zeroangle)。
3、學(xué)習(xí)小結(jié):
。1)你知道角是如何推廣的嗎?
。2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會(huì)寫終邊落在x軸、y軸、直線上的角的集合。
課后習(xí)題
作業(yè):
1、習(xí)題1.1A組第1,2,3題。
2、多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,進(jìn)一步理解具有相同終邊的角的特點(diǎn)。
高二數(shù)學(xué)教案9
課題:2。1曲線與方程
課時(shí):01
課型:新授課
一、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡以及求動(dòng)點(diǎn)軌跡方程的常用技巧與方法。
。ǘ┠芰τ(xùn)練點(diǎn)
通過(guò)對(duì)求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學(xué)生綜合運(yùn)用各方面知識(shí)的能力。
(三)學(xué)科滲透點(diǎn)
通過(guò)對(duì)求軌跡方程的常用技巧與方法的介紹,使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡,為學(xué)習(xí)物理等學(xué)科打下扎實(shí)的基礎(chǔ)。
二、教材分析
1、重點(diǎn):求動(dòng)點(diǎn)的軌跡方程的常用技巧與方法。
。ń鉀Q辦法:對(duì)每種方法用例題加以說(shuō)明,使學(xué)生掌握這種方法。)
2、難點(diǎn):作相關(guān)點(diǎn)法求動(dòng)點(diǎn)的軌跡方法。
。ń鉀Q辦法:先使學(xué)生了解相關(guān)點(diǎn)法的思路,再用例題進(jìn)行講解。)
教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。
教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神。
三、教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)引入
大家知道,平面解析幾何研究的主要問(wèn)題是:
。1)根據(jù)已知條件,求出表示平面曲線的方程;
。2)通過(guò)方程,研究平面曲線的性質(zhì)。
我們已經(jīng)對(duì)常見曲線圓、橢圓、雙曲線以及拋物線進(jìn)行過(guò)這兩個(gè)方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來(lái)對(duì)根據(jù)已知條件求曲線的軌跡方程的常見技巧與方法進(jìn)行系統(tǒng)分析。
。ǘ⿴追N常見求軌跡方程的方法
1、直接法
由題設(shè)所給(或通過(guò)分析圖形的幾何性質(zhì)而得出)的動(dòng)點(diǎn)所滿足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡(jiǎn)得曲線的方程,這種方法叫直接法。
例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動(dòng)點(diǎn)P的軌跡方程;
。2)過(guò)點(diǎn)A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點(diǎn)的軌跡。
對(duì)(1)分析:
動(dòng)點(diǎn)P的軌跡是不知道的,不能考查其幾何特征,但是給出了動(dòng)點(diǎn)P的運(yùn)動(dòng)規(guī)律:|OP|=2R或|OP|=0。
解:設(shè)動(dòng)點(diǎn)P(x,y),則有|OP|=2R或|OP|=0。
即x2+y2=4R2或x2+y2=0。
故所求動(dòng)點(diǎn)P的軌跡方程為x2+y2=4R2或x2+y2=0。
對(duì)(2)分析:
題設(shè)中沒有具體給出動(dòng)點(diǎn)所滿足的幾何條件,但可以通過(guò)分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點(diǎn)連線垂直于弦,它們的斜率互為負(fù)倒數(shù)。由學(xué)生演板完成,解答為:
設(shè)弦的中點(diǎn)為M(x,y),連結(jié)OM,則OM⊥AM!遦OM·kAM=—1,
其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的'一段。ú缓它c(diǎn))。
2、定義法
利用所學(xué)過(guò)的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動(dòng)點(diǎn)的軌跡方程,這種方法叫做定義法。這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識(shí)分析得出這些條件。
直平分線l交半徑OQ于點(diǎn)P(見圖2-45),當(dāng)Q點(diǎn)在圓周上運(yùn)動(dòng)時(shí),求點(diǎn)P的軌跡方程。
分析:
∵點(diǎn)P在AQ的垂直平分線上,∴|PQ|=|PA|。
又P在半徑OQ上!鄚PO|+|PQ|=R,即|PO|+|PA|=R。
故P點(diǎn)到兩定點(diǎn)距離之和是定值,可用橢圓定義
寫出P點(diǎn)的軌跡方程。
解:連接PA ∵l⊥PQ,∴|PA|=|PQ|。
又P在半徑OQ上!鄚PO|+|PQ|=2。
由橢圓定義可知:P點(diǎn)軌跡是以O(shè)、A為焦點(diǎn)的橢圓。
3、相關(guān)點(diǎn)法
若動(dòng)點(diǎn)P(x,y)隨已知曲線上的點(diǎn)Q(x0,y0)的變動(dòng)而變動(dòng),且x0、y0可用x、y表示,則將Q點(diǎn)坐標(biāo)表達(dá)式代入已知曲線方程,即得點(diǎn)P的軌跡方程。這種方法稱為相關(guān)點(diǎn)法(或代換法)。
例3 已知拋物線y2=x+1,定點(diǎn)A(3,1)、B為拋物線上任意一點(diǎn),點(diǎn)P在線段AB上,且有BP∶PA=1∶2,當(dāng)B點(diǎn)在拋物線上變動(dòng)時(shí),求點(diǎn)P的軌跡方程。
分析:
P點(diǎn)運(yùn)動(dòng)的原因是B點(diǎn)在拋物線上運(yùn)動(dòng),因此B可作為相關(guān)點(diǎn),應(yīng)先找出點(diǎn)P與點(diǎn)B的聯(lián)系。
解:設(shè)點(diǎn)P(x,y),且設(shè)點(diǎn)B(x0,y0)
∵BP∶PA=1∶2,且P為線段AB的內(nèi)分點(diǎn)。
4、待定系數(shù)法
求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求。
例4 已知拋物線y2=4x和以坐標(biāo)軸為對(duì)稱軸、實(shí)軸在y軸上的雙曲
曲線方程。
分析:
因?yàn)殡p曲線以坐標(biāo)軸為對(duì)稱軸,實(shí)軸在y軸上,所以可設(shè)雙曲線方
ax2—4b2x+a2b2=0
∵拋物線和雙曲線僅有兩個(gè)公共點(diǎn),根據(jù)它們的對(duì)稱性,這兩個(gè)點(diǎn)的橫坐標(biāo)應(yīng)相等,因此方程ax2—4b2x+a2b2=0應(yīng)有等根。
∴△=16b4—4a4b2=0,即a2=2b。
。ㄒ韵掠蓪W(xué)生完成)
由弦長(zhǎng)公式得:
即a2b2=4b2—a2。
(三)鞏固練習(xí)
用十多分鐘時(shí)間作一個(gè)小測(cè)驗(yàn),檢查一下教學(xué)效果。練習(xí)題用一小黑板給出。
1、△ABC一邊的兩個(gè)端點(diǎn)是B(0,6)和C(0,—6),另兩邊斜率的
2、點(diǎn)P與一定點(diǎn)F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點(diǎn)P的軌跡方程,并說(shuō)明軌跡是什么圖形?
3、求拋物線y2=2px(p>0)上各點(diǎn)與焦點(diǎn)連線的中點(diǎn)的軌跡方程。
答案:
義法)
由中點(diǎn)坐標(biāo)公式得:
。ㄋ模、教學(xué)反思
求曲線的軌跡方程一般地有直接法、定義法、相關(guān)點(diǎn)法、待定系數(shù)法,還有參數(shù)法、復(fù)數(shù)法也是求曲線的軌跡方程的常見方法,這等到講了參數(shù)方程、復(fù)數(shù)以后再作介紹。
四、布置作業(yè)
1、兩定點(diǎn)的距離為6,點(diǎn)M到這兩個(gè)定點(diǎn)的距離的平方和為26,求點(diǎn)M的軌跡方程。
2、動(dòng)點(diǎn)P到點(diǎn)F1(1,0)的距離比它到F2(3,0)的距離少2,求P點(diǎn)的軌跡。
3、已知圓x2+y2=4上有定點(diǎn)A(2,0),過(guò)定點(diǎn)A作弦AB,并延長(zhǎng)到點(diǎn)P,使3|AB|=2|AB|,求動(dòng)點(diǎn)P的軌跡方程。
作業(yè)答案:
1、以兩定點(diǎn)A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系,得點(diǎn)M的軌跡方程x2+y2=4。
2、∵|PF2|—|PF|=2,且|F1F2|∴P點(diǎn)只能在x軸上且x<1,軌跡是一條射線。
高二數(shù)學(xué)教案10
一、教學(xué)目標(biāo)
1、了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實(shí)和判定的基本方法、
。1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念、
。2)能從數(shù)和形兩個(gè)角度熟悉單調(diào)性和奇偶性、
。3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實(shí)某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程、
2、通過(guò)函數(shù)單調(diào)性的證實(shí),提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想、
3、通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度、
二、教學(xué)建議
。ㄒ唬┲R(shí)結(jié)構(gòu)
。1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系、
。2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像、
。ǘ┲攸c(diǎn)難點(diǎn)分析
。1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉、教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的.本質(zhì),把握單調(diào)性的證實(shí)、
。2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫它、這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫、單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒有意識(shí)到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)、
。ㄈ┙谭ńㄗh
。1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),二次函數(shù)、反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏、如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái)、在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來(lái)、
(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律、
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來(lái)、經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較輕易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式、關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如)說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件、
高二數(shù)學(xué)教案11
一、教材分析
推理是高考的重要的內(nèi)容,推理包括合情推理與演繹推理,由于解答高考題的過(guò)程就是推理的過(guò)程,因此本部分內(nèi)容的考察將會(huì)滲透到每一個(gè)高考題中,考察推理的基本思想和方法,既可能在選擇題中和填空題中出現(xiàn),也可能在解答題中出現(xiàn)。
二、教學(xué)目標(biāo)
(1)知識(shí)與能力:了解演繹推理的含義及特點(diǎn),會(huì)將推理寫成三段論的形式
(2)過(guò)程與方法:了解合情推理和演繹推理的區(qū)別與聯(lián)系
(3)情感態(tài)度價(jià)值觀:了解演繹推理在數(shù)學(xué)證明中的重要地位和日常生活中的作用,養(yǎng)成言之有理論證有據(jù)的習(xí)慣。
三、教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):演繹推理的含義與三段論推理及合情推理和演繹推理的區(qū)別與聯(lián)系
教學(xué)難點(diǎn):演繹推理的應(yīng)用
四、教學(xué)方法:探究法
五、課時(shí)安排:1課時(shí)
六、教學(xué)過(guò)程
1. 填一填:
、 所有的金屬都能夠?qū)щ,銅是金屬,所以 ;
、 太陽(yáng)系的大行星都以橢圓形軌道繞太陽(yáng)運(yùn)行,冥王星是太陽(yáng)系的大行星,因此 ;
、 奇數(shù)都不能被2整除,2007是奇數(shù),所以 .
2.討論:上述例子的推理形式與我們學(xué)過(guò)的.合情推理一樣嗎?
3.小結(jié):
、 概念:從一般性的原理出發(fā),推出某個(gè)特殊情況下的結(jié)論,我們把這種推理稱為____________.
要點(diǎn):由_____到_____的推理.
② 討論:演繹推理與合情推理有什么區(qū)別?
、 思考:所有的金屬都能夠?qū)щ姡~是金屬,所以銅能導(dǎo)電,它由幾部分組成,各部分有什么特點(diǎn)?
小結(jié):三段論是演繹推理的一般模式:
第一段:_________________________________________;
第二段:_________________________________________;
第三段:____________________________________________.
、 舉例:舉出一些用三段論推理的例子.
例1:證明函數(shù) 在 上是增函數(shù).
例2:在銳角三角形ABC中, ,D,E是垂足. 求證:AB的中點(diǎn)M到D,E的距離相等.
當(dāng)堂檢測(cè):
討論:因?yàn)橹笖?shù)函數(shù) 是增函數(shù), 是指數(shù)函數(shù),則結(jié)論是什么?
討論:演繹推理怎樣才能使得結(jié)論正確?
比較:合情推理與演繹推理的區(qū)別與聯(lián)系?
課堂小結(jié)
課后練習(xí)與提高
1.演繹推理是以下列哪個(gè)為前提,推出某個(gè)特殊情況下的結(jié)論的推理方法( )
A.一般的原理原則; B.特定的命題;
C.一般的命題; D.定理、公式.
2.因?yàn)閷?duì)數(shù)函數(shù) 是增函數(shù)(大前提),而 是對(duì)數(shù)函數(shù)(小前提),所以 是增函數(shù)(結(jié)論).上面的推理的錯(cuò)誤是( )
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò); B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò);
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò); D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò).
3.下面幾種推理過(guò)程是演繹推理的是( )
A.兩條直線平行,同旁內(nèi)角互補(bǔ),如果A和B是兩條平行直線的同旁內(nèi)角,則B =180B.由平面三角形的性質(zhì),推測(cè)空間四面體的性質(zhì);.
4.補(bǔ)充下列推理的三段論:
(1)因?yàn)榛橄喾磾?shù)的兩個(gè)數(shù)的和為0,又因?yàn)?與 互為相反數(shù)且________________________,所以 =8.
(2)因?yàn)開____________________________________,又因?yàn)?是無(wú)限不循環(huán)小數(shù),所以 是無(wú)理數(shù).
七、板書設(shè)計(jì)
八、教學(xué)反思
高二數(shù)學(xué)教案12
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
本節(jié)課主要內(nèi)容是讓學(xué)生了解在客觀世界中要認(rèn)識(shí)客觀現(xiàn)象的第一步就是通過(guò)觀察或試驗(yàn)取得觀測(cè)資料,然后通過(guò)分析這些資料來(lái)認(rèn)識(shí)此現(xiàn)象。如何取得有代表性的觀測(cè)資料并能夠正確的加以分析,是正確的認(rèn)識(shí)未知現(xiàn)象的基礎(chǔ),也是統(tǒng)計(jì)所研究的基本問(wèn)題。
2.內(nèi)容解析
本節(jié)課是高中階段學(xué)習(xí)統(tǒng)計(jì)學(xué)的第一節(jié)課,統(tǒng)計(jì)是研究如何合理收集、整理、分析數(shù)據(jù)的學(xué)科,它可以為人們制定決策提供依據(jù)。學(xué)生在九年義務(wù)階段已經(jīng)學(xué)習(xí)了收集、整理、描述和分析數(shù)據(jù)等處理數(shù)據(jù)的基本方法。在高中學(xué)習(xí)統(tǒng)計(jì)的過(guò)程中還將逐步讓學(xué)生體會(huì)確定性思維與統(tǒng)計(jì)思維的差異,注意到統(tǒng)計(jì)結(jié)果的隨機(jī)性特征,統(tǒng)計(jì)推斷是有可能錯(cuò)的,這是由統(tǒng)計(jì)本身的性質(zhì)所決定的。統(tǒng)計(jì)有兩種。一種是把所有個(gè)體的信息都收集起來(lái),然后進(jìn)行描述,這種統(tǒng)計(jì)方法稱為描述性統(tǒng)計(jì),例如我國(guó)進(jìn)行的人口普查。但是在很多情況下我們無(wú)法采用描述性統(tǒng)計(jì)對(duì)所有的個(gè)體進(jìn)行調(diào)查,通常是在總體中抽取一定的樣本為代表,從樣本的信息來(lái)推斷總體的特征,這稱為推斷性統(tǒng)計(jì)。例如有的產(chǎn)品數(shù)量非常的大或者有的產(chǎn)品的質(zhì)量檢查是破壞性的。統(tǒng)計(jì)和概率的基礎(chǔ)知識(shí)已經(jīng)成為一個(gè)未來(lái)公民的必備常識(shí)。
抽樣調(diào)查是我們收集數(shù)據(jù)的一種重要途徑,是一種重要的、科學(xué)的非全面調(diào)查方法。它根據(jù)調(diào)查的目的和任務(wù)要求,按照隨機(jī)原則,從若干單位組成的事物總體中,抽取部分樣本單位來(lái)進(jìn)行調(diào)查、觀察,用所得到的調(diào)查標(biāo)志的數(shù)據(jù)來(lái)推斷總體。其中蘊(yùn)涵了重要的統(tǒng)計(jì)思想——樣本估計(jì)總體。而樣本代表性的好壞直接影響統(tǒng)計(jì)結(jié)論的準(zhǔn)確性,所以抽樣過(guò)程中,考慮的最主要原則為:保證樣本能夠很好地代表總體。而隨機(jī)抽樣的出發(fā)點(diǎn)是使每個(gè)個(gè)體都有相同的機(jī)會(huì)被抽中,這是基于對(duì)樣本數(shù)據(jù)代表性的考慮。
本節(jié)課重點(diǎn):能從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題,理解隨機(jī)抽樣的必要性與重要性。
二、目標(biāo)和目標(biāo)解析
1.目標(biāo)
(1)通過(guò)對(duì)具體的案例分析,逐步學(xué)會(huì)從現(xiàn)實(shí)生活中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題,(2)結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性;
(3)以問(wèn)題鏈的形式深刻理解樣本的代表性。
2.目標(biāo)解析
本章章頭圖列舉了我國(guó)水資源缺乏問(wèn)題、土地沙漠化問(wèn)題等情境,提出了學(xué)習(xí)統(tǒng)計(jì)的意義。同時(shí)通過(guò)具體的實(shí)例,使學(xué)生能夠嘗試從實(shí)際問(wèn)題中發(fā)現(xiàn)統(tǒng)計(jì)問(wèn)題,提出統(tǒng)計(jì)問(wèn)題。讓學(xué)生養(yǎng)成從現(xiàn)實(shí)生活或其他學(xué)科中發(fā)現(xiàn)問(wèn)題、提出問(wèn)題的習(xí)慣,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題與提出問(wèn)題的能力與意識(shí)。
對(duì)某個(gè)問(wèn)題的調(diào)查最簡(jiǎn)單的方法就是普查,但是這種方法的局限性很大,出于費(fèi)用和時(shí)間的考慮,有時(shí)一個(gè)精心設(shè)計(jì)的抽樣方案,其實(shí)施效果甚至可以勝過(guò)普查,在這個(gè)過(guò)程中讓學(xué)生逐步體會(huì)到隨機(jī)抽樣的必要性和重要性。抽樣調(diào)查,就是通過(guò)從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,借以獲得對(duì)整體的了解。為了使由樣本到總體的推斷有效,樣本必須是總體的代表,否則就可能出現(xiàn)方便樣本。由此在對(duì)實(shí)例的分析過(guò)程中探討獲取能夠代表總體的樣本的.方法,得到隨機(jī)樣本的概念,逐步理解樣本的代表性與統(tǒng)計(jì)推斷結(jié)論可靠性之間的關(guān)系。
三、教學(xué)問(wèn)題診斷分析
學(xué)生在九年義務(wù)教育階段已有對(duì)統(tǒng)計(jì)活動(dòng)的認(rèn)識(shí),并學(xué)習(xí)了統(tǒng)計(jì)圖表、收集數(shù)據(jù)的方法,但對(duì)于如何抽樣更能使樣本代表總體的意識(shí)還不強(qiáng);在以前的學(xué)習(xí)中,學(xué)生的學(xué)習(xí)內(nèi)容以確定性數(shù)學(xué)學(xué)習(xí)為主;學(xué)生對(duì)全面調(diào)查,即普查有所了解,它在經(jīng)驗(yàn)上更接近確定性數(shù)學(xué),而隨機(jī)抽樣學(xué)習(xí)則要求學(xué)生通過(guò)對(duì)具體問(wèn)題的解決,能體會(huì)到統(tǒng)計(jì)中的重要思想——樣本估計(jì)總體以及統(tǒng)計(jì)結(jié)果的不確定性。學(xué)生已有知識(shí)經(jīng)驗(yàn)與本節(jié)要達(dá)成的教學(xué)目標(biāo)之間還有很大的差距。主要的困難有:對(duì)樣本估計(jì)總體的思想、對(duì)統(tǒng)計(jì)結(jié)果的“不確定性”產(chǎn)生懷疑,對(duì)統(tǒng)計(jì)的科學(xué)性有所質(zhì)疑;對(duì)抽樣應(yīng)該具有隨機(jī)性,每個(gè)樣本的抽取又都落實(shí)在某個(gè)人的具體操作上不理解,因此教學(xué)中要通過(guò)具體實(shí)例的研究給學(xué)生釋疑。
在教學(xué)過(guò)程中,可以鼓勵(lì)學(xué)生從自己的生活中提出與典型案例類似的統(tǒng)計(jì)問(wèn)題,如每天完成家庭作業(yè)所需的時(shí)間,每天的體育鍛煉時(shí)間,學(xué)生的近視率,一批電燈泡的壽命是否符合要求等等。在學(xué)生提出這些問(wèn)題后,要引導(dǎo)學(xué)生考慮問(wèn)題中的總體是什么,要觀測(cè)的變量是什么,如何獲取樣本,通過(guò)這樣一個(gè)教學(xué)過(guò)程,更能激起學(xué)生的學(xué)習(xí)興趣,能學(xué)有所用,拉近知識(shí)與實(shí)踐的距離,培養(yǎng)學(xué)生從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題的能力。在這個(gè)過(guò)程中提升學(xué)生對(duì)統(tǒng)計(jì)抽樣概念的理解,初步培養(yǎng)學(xué)生運(yùn)用統(tǒng)計(jì)思想表述、思考和理解現(xiàn)實(shí)世界中的問(wèn)題能力,這樣教學(xué)效果可能會(huì)更佳。
根據(jù)這一分析,確定本課時(shí)的教學(xué)難點(diǎn)是:如何使學(xué)生真正理解樣本的抽取是隨機(jī)的,隨機(jī)抽取的樣本將能夠代表總體。
四、教學(xué)支持條件分析
準(zhǔn)備一些隨機(jī)抽樣成功或失敗的事例,利用實(shí)物投影或放映的多媒體設(shè)備輔助教學(xué)。
五、教學(xué)過(guò)程設(shè)計(jì)
(一)感悟數(shù)據(jù)、引入課題
問(wèn)題1:請(qǐng)同學(xué)們看章頭圖中的有關(guān)沙漠化和缺水量的數(shù)據(jù),你有什么感受?
師生活動(dòng):讓學(xué)生充分思考和探討,并逐步引導(dǎo)學(xué)生產(chǎn)生質(zhì)疑:這些數(shù)據(jù)是怎么來(lái)的?
設(shè)計(jì)意圖:通過(guò)一些數(shù)據(jù)讓學(xué)生充分感受我們生活在一個(gè)數(shù)字化時(shí)代,要學(xué)會(huì)與數(shù)據(jù)打交道,養(yǎng)成對(duì)數(shù)據(jù)產(chǎn)生的背景進(jìn)行思考的習(xí)慣。
問(wèn)題2:我發(fā)現(xiàn)我們班級(jí)有很多的同學(xué)都是戴眼鏡的,誰(shuí)能告訴我我們班的近視率?
普查:為了一定的目的而對(duì)考察對(duì)象進(jìn)行的全面調(diào)查稱為普查。
總體:所要考察對(duì)象的全體稱為總體(population)
個(gè)體:組成總體的每一個(gè)考察對(duì)象稱為個(gè)體(individual)
普查是我們進(jìn)行調(diào)查得到全部信息的一種方式,比如我國(guó)10年一次的人口普查等。
設(shè)計(jì)意圖:通過(guò)與學(xué)生比較貼近的案例入手,讓學(xué)生體會(huì)到統(tǒng)計(jì)是從日常生活中產(chǎn)生的。
(二)操作實(shí)踐、展開課題
問(wèn)題3:如果我想了解榆次二中所有高一學(xué)生的近視率,你打算怎么做呢?
抽樣調(diào)查:從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查(samplinginvestigation).
樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本(sample).
師生活動(dòng):以四人小組為單位進(jìn)行討論,每個(gè)小組派一個(gè)代表匯報(bào)方案。
設(shè)計(jì)意圖:從這個(gè)問(wèn)題中引出抽樣調(diào)查和樣本的概念,使學(xué)生對(duì)于如何產(chǎn)生樣本進(jìn)行一定的思考,同時(shí)也使學(xué)生認(rèn)識(shí)到樣本選擇的好壞對(duì)于用樣本估計(jì)總體的精確度是有所不同的。
列舉:一個(gè)的案例
高二數(shù)學(xué)教案13
[新知初探]
1、向量的數(shù)乘運(yùn)算
。1)定義:規(guī)定實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作:λa,它的長(zhǎng)度和方向規(guī)定如下:
、質(zhì)λa|=|λ||a|;
②當(dāng)λ>0時(shí),λa的方向與a的方向相同;
當(dāng)λ<0時(shí),λa的方向與a的方向相反。
。2)運(yùn)算律:設(shè)λ,μ為任意實(shí)數(shù),則有:
①λ(μa)=(λμ)a;
、冢é+μ)a=λa+μa;
、郐耍╝+b)=λa+λb;
特別地,有(—λ)a=—(λa)=λ(—a);
λ(a—b)=λa—λb。
[點(diǎn)睛](1)實(shí)數(shù)與向量可以進(jìn)行數(shù)乘運(yùn)算,但不能進(jìn)行加減運(yùn)算,如λ+a,λ—a均無(wú)法運(yùn)算。
。2)λa的'結(jié)果為向量,所以當(dāng)λ=0時(shí),得到的結(jié)果為0而不是0。
2、向量共線的條件
向量a(a≠0)與b共線,當(dāng)且僅當(dāng)有一個(gè)實(shí)數(shù)λ,使b=λa。
[點(diǎn)睛](1)定理中a是非零向量,其原因是:若a=0,b≠0時(shí),雖有a與b共線,但不存在實(shí)數(shù)λ使b=λa成立;若a=b=0,a與b顯然共線,但實(shí)數(shù)λ不,任一實(shí)數(shù)λ都能使b=λa成立。
。2)a是非零向量,b可以是0,這時(shí)0=λa,所以有λ=0,如果b不是0,那么λ是不為零的實(shí)數(shù)。
3、向量的線性運(yùn)算
向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算。對(duì)于任意向量a,b及任意實(shí)數(shù)λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯(cuò)誤的打“×”)
。1)λa的方向與a的方向一致。()
。2)共線向量定理中,條件a≠0可以去掉。()
。3)對(duì)于任意實(shí)數(shù)m和向量a,b,若ma=mb,則a=b。()
答案:(1)×(2)×(3)×
2、若|a|=1,|b|=2,且a與b方向相同,則下列關(guān)系式正確的是()
A、b=2aB、b=—2a
C、a=2bD、a=—2b
答案:A
3、在四邊形ABCD中,若=—12,則此四邊形是()
A、平行四邊形B、菱形
C、梯形D、矩形
答案:C
4、化簡(jiǎn):2(3a+4b)—7a=XXXXXX。
答案:—a+8b
向量的線性運(yùn)算
[例1]化簡(jiǎn)下列各式:
。1)3(6a+b)—9a+13b;
。2)12?3a+2b?—a+12b—212a+38b;
。3)2(5a—4b+c)—3(a—3b+c)—7a。
[解](1)原式=18a+3b—9a—3b=9a。
。2)原式=122a+32b—a—34b=a+34b—a—34b=0。
。3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。
向量線性運(yùn)算的方法
向量的線性運(yùn)算類似于代數(shù)多項(xiàng)式的運(yùn)算,共線向量可以合并,即“合并同類項(xiàng)”“提取公因式”,這里的“同類項(xiàng)”“公因式”指的是向量。
高二數(shù)學(xué)教案14
教學(xué)內(nèi)容
教科書125頁(yè),練習(xí)三十.
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.通過(guò)整理和復(fù)習(xí),進(jìn)一步掌握方程的有關(guān)知識(shí)。
2.通過(guò)整理和復(fù)習(xí),進(jìn)一步掌握用方程解應(yīng)用題。
(二)能力訓(xùn)練點(diǎn)
1.通過(guò)整理和復(fù)習(xí),加強(qiáng)知識(shí)間的聯(lián)系,形成知識(shí)網(wǎng)絡(luò)。
2.通過(guò)整理和復(fù)習(xí),培養(yǎng)學(xué)生計(jì)算的敏捷性和靈活性。
(三)德育滲透點(diǎn)
通過(guò)知識(shí)化間的聯(lián)系,使學(xué)生受到辯證唯物主義的啟蒙教育。
(四)美育滲透點(diǎn)
通過(guò)整理和復(fù)習(xí),使學(xué)生感受到數(shù)學(xué)知識(shí)內(nèi)在聯(lián)系的邏輯之美,從而感悟到數(shù)學(xué)知識(shí)的魅力。
二、學(xué)法指導(dǎo)
1.引導(dǎo)學(xué)生回憶所學(xué)過(guò)知識(shí),使知識(shí)系統(tǒng)化。
2.指導(dǎo)學(xué)生利用已有經(jīng)驗(yàn),進(jìn)行體驗(yàn),鞏固所學(xué)知識(shí)。
三、教學(xué)重點(diǎn)
通過(guò)知識(shí)間的聯(lián)系,掌握方程的概念和解方程的能力。
四、教學(xué)難點(diǎn)
知識(shí)間的內(nèi)在聯(lián)系。
五、教具學(xué)具準(zhǔn)備
投影儀、投影片等。
六、教學(xué)步驟
(一)導(dǎo)入(略)
(二)復(fù)習(xí)
1.這單元學(xué)習(xí)了什么內(nèi)容
2.回憶并概括,板書
(1)用字母表示數(shù)
(2)解簡(jiǎn)易方程
(3)列方程解應(yīng)用題。
(先啟發(fā)學(xué)生回憶學(xué)過(guò)的知識(shí),為整理和復(fù)習(xí)做準(zhǔn)備)。
(三)整理
1.用字母表示數(shù)
用字母表示數(shù)每天跑步的米數(shù)用X表示。
用字母表示數(shù)量關(guān)系一星期跑的米數(shù)7X。
用含有字母的式子表示數(shù)量現(xiàn)在每天跑步的米數(shù)x+2凹
(2)出示1(2),引導(dǎo)學(xué)生解答。
(把用字母表示數(shù),按整理和復(fù)習(xí)的類型進(jìn)行梳理,形成知識(shí)結(jié)構(gòu)。)
2.解簡(jiǎn)易方程
(1)方程的意義,引導(dǎo)學(xué)生回憶。
解方程的.意義
出示練習(xí)三十二1題,進(jìn)行反饋練習(xí)。
(2)整理和復(fù)習(xí)3題
、倏谑鼋忸}步驟
、谑箤W(xué)生明確:根據(jù)加、減、乘、除運(yùn)算關(guān)系進(jìn)解答,這在以前解含有未知數(shù)尤的等式中已經(jīng)掌握。
、鄢鍪揪毩(xí)三十三3、4題,部分題分組進(jìn)行解答,訂正,并說(shuō)一說(shuō)是怎樣想的
(邊整理邊反饋練習(xí),使學(xué)生已有的經(jīng)驗(yàn)得到充分體驗(yàn)和發(fā)展,提高學(xué)生的計(jì)算能力。)
④引導(dǎo)學(xué)生總結(jié),解方程應(yīng)注意的問(wèn)題。
3.列方程解應(yīng)用題
列方程解應(yīng)用題,用方程的方法解決實(shí)際問(wèn)題。
(1)列方程解應(yīng)用題的特點(diǎn)是
、儆米帜副硎疚粗獢(shù)
、诜治鲱}中的等量關(guān)系
、哿谐龊形粗獢(shù)x的等式方程
、芙獯,檢驗(yàn)與答答話。
(2)整理和復(fù)習(xí)4題
分組進(jìn)行交流,訂正時(shí)說(shuō)一說(shuō)是怎樣想的
(3)練習(xí)三十三4題,用方程解,獨(dú)立計(jì)算。
(4)整理和復(fù)習(xí)5題
、傧确纸M用不同方法解答
②引導(dǎo)學(xué)生進(jìn)行比較
使學(xué)生明確:
用方程解應(yīng)用題:用算術(shù)方法解應(yīng)用題
1.未知數(shù)用字母表示,勃口列式。
1.未知數(shù)不參加列式。
2。根據(jù)題意找出數(shù)量間的相等
2.根據(jù)題里已知數(shù)和未知數(shù)間關(guān)系,引出含有未知數(shù)x的關(guān)系,引出含有末知數(shù)x的等式。的關(guān)系,確定解答步驟,再列式計(jì)算。
注意:用方程解應(yīng)用題,得數(shù)不注明單位名稱;而用算術(shù)方法解應(yīng)用題,得數(shù)要注明單位名稱。
今后題目中除指定解題方法以外,自己選擇解題方法。
(5)練習(xí)三十三6題
訂正時(shí),引導(dǎo)學(xué)生分析、比較。
七、布置作業(yè)
練習(xí)三十三3、4題部分題,7、8題。
八、板書設(shè)計(jì)(略)
高二數(shù)學(xué)教案15
一、教學(xué)目的
使學(xué)生掌握等腰三角形性質(zhì)定理(包括推論)及其證明.
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰三角形的性質(zhì).
難點(diǎn):文字命題的證明.
三、教學(xué)過(guò)程
復(fù)習(xí)提問(wèn)
什么叫做等腰三角形?什么是等腰三角形的腰、底邊、頂點(diǎn)和底角?
引入新課
教師演示事先備好的等腰三角形紙片對(duì)折,使兩腰疊在一起,發(fā)現(xiàn)它的兩底角重合,從而得到等腰三角形兩底角相等的命題,當(dāng)然此命題的真實(shí)性還需推理論證.
新課
1.等腰三角形的性質(zhì)定理等腰三角形的兩底角相等(簡(jiǎn)寫成“等邊對(duì)等角”).
讓學(xué)生回憶前面學(xué)過(guò)的文字命題證明的全過(guò)程.引導(dǎo)學(xué)生寫出已知、求證,并且都要結(jié)合圖形使之具體化.
2.推論1等腰三角形頂角平分線平分底邊且垂直于底邊.
從性質(zhì)定理的證明過(guò)程可以知道(如圖1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推論.
從推論1可以知道,等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合.
推論2等邊三角形的'各角都相等,并且每一個(gè)角都等于60°.
3.等腰三角形性質(zhì)的應(yīng)用.等腰三角形的性質(zhì)有著重要的應(yīng)用,一般說(shuō),利用“等腰三角形兩底角相等”的性質(zhì)證明兩角相等;利用“等腰三角形底邊上的三條主要線段重合”的性質(zhì),來(lái)證明兩條線段相等、兩個(gè)角相等及兩條直線互相垂直;利用“等邊三角形各角相等,并且每一個(gè)角都等于60°”的性質(zhì),來(lái)證明一個(gè)角是60°,或作圖中通過(guò)作等邊三角形,作出一個(gè)60°的角.
例1已知:如圖2,房屋的頂角∠BAC=100°,過(guò)屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數(shù).
這是一道幾何計(jì)算題,要使學(xué)生熟悉解計(jì)算題的步驟,引導(dǎo)學(xué)生寫出解題過(guò)程.
小結(jié)
1.?dāng)⑹龅妊切蔚男再|(zhì)(本堂所講定理及推論)及其應(yīng)用.
2.等腰三角形頂角與底角之間的常用關(guān)系式:在△ABC中,AB=AC,則
(1)∠A=180°-2∠B=180°-2∠C;
3.已知等腰三角形一個(gè)角的度數(shù),求其它兩個(gè)角的度數(shù):(1)若已知角是鈍角或直角,則此角一定為頂角,于是由2中(2)可求出兩底角;(2)若已知角是銳角,則此角可能是頂角,也可能是底角.若為前者,可按2中(2)求出兩底角.若為后者,則可按2中(1)求出頂角.
練習(xí):略
作業(yè):略
四、教學(xué)注意問(wèn)題
1.等腰三角形的性質(zhì)在今后解(證)幾何題中有著重要的應(yīng)用,務(wù)必引起學(xué)生重視.且應(yīng)反復(fù)練習(xí).
2.幾何計(jì)算題的一般解題步驟.
【高二數(shù)學(xué)教案】相關(guān)文章:
高二數(shù)學(xué)教案12-04
高二數(shù)學(xué)教案01-26
高二數(shù)學(xué)教案范文01-06
高二數(shù)學(xué)教案精品01-24
高二數(shù)學(xué)教案(合集)03-26
中職高二數(shù)學(xué)教案11-07