- 高中數(shù)學教案 推薦度:
- 高中數(shù)學教案教學設(shè)計 推薦度:
- 相關(guān)推薦
【熱】高中數(shù)學教案
作為一無名無私奉獻的教育工作者,通常會被要求編寫教案,借助教案可以讓教學工作更科學化。來參考自己需要的教案吧!以下是小編為大家收集的高中數(shù)學教案,僅供參考,歡迎大家閱讀。
高中數(shù)學教案1
一、復習內(nèi)容
平面向量的概念及運算法則
二、復習重點
向量的概念及運算法則的運用及其用向量知識,實現(xiàn)幾何與代數(shù)之間的等價轉(zhuǎn)化。
三、具體教學過程
1、學生準備課前預習回家做作業(yè)。其具體步驟是:相應知識的系統(tǒng)梳理;典型例題的摘錄;搜集平時作業(yè),測驗作業(yè)中存在的典型錯誤;提出針性訓練的練習題;準備思考題,以及家庭作業(yè)。學生的準備可以從中選擇一項,學有余力的同學可以多選。
2、學生可以分為出題組、答題組和歸納組(每組3~4人),三個小組又可構(gòu)成一個大的探究組,各小組的角色在其過程中可以互換;教師從旁引導,控制教學節(jié)奏,并有機、適時地對有爭議的問題或引起認知沖突的部分作相應的釋疑,最后選出具有代表性的題目和表達最完整的歸納展示給學生。
出題組:在教師的引導下,確立出題意圖后,可以自編或在課本、資料中尋找適當?shù)睦}。
答題組:迅速給出題目答案或解題思路步驟(由學生自己講解),同時確立該題所考察的知識點和方法,并互相討論解題過程中的易錯點和容易忽視的問題。
歸納組:對照相應的問題,歸納出解決問題的關(guān)鍵和方法及其需要注意的事項。并以書面的形式給出,可充分利用投影的方式展示給學生。
3、教學中教師按上述環(huán)節(jié)順序,讓每一環(huán)節(jié)準備相同內(nèi)容,學生自己選擇一人擔任主講,其余同學組成評議組,主講講解完后,由評議組補充、完善或評價、矯正……。
4、教師控制教學節(jié)奏,并有機、適時地對有爭議的問題或引起認知沖突的部分作相應的釋疑。
5、在學生自己完成這一復習環(huán)節(jié)后,師生共同完成教師的精選題例題的講解,同樣采用啟發(fā)討論式,盡可能地讓學生自己完成問題的解答。
6、課尾教師進行點評、歸納、小結(jié)(由學生自己完成),并評選本課“主講明星”與“評議”。
四、案例分析及其反思
1、讓學生走上講臺,既為學生提供展示才華的舞臺,滿足其表現(xiàn)欲,嘗試成功感,又讓學生親歷知識掌握的構(gòu)建過程。
2、由于要自己完成課前的準備作業(yè)和講解內(nèi)容,迫使學生進行章節(jié)的.全面復習,對知識進行系統(tǒng)整理,這一復習環(huán)節(jié),卻真正達到了學生自覺地學習,使學生由被動學習轉(zhuǎn)化為主動學習,提高學習效率。
3、組織這樣的課堂教學流程,培養(yǎng)了學生口才、組織能力、邏輯思維能力、應變能力、心理承受能力等等,促使學生的個性達到良性的發(fā)展。
4、由于改變了課堂的傳統(tǒng)座位排法,學生得到了互相幫助的機會,學習較差的學生能直接得到學有余力的同學的幫助和指導,更容易掌握和理解所學的知識,調(diào)動興趣,提高了學習能力;突W為學生營造了一個輕松、愉快的學習氛圍。打破教師出題,學生解答的單調(diào)教學模式。通過學生自己變式,充分體現(xiàn)學生的主體性,使他們對一類問題有根本性地掌握,起到以點帶面的效果。通過以組題的形式讓學生通過有目的的聯(lián)想,探索習題之間的內(nèi)在聯(lián)系,明確問題產(chǎn)生的背景,領(lǐng)會問題的實質(zhì),進而找到相應的解題策略,培養(yǎng)學生的思維的靈活性和廣闊性,進一步完善、深化學生的認知結(jié)構(gòu)。
5、教學模式恰當,引人入勝
“探究討論式”是一種常用的教學方法。然而,本課探索“向量的應用”卻頗有難度,尤其是幾何與代數(shù)之間的問題轉(zhuǎn)化。為了突破這一難點,首先復習舊知識,預備鋪墊,接著設(shè)計簡單的幾何圖形中的代數(shù)求值問題。教師在思想方法上的點拔,思維層次上的遞進,讓學生分享自己成果的樂趣,體現(xiàn)了“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引領(lǐng)者與合作者!钡慕虒W理念。整個教學設(shè)計,思路清楚,層次轉(zhuǎn)換自然,點撥及時,自然流暢,引人入勝。
6、體現(xiàn)先進理念,合作探索
建構(gòu)主義認為:學生的學習不是被動的接受,而是一種主動的學習,一種知識的重組或重新建構(gòu)的過程。因此,學習方式的轉(zhuǎn)變,對學生的學習至關(guān)重要,也是二期課改成敗的要害。本課注重學生學習方式的轉(zhuǎn)變,教者適時點撥,發(fā)現(xiàn)問題,培養(yǎng)探索精神。從輕易混淆的性質(zhì)入手,讓學生發(fā)現(xiàn)問題,出現(xiàn)迷惑,接著,對向量平行充要條件的研究,培養(yǎng)了學生思維的深刻性,通過概念的辨析,使學生對向量有了更深的理解,此時推出綜合應用題,過渡自然,符合認知規(guī)律。同學探究,思維得到進一步的升華,攻克難點,培養(yǎng)了合作精神。通過展示研究成果,讓學生感到愛好盎然而布滿探索求知的愿望,學生的主體地位得到了淋漓盡致的發(fā)揮。體驗成功的喜悅,分享快樂,提高了學習的積極性。
熟知,課堂教學“以教師為主導,以學生為主體”這句話好說難做。如何落在實處,本課做了有益的嘗試。案例的設(shè)計,具有時代氣息,以問題為先導,直接引導學生進入思考的境界。教案的設(shè)計說明,體現(xiàn)了教者“以學生發(fā)展為本的教學理念”。
《數(shù)學課程標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能……”。這就是一次很好的機會,教師要鼓勵、引導學生敢于質(zhì)疑、敢于實踐,培養(yǎng)學生主動探究問題的能力,轉(zhuǎn)變學生學習方式,即變單一的傳授方式為學生自主體驗、探究等學習方式。
復習課上都有一個突出的矛盾,那就是時間太緊,既要處理足量的題目,又要充分展示學生的思維過程,二者似乎是很難兼顧。教師可采用“焦點訪談”法較好地解決這個問題,如:例2和例2的變式1的探究,因題目是“入口寬,上手易”,但在連續(xù)探究的過程中,在兩種方法會得出兩個相反的答案這一點上擱淺受阻(這一點被稱為“焦點”,其余的則被稱為“外圍”)。這里教師不必在外圍處花精力去進行淺表性的啟發(fā)誘導,好鋼要用在刀刃上,而要在焦點處發(fā)動學生探尋突破口,通過交流“訪談”,集中學生的智慧,讓學生的思維在關(guān)鍵處閃光,能力在要害處增長,弱點在隱蔽處暴露,意志在細微處磨礪。
高中數(shù)學教案2
一、指導思想與理論依據(jù)
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教A版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與、 、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四)。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
三、學情分析
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容。
四、教學目標
。1);A(chǔ)知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;
。2)。能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數(shù)求值與化簡;
(3)。創(chuàng)新素質(zhì)目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學思想,提高學生分析問題、解決問題的能力;
。4)。個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
五、教學重點和難點
1、教學重點
理解并掌握誘導公式。
2、教學難點
正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式。
六.教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究。下面我從教法、學法、預期效果等三個方面做如下分析。
。、教法
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì)。
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅。
。病W法
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情。如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題。
在本節(jié)課的教學過程中,本人引導學生的學法為思考問題共同探討解決問題簡單應用重現(xiàn)探索過程練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習。
3、預期效果
本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題。
七、教學流程設(shè)計
。ㄒ唬﹦(chuàng)設(shè)情景
1、復習銳角300,450,600的三角函數(shù)值;
2、復習任意角的'三角函數(shù)定義;
3、問題:由,你能否知道sin2100的值嗎?引如新課。
設(shè)計意圖
自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法。
(二)新知探究
1、讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
2、讓學生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點為、的坐標有什么關(guān)系;
3、Sin2100與sin300之間有什么關(guān)系。
設(shè)計意圖
由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊。
(三)問題一般化
探究一
1、探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點對稱;
2、探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標關(guān)于原點對稱;
3、探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系。
設(shè)計意圖
首先應用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習設(shè)計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰(zhàn),敢于前進
。ㄋ模┚毩
利用誘導公式(二),口答下列三角函數(shù)值。
。1)。;(2)。;(3)。 。
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題。
(五)問題變形
由sin300=出發(fā),用三角的定義引導學生求出sin(-300),Sin1500值,讓學生聯(lián)想若已知sin =,能否求出sin(),sin()的值。
學生自主探究
1、探究任意角與的三角函數(shù)又有什么關(guān)系;
2、探究任意角與的三角函數(shù)之間又有什么關(guān)系。
設(shè)計意圖
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn)。而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn)。彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步。
展示學生自主探究的結(jié)果
高中數(shù)學教案3
教學目標:1.進一步理解線性規(guī)劃的概念;會解簡單的線性規(guī)劃問題;
2.在運用建模和數(shù)形結(jié)合等數(shù)學思想方法分析、解決問題的過程中;提高解決問題的能力;
3.進一步提高學生的合作意識和探究意識。
教學重點:線性規(guī)劃的概念及其解法
教學難點:
代數(shù)問題幾何化的過程
教學方法:啟發(fā)探究式
教學手段:運用多媒體技術(shù)
教學過程:1.實際問題引入。
問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時70公里,平均耗油量為每小時6公升;小李駕車平均速度為每小時50公里,平均耗油量為每小時4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車時間累計不能超過12小時.問小王和小李分別駕車多少時間時,行駛路程最遠?
2.探究和討論下列問題。
(1)實際問題轉(zhuǎn)化為一個怎樣的數(shù)學問題?
(2)滿足不等式組①的條件的點構(gòu)成的區(qū)域如何表示?
(3)關(guān)于x、y的一個表達式z=70x+50y的幾何意義是什么?
(4)z的幾何意義是什么?
(5)z的最大值如何確定?
讓學生達成以下共識:小王駕車時間x和小李駕車時間y受到時間(12小時)和油量(60公升)的限制,即
x+y≤12
6x+4y≤60 ①
x≥0
y≥0
行駛路程可以表示成關(guān)于x、y的一個表達式:z=70x+50y 由數(shù)形結(jié)合可知:經(jīng)過點B(6,6)的直線所對應的z最大.
則zmax=6×70+6×50=720
結(jié)論:小王和小李分別駕車6小時時,行駛路程最遠為720公里.
解題反思:
問題解決過程中體現(xiàn)了那些重要的數(shù)學思想?
3.線性規(guī)劃的有關(guān)概念。
什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標函數(shù)、線性目標函數(shù)、可行解、可行域和最優(yōu)解等概念.
4.進一步探究線性規(guī)劃問題的解。
問題二:若小王和小李駕車平均速度為每小時60公里和40公里,其它條件不變,問小王和小李分別駕車多少時間時,行駛路程最遠?
要求:請你寫出約束條件、目標函數(shù),作出可行域,求出最優(yōu)解。
問題三:如果把不等式組①中的兩個“≤”改為“≥”,是否存在最優(yōu)解?
5.小結(jié)。
(1)數(shù)學知識;(2)數(shù)學思想。
6.作業(yè)。
(1)閱讀教材:P.60-63;
(2)課后練習:教材P.65-2,3;
(3)在自己生活中尋找一個簡單的線性規(guī)劃問題,寫出約束條件,確定目標函數(shù),作出可行域,并求出最優(yōu)解。
《一個數(shù)列的研究》教學設(shè)計
教學目標:
1.進一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
2.在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;
3.進一步提高問題探究意識、知識應用意識和同伴合作意識。
教學重點:
問題的提出與解決
教學難點:
如何進行問題的探究
教學方法:
啟發(fā)探究式
教學過程:
問題:已知{an}是首項為1,公比為 的無窮等比數(shù)列。對于數(shù)列{an},提出你的問題,并進行研究,你能得到一些什么樣的結(jié)論?
研究方向提示:
1.數(shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;
2.研究所給數(shù)列的項之間的關(guān)系;
3.研究所給數(shù)列的子數(shù)列;
4.研究所給數(shù)列能構(gòu)造的新數(shù)列;
5.數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;
6.研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復數(shù)、圖形、實際意義等)。
針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。
課堂小結(jié):
1.研究一個數(shù)列可以從哪些方面提出問題并進行研究?
2.你最喜歡哪位同學的研究?為什么?
課后思考題: 1.將{an}推廣為一般的無窮等比數(shù)列:1,q,q2,…,qn-1,… ,上述一些研究結(jié)論會有什么變化?
2.若將{an}改為等差數(shù)列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進行類比研究?
開展研究性學習,培養(yǎng)問題解決能力
一、對“研究性學習”和“問題解決”的認識 研究性學習是一種與接受性學習相對應的學習方式,泛指學生主動探究問題的`學習。研究性學習也可以說是一種學習活動:學生在教師指導下,在自己的學習生活和社會生活中選擇課題,以類似科學研究的方式去主動地獲取知識、應用知識、解決問題。
“問題解決”(problem solving)是美國數(shù)學教育界在二十世紀八十年代的主要口號,即認為應當以“問題解決”作為學校數(shù)學教育的中心。
問題解決能力是一種重要的數(shù)學能力,其核心是“創(chuàng)新精神”與“實踐能力”。在數(shù)學教學活動中開展研究性學習是培養(yǎng)問題解決能力的主要途徑。
二、“問題解決”課堂教學模式的建構(gòu)與實踐 以研究性學習活動為載體,以培養(yǎng)問題解決能力為核心的課堂教學模式(以下簡稱為“問題解決”課堂教學模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學生的求知欲,以獨立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應用知識的能力,提高合作意識、探究意識和創(chuàng)新意識。
。ㄒ唬╆P(guān)于“問題解決”課堂教學模式
通過實施“問題解決”課堂教學模式,希望能夠達到以下的功能目標:學習發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動參與、團結(jié)協(xié)作精神,增進師生、同伴之間的情感交流,形成自覺運用數(shù)學基礎(chǔ)知識、基本技能和數(shù)學思想方法分析問題、解決問題的能力和意識。
(二)數(shù)學學科中的問題解決能力的培養(yǎng)目標
數(shù)學問題解決能力培養(yǎng)的目標可以有不同層次的要求:會審題,會建模,會轉(zhuǎn)化,會歸類,會反思,會編題。
。ㄈ皢栴}解決”課堂教學模式的教學流程
(四)“問題解決”課堂教學評價標準
1. 教學目標的確定;
2. 教學方法的選擇;
3. 問題的選擇;
4. 師生主體意識的體現(xiàn);
5.教學策略的運用。
。ㄎ澹┝私鈱W生的數(shù)學問題解決能力的途徑
(六)開展研究性學習活動對教師的能力要求
高中數(shù)學教案4
一、教材分析
教材的地位和作用
期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學習期望將為今后學習概率統(tǒng)計知識做鋪墊。同時,它在市場預測,經(jīng)濟統(tǒng)計,風險與決策等領(lǐng)域有著廣泛的應用,為今后學習數(shù)學及相關(guān)學科產(chǎn)生深遠的影響。
教學重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應用。
[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節(jié)課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節(jié)課的.教學難點。
二、教學目標
[知識與技能目標]
通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標]
經(jīng)歷概念的建構(gòu)這一過程,讓學生進一步體會從特殊到一般的思想,培養(yǎng)學生歸納、概括等合情推理能力。
通過實際應用,培養(yǎng)學生把實際問題抽象成數(shù)學問題的能力和學以致用的數(shù)學應用意識。
[情感與態(tài)度目標]
通過創(chuàng)設(shè)情境激發(fā)學生學習數(shù)學的情感,培養(yǎng)其嚴謹治學的態(tài)度。在學生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。
三、教法選擇
引導發(fā)現(xiàn)法
四、學法指導
“授之以魚,不如授之以漁”,注重發(fā)揮學生的主體性,讓學生在學習中學會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。
高中數(shù)學教案5
課題:
等比數(shù)列的概念
教學目標
1、通過教學使學生理解等比數(shù)列的概念,推導并掌握通項公式、
2、使學生進一步體會類比、歸納的思想,培養(yǎng)學生的觀察、概括能力、
3、培養(yǎng)學生勤于思考,實事求是的精神,及嚴謹?shù)目茖W態(tài)度、
教學重點,難點
重點、難點是等比數(shù)列的定義的歸納及通項公式的推導、
教學用具
投影儀,多媒體軟件,電腦、
教學方法
討論、談話法、
教學過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標準、(幻燈片)
、佟2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
、31,29,27,25,23,21,19,…
、1,—1,1,—1,1,—1,1,—1,…
、1,—10,100,—1000,10000,—100000,…
、0,0,0,0,0,0,0,…
由學生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、
二、講解新課
請學生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)
這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)
等比數(shù)列(板書)
1、等比數(shù)列的定義(板書)
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學生概括出來的教師寫出等比數(shù)列的定義,標注出重點詞語、
請學生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學生再舉兩例、而后請學生概括這類數(shù)列的一般形式,學生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學生討論后得出結(jié)論:當時,數(shù)列既是等差又是等比數(shù)列,當時,它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對等比數(shù)列的認識:
2、對定義的認識(板書)
。1)等比數(shù)列的首項不為0;
。2)等比數(shù)列的每一項都不為0,即
問題:一個數(shù)列各項均不為0是這個數(shù)列為等比數(shù)列的什么條件?
。3)公比不為0、
用數(shù)學式子表示等比數(shù)列的定義、
是等比數(shù)列
、、在這個式子的寫法上可能會有一些爭議,如寫成
,可讓學生研究行不行,好不好;接下來再問,能否改寫為
是等比數(shù)列?為什么不能?式子給出了數(shù)列第項與第
項的數(shù)量關(guān)系,但能否確定一個等比數(shù)列?(不能)確定一個等比數(shù)列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、
3、等比數(shù)列的通項公式(板書)
問題:用和表示第項
①不完全歸納法
、诏B乘法,…,,這個式子相乘得,所以(板書)
。1)等比數(shù)列的'通項公式得出通項公式后,讓學生思考如何認識通項公式、(板書)
。2)對公式的認識
由學生來說,最后歸結(jié):
、俸瘮(shù)觀點;
②方程思想(因在等差數(shù)列中已有認識,此處再復習鞏固而已)、
這里強調(diào)方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節(jié)課再研究、同學可以試著編幾道題。
三、小結(jié)
1、本節(jié)課研究了等比數(shù)列的概念,得到了通項公式;
2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;
3、用方程的思想認識通項公式,并加以應用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(對數(shù)算也行)。
高中數(shù)學教案6
教學目的:
。1)使學生初步理解集合的概念,知道常用數(shù)集的概念及記法
。2)使學生初步了解“屬于”關(guān)系的意義
(3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教 具:多媒體、實物投影儀
內(nèi)容分析:
集合是中學數(shù)學的一個重要的基本概念 在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具 這些可以幫助學生認識學習本章的意義,也是本章學習的基礎(chǔ)把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。
本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的.例子。
這節(jié)課主要學習全章的引言和集合的基本概念 學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義 本節(jié)課的教學重點是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。
教學過程:
一、復習引入:
1、簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國數(shù)學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P(guān)概念:
由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
。2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合 記作N,
。2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集 記作N*或N+
。3)整數(shù)集:全體整數(shù)的集合 記作Z ,
。4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,
。5)實數(shù)集:全體實數(shù)的集合 記作R
注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
。2)非負整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
。1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
。1)所有很大的實數(shù) (不確定)
。2)好心的人 (不確定)
(3)1,2,2,3,4,5.(有重復)
3、設(shè)a,b是非零實數(shù),那么 可能取的值組成集合的元素是_—2,0,2__
4、由實數(shù)x,-x,|x|, 所組成的集合,最多含( A )
。ˋ)2個元素 (B)3個元素 (C)4個元素 (D)5個元素
5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:
(1) 當x∈N時, x∈G;
。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整數(shù),
∴ = 不一定屬于集合G
四、小結(jié):本節(jié)課學習了以下內(nèi)容:
1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2、集合元素的性質(zhì):確定性,互異性,無序性
3、常用數(shù)集的定義及記法
高中數(shù)學教案7
一、什么是教學案例
教學案例是真實而又典型且含有問題的事件。簡單地說,一個教學案例就是一個包含有疑難問題的實際情境的描述,是一個教學實踐過程中的故事,描述的是教學過程中“意料之外,情理之中的事”。
這可以從以下幾個層次來理解:
教學案例是事件:教學案例是對教學過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學故事的產(chǎn)生、發(fā)展的歷程,它是對教學現(xiàn)象的動態(tài)性的把握。
教學案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內(nèi),并且也可能包含有解決問題的方法在內(nèi)。正因為這一點,案例才成為一種獨特的研究成果的表現(xiàn)形式。
案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學事件的真實再現(xiàn)。是對“當前”課堂中真實發(fā)生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。
二、如何進行教學案例研究
教學案例是教師教學行為真實、典型的記錄,也是教師教學理念和教學思想的真實體現(xiàn)。因此它是教育教學研究的寶貴資源,也是教師之間交流的重要媒介。進行教學案例的研究是教師不斷反思、改進自己教學的一種方法,能促使教師更為深刻地認識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。
那么如何進行教學案例研究呢?一般情況下,案例研究的程序基本有以下兩個環(huán)節(jié):案例研究的準備及實施、案例研究報告的撰寫與反思。
(一)案例研究的準備與實施
1.研究主題的選擇
案例研究都要有研究的重點和主題,這個主題常與教學改革的核心理念、常見的疑難問題和困惑事件相關(guān),一般來說可以從教學的各個方面確定研究的主題,如從教師教學行為確定主題——教學材料的選擇、教學中的提問、教學媒體的使用、教學評價語言、課堂教學調(diào)控行為等;也可以從學生的學習方式確定主題——探究性學習、問題解決學習、合作學習、實踐性活動等。另外從學科特點、教學內(nèi)容等都可以確定研究的主題。
研究者要了解當前教學的大背景,教改的大方向,要熟悉相關(guān)的《課程標準》和有針對性地作一些理論準備。還要通過有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學設(shè)計,進行訪談等),同時初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學策略、學生行為或是教學技能的研究。
一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發(fā)現(xiàn)更有潛力?選擇的事件對學生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過去成功的行為嗎?事件呈現(xiàn)的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關(guān)的問題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學習、內(nèi)省和深層次理解方面就可能更加富有成效。
高中數(shù)學教學案例研究的主題內(nèi)容主要集中在三方面:(1)學科特點的體現(xiàn):如數(shù)學思想方法的教學、數(shù)學思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學結(jié)論的推廣等;(2)學生數(shù)學學習規(guī)律的探究:如數(shù)學學習習慣、解決問題的思維方式、獨立思考與合作學習等;(3)教師專業(yè)知識的提升:如數(shù)學板書與電子屏幕的展示對學生思維的影響、數(shù)學語言的訓練對人們思維的影響、數(shù)學知識模式化教學的優(yōu)劣等。
2.案例研究的基本方法
(1)課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學活動的`自然狀態(tài)下,用自己的感官和輔助工具對研究對象進行觀察研究的一種方法。它可以是教師自己對教學對象——學生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學實錄、教學程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學時間分配表等,以便以后繼續(xù)分析案例提供翔實的原始材料。
(2)訪談與調(diào)查。對一些課堂教學不能觀察到的師生內(nèi)心活動,如教師教學的目的、教學程序的意圖、教學手段的運用以及教學達標的成效等一些需要進一步了解的問題,可以通過與執(zhí)教教師的交談以及和學生的座談,以豐富和充實課堂教學觀察的材料;對學生在課堂教學活動中回答問題的心理狀態(tài)、解題思路等問題,也可以在課后做一些問卷調(diào)查;對學生達標的成度、效度,也可以作一些測試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學行為之間的因果關(guān)系,然后再具體尋找在哪個教學環(huán)節(jié)中出現(xiàn)問題,從中提煉出解決問題的對策。
(3)文獻分析。文獻分析是通過查閱文獻資料,從過去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學現(xiàn)象的理論依據(jù),從而增強案例分析的說服力。當然,對廣大第一線教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過有關(guān)教育理論文獻的查閱,去進一步解讀課堂教學的活動,挖掘案例中的教育思想。如在數(shù)學教學中,我們常常通過學生的動手操作來獲得有關(guān)的數(shù)學概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關(guān)文獻資料,從學習中提高研究者自身的理論水平。
(二)案例研究報告的撰寫
1.常見的案例報告格式
撰寫教學案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當前,國內(nèi)外課堂教學案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關(guān)鍵教學事件等的分析。
下面介紹兩種常用的案例編寫的格式:
(1)“描述+分析”式
此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學活動的情景,后半部分主要針對情景中的一個問題進行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學活動中的某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發(fā)表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對關(guān)鍵教學事件的正確把握。
(2)“背景+描述+問題+詮釋”式
此格式是一種要求比較高的編寫格式,而且,它在實際教學中的作用也更大。通常它將整個案例分為四個部分:
A.主題與背景
主題是關(guān)鍵教學事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點、時間、人物的一些基本情況。當然,這部分的內(nèi)容不宜很長,只需提綱挈領(lǐng)敘述清楚即可。
B.情景描述
與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學活動。
C.問題討論
這是根據(jù)主題要求與情景描述,進行的分析、歸納、總結(jié)與提煉,包括學科知識的要點、教學法和情景特點以及案例的說明與注意事項。這部分內(nèi)容主要是為案例教學服務(wù)的,目的是提高教師的認識水平與學生主動學習的能力。不同的教學觀念,不同的教學手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。
D.詮釋與研究
這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學行為的技術(shù)資料、課堂教學實錄以及教學活動背后的故事等作理論上的分析。例如,在課堂教學中,我們常看到這樣的現(xiàn)象,課堂教學的效果高于預期的目標,反之教師期望的目標學生沒有達到或有所偏離,教學內(nèi)容呈現(xiàn)的先后與學生理解的程度、教學方法運用與學生內(nèi)在動機的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。
2.案例報告撰寫的關(guān)鍵
(1)掌握四個原則。要寫好教學案例,除了平時多積累素材,學習他人的案例作品以提高寫作技巧外,還應把握以下四點:
A.主題性原則:要有捕捉關(guān)鍵教學事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動向、把握適合時代要求的數(shù)學教育方式、明確學生數(shù)學學習的難點和重點,尋找數(shù)學教師專業(yè)發(fā)展的途徑與規(guī)律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學活動實錄,要反映事件發(fā)生的過程,重點描述反映關(guān)鍵教學事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。
案例鮮明的主題通常關(guān)系到教學的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發(fā)現(xiàn)。來源于實踐的教學案例并非都有同等價值,關(guān)鍵要看撰寫者對實踐的發(fā)展與理論的升華程度,包括對題目的推敲。如有的教學案例重點描述了有戲劇性的情節(jié),用了“細節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導之有方”方能“導之有效”》、《跳出數(shù)學教數(shù)學》、《在數(shù)學的疑難處悟成長》、《捕捉資源因勢利導》等等,讓人一看題目就有閱讀的欲望。實踐證明,在寫作案例時,選擇有感悟、有新意的內(nèi)容,在明確主題,恰當擬題后再動筆,才能寫出高質(zhì)量的案例。
B.理論性原則:解決問題的策略中應當蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學生做了什么,參與程度,投入程度如何,教師如何引導點撥,師生心理、行為變化情況等,無不體現(xiàn)教師的教學思想和教育基本原理。
C.敘事性原則:案例報告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學生動的事實為主要情節(jié),可以夾敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個主題的幾節(jié)課的情景片段。
D.學科性原則:數(shù)學案例報告一定要體現(xiàn)學科的特征,要有較深刻的理性思考,要反映數(shù)學的基本思想與方法,要符合課程標準,滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習慣。就是撰寫者的教育思想和教育理念在教學實踐中具體體現(xiàn)。
(2)用好四種表述。教學案例的表述方法很多,可以歸納為以下四種方法:
A.故事式陳述法:就是教學全程或某一精彩教學片段實錄,包括教師和學生的一言一行。陳述時,根據(jù)操作程序作一點“簡評”,最后作“總評”。
B.以案說理:對教學過程進行陳述時,舍去與文題不相關(guān)或不重要的部分,并強化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長篇幅的理性思考。
C.圖表展示法:用圖表進行統(tǒng)計的形式體現(xiàn)撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學生的參與人數(shù),投入程度,解決問題的質(zhì)量等多個問題,都可以在一張或數(shù)張圖表上用百分比或個(次)數(shù)進行統(tǒng)計。在每一張圖表后,應有一段“分析”或“結(jié)論”,將撰寫者的教學理念進行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。
D.分析討論法:在撰寫時,應汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進一步思考的問題。
3.優(yōu)秀案例的特征
(1)時代性:一個好的案例描述的是現(xiàn)實生活場景——案例的敘述要把事件置于一個時空框架之中,應該以關(guān)注今天所面臨的疑難問題為著眼點,至少應該是近年發(fā)生的事情,展示的整個事實材料應該與整個時代及教學背景相照應,這樣的案例讀者更愿意接觸。一個好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產(chǎn)生移情作用。
(2)真實性:一個好的案例應該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應注明資料來源。
(3)適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細過程,這應該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那么最為適宜的方案,就應該是與特定的背景材料相關(guān)最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。
(4)反思性:一個好的案例需要有對已經(jīng)做出的解決問題的決策的評價——評價是為了給新的決策提供參考點?稍诎咐拈_頭或結(jié)尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。
三、案例研究過程中需注意的問題
1.選材面過窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學甚至局限于一節(jié)課的研究,往往不能說明問題,或者在一節(jié)課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學情境的豐富性、復雜性和聯(lián)系性認識不夠。
2.缺乏典型性。有的案例對教學實踐沒有挖掘與反思,隨意摘取一些教學片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現(xiàn)象的分析、處理、詮釋,達到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。
3.主題不明確。主要體現(xiàn)為:
(1)主題渙散。有的案例象記流水帳,沒有根據(jù)需要進行恰當?shù)娜∩,看不出作者要反映、探討什么問題,缺乏指導性、創(chuàng)新性和參考性。
(2)定題過于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學案例》、《“拋物線”教學案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。
4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強案例的可讀性和指導性。如寫成一般的教學設(shè)計,一般包括“備課思路、教學目標、教學重點、教學方法、課前準備、教學內(nèi)容、教學過程”等內(nèi)容;寫成教學實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創(chuàng)新,平淡無趣,看不出案例研究和反映的問題。
5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。
高中數(shù)學教案8
教學目標
。ǘ┲R與技能目標
理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應的關(guān)系;熟記特殊角的弧度數(shù)。
。ㄈ┻^程與能力目標
能正確地進行弧度與角度之間的換算,能推導弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題
。ㄋ模┣楦信c態(tài)度目標
通過新的度量角的單位制(弧度制)的'引進,培養(yǎng)學生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美.教學重點
弧度的概念.弧長公式及扇形的面積公式的推導與證明。
教學難點
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學過程
一、復習角度制:
初中所學的角度制是怎樣規(guī)定角的度量的?規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引入:
由角度制的定義我們知道,角度是用來度量角的,角度制的度量是60進制的,運用起來不太方便、在數(shù)學和其他許多科學研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定義
我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下,1弧度記做1rad.在實際運算中,常常將rad單位省略.
3.思考:
。1)一定大小的圓心角?所對應的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?
。2)引導學生完成P6的探究并歸納:弧度制的性質(zhì):
①半圓所對的圓心角為
、谡麍A所對的圓心角為
、壅堑幕《葦(shù)是一個正數(shù).
④負角的弧度數(shù)是一個負數(shù).
、萘憬堑幕《葦(shù)是零.
、藿铅恋幕《葦(shù)的絕對值|α|= 、
4.角度與弧度之間的轉(zhuǎn)換:
、賹⒔嵌然癁榛《龋
、趯⒒《然癁榻嵌龋
5.常規(guī)寫法:
、儆没《葦(shù)表示角時,常常把弧度數(shù)寫成多少π的形式,不必寫成小數(shù).
②弧度與角度不能混用.
弧長等于弧所對應的圓心角(的弧度數(shù))的絕對值與半徑的積.
例1.把67°30’化成弧度.
例2.把?rad化成度.
例3.計算:
。1)sin4
(2)tan1、5.
8.課后作業(yè):
①閱讀教材P6 –P8;
②教材P9練習第1、2、3、6題;
③教材P10面7、8題及B2、3題.
高中數(shù)學教案9
各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學教科書(必修)《數(shù)學》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設(shè)計、效果評價六方面進行說課。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學思想方法,能較好地培養(yǎng)學生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學內(nèi)容
本節(jié)內(nèi)容分2課時學習。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復習“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學中的和諧美,體驗成功的樂趣。
二、教學目標分析
根據(jù)教學大綱的要求、本節(jié)教材的特點和高一學生的認知規(guī)律,本節(jié)課的教學目標確定為:
知識目標——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過看圖象找解集,培養(yǎng)學生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創(chuàng)設(shè)問題情景,激發(fā)學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數(shù)學中最基本的不等式之一,是解決許多數(shù)學問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應點的橫坐標的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學法分析
(一)學法指導
教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節(jié)課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數(shù)學的美,會產(chǎn)生一種成功感,從而提高學生學習數(shù)學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
。ǘ┙谭ǚ治
本節(jié)課設(shè)計的指導思想是:現(xiàn)代認知心理學——建構(gòu)主義學習理論。
建構(gòu)主義學習理論認為:應把學習看成是學生主動的建構(gòu)活動,學生應與一定的知識背景即情景相聯(lián)系,在實際情景下進行學習,可以使學生利用已有知識與經(jīng)驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學法”。把問題作為出發(fā)點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計
本節(jié)課的教學設(shè)計充分體現(xiàn)以學生發(fā)展為本,培養(yǎng)學生的觀察、概括和探究能力,遵循學生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。
(一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學們解以下方程和不等式:
、2x-7=0;②2x-70;③2x-70
學生回答,我板書。
2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質(zhì)就容易得到。
3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學生可能感到很困惑。
4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關(guān)系:
、2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸
交點的橫坐標。
、2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的上方的點的橫坐標的集合。
、2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的下方的點的橫坐標的集合。
三組關(guān)系的得出,實際上讓學生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學生看到了解決一元二次不等式的希望,大大激發(fā)了學生解決新問題的興趣。此時,學生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。
。ǘ┍扰f悟新,引出“三個二次”的關(guān)系
為此我引導學生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進行探究。
看函數(shù)y=x2-x-6的.圖象并說出:
、俜匠蘹2-x-6=0的解是
x=-2或x=3 ;
、诓坏仁絰2-x-60的解集是
{x|x-2,或x3};
、鄄坏仁絰2-x-60的解集是
{x|-23}。
此時,學生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。
學生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?
。ㄈw納提煉,得出“三個二次”的關(guān)系
1、引導學生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。
2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學生得出:將二次項系數(shù)由負化正,轉(zhuǎn)化為上述模式求解,教師應予以強調(diào);也有的學生提出畫出相應的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應給予肯定。)
。ㄋ模⿷眯轮,熟練掌握一元二次不等式的解集
借助二次函數(shù)的圖象,得到一元二次不等式的解集,學生形成了感性認識,為鞏固所學知識,我們一起來完成以下例題:
例1、解不等式2x2-3x-20
解:因為Δ0,方程2x2-3x-2=0的解是
x1= ,x2=2
所以,不等式的解集是
{ x| x ,或x2}
例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應用;二是規(guī)范了一元二次不等式的解題格式。
下面我們接著學習課本例2。
例2 解不等式-3x2+6x2
課本例2的出現(xiàn)恰當好處,一方面突出了“對于二次項系數(shù)是負數(shù)(即a0)的一元二次不等式,可以先把二次項系數(shù)化為正數(shù),再求解”;另一方面,學生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。
通過例1、例2的解決,學生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。
例3 解不等式4x2-4x+10
例4 解不等式-x2+2x-30
分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學生練習,教師巡視、指導,講評學生完成情況,尋找學生中的閃光點,給予熱情表揚。
4道例題,具有典型性、層次性和學生的可接受性。為了避免學生學后“一團亂麻”、“一盤散沙”的局面,我和學生一起總結(jié)。
。ㄎ澹┛偨Y(jié)
解一元二次不等式的“四部曲”:
(1)把二次項的系數(shù)化為正數(shù)
(2)計算判別式Δ
(3)解對應的一元二次方程
(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集
。┳鳂I(yè)布置
為了使所有學生鞏固所學知識,我布置了“必做題”;又為學有余力者留有自由發(fā)展的空間,我布置了“探究題”。
。1)必做題:習題1.5的1、3題
。2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數(shù)k的取值范圍。
(七)板書設(shè)計
一元二次不等式解法(1)
五、教學效果評價
本節(jié)課立足課本,著力挖掘,設(shè)計合理,層次分明。以“三個一次關(guān)系→三個二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學思想上既注重知識形成過程的教學,還特別突出學生學習方法的指導,探究能力的訓練,創(chuàng)新精神的培養(yǎng),引導學生發(fā)現(xiàn)數(shù)學的美,體驗求知的樂趣。
高中數(shù)學教案10
一、教學目標
知識與技能:
理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價值觀:
1、提高學生的推理能力;
2、培養(yǎng)學生應用意識。
二、教學重點、難點:
教學重點:
任意角概念的`理解;區(qū)間角的集合的書寫。
教學難點:
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學過程
。ㄒ唬⿲胄抡n
1、回顧角的定義
、俳堑牡谝环N定義是有公共端點的兩條射線組成的圖形叫做角。
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
。ǘ┙虒W新課
1、角的有關(guān)概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
、诮堑拿Q:
注意:
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱(jīng)過推廣后,已包括正角、負角和零角。
、菥毩暎赫堈f出角α、β、γ各是多少度?
2、象限角的概念:
、俣x:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數(shù)學教案11
教學目標:
1、理解并掌握曲線在某一點處的切線的概念;
2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實際背景,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生轉(zhuǎn)化
問題的能力及數(shù)形結(jié)合思想。
教學重點:
理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。
教學難點:
用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的斜率。
教學過程:
一、問題情境
1、問題情境。
如何精確地刻畫曲線上某一點處的變化趨勢呢?
如果將點P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去有點像是直線。
如果將點P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去幾乎成了直線。事實上,如果繼續(xù)放大,那么曲線在點P附近將逼近一條確定的直線,該直線是經(jīng)過點P的所有直線中最逼近曲線的一條直線。
因此,在點P附近我們可以用這條直線來代替曲線,也就是說,點P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動。
如圖所示,直線l1,l2為經(jīng)過曲線上一點P的兩條直線,
。1)試判斷哪一條直線在點P附近更加逼近曲線;
。2)在點P附近能作出一條比l1,l2更加逼近曲線的`直線l3嗎?
(3)在點P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構(gòu)數(shù)學
切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點,直線PQ稱為曲線的割線。 隨著點Q沿曲線C向點P運動,割線PQ在點P附近逼近曲線C,當點Q無限逼近點P時,直線PQ最終就成為經(jīng)過點P處最逼近曲線的直線l,這條直線l也稱為曲線在點P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
三、數(shù)學運用
例1 試求在點(2,4)處的切線斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當Q沿曲線逼近點P時,割線PQ逼近點P處的切線,從而割線斜率逼近切線斜率;
當Q點橫坐標無限趨近于P點橫坐標時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。
從而曲線f(x)=x2在點(2,4)處的切線斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。
練習 試求在x=1處的切線斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點處的切線斜率的一般步驟:
(1)找到定點P的坐標,設(shè)出動點Q的坐標;
。2)求出割線PQ的斜率;
。3)當時,割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
解 設(shè)
所以,當無限趨近于0時,無限趨近于點處的切線的斜率。
變式訓練
1。已知,求曲線在處的切線斜率和切線方程;
2。已知,求曲線在處的切線斜率和切線方程;
3。已知,求曲線在處的切線斜率和切線方程。
課堂練習
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結(jié)
1、曲線上一點P處的切線是過點P的所有直線中最接近P點附近曲線的直線,則P點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。
五、課外作業(yè)
高中數(shù)學教案12
教學目標:
1.進一步熟練掌握比較法證明不等式;
2.了解作商比較法證明不等式;
3.提高學生解題時應變能力.
教學重點:
比較法的應用
教學難點:
常見解題技巧
教學方法啟發(fā)引導式
教學活動
。ㄒ唬⿲胄抡n
。ń處熁顒樱┙處煷虺鲎帜唬◤土曁釂枺,請三位同學回答問題,教師點評.
。▽W生活動)思考問題,回答.
[字幕]1.比較法證明不等式的步驟是怎樣的?
2.比較法證明不等式的步驟中,依據(jù)、手段、目的各是什么?
3.用比較法證明不等式的步驟中,最關(guān)鍵的是哪一步?學了哪些常用的變形方法?對式子的變形還有其它方法嗎?
[點評]用比較法證明不等式步驟中,關(guān)鍵是對差式的變形.在我們所學的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節(jié)課我們將繼續(xù)學習比較法證明不等式,積累對差式變形的常用方法和比較法思想的應用.(板書課題)
設(shè)計意圖:復習鞏固已學知識,銜接新知識,引入本節(jié)課學習的內(nèi)容.
。ǘ┬抡n講授
【嘗試探索,建立新知】
。ń處熁顒樱┨岢鰡栴},引導學生研究解決問題,并點評.
(學生活動)嘗試解決問題.
[問題]
1.化簡
2.比較與()的大。
。▽W生解答問題)
。埸c評]
①問題1,我們采用了因式分解的方法進行簡化.
②通過學習比較法證明不等式,我們不難發(fā)現(xiàn),比較法的思想方法還可用來比較兩個式子的大。
設(shè)計意圖:啟發(fā)學生研究問題,建立新知,形成新的知識體系.
【例題示范,學會應用】
。ń處熁顒樱┙處煷虺鲎帜唬ɡ}),引導、啟發(fā)學生研究問題,井點評解題過程.
(學生活動)分析,研究問題.
[字幕]例題3已知 a , b 是正數(shù),且,求證
。鄯治觯菀李}目特點,作差后重新組項,采用因式分解來變形.
證明:(見課本)
。埸c評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個因式的積的形式,在確定符號中,表達過程較復雜,如何書寫證明過程,例3給出了一個好的示范.
。埸c評]解這道題在判斷符號時用了分類討論,分類討論是重要的數(shù)學 思想方法.要理解為什么分類,怎樣分類.分類時要不重不漏.
[字幕]例5甲、乙兩人同時同地沿同一條路線走到同一地點.甲有一半時間以速度 m 行走,另一半時間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問甲、乙兩人誰先到達指定地點.
[分析]設(shè)從出發(fā)地點至指定地點的路程為,甲、乙兩人走完這段路程用的時間分別為,要回答題目中的問題,只要比較、的大小就可以了.
解:(見課本)
。埸c評]此題是一個實際問題,學習了如何利用比較法證明不等式的思想方法解決有關(guān)實際問題.要培養(yǎng)自己學數(shù)學,用數(shù)學的良好品質(zhì).
設(shè)計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號的方法.培養(yǎng)學生應用知識解決實際問題的能力.
【課堂練習】
(教師活動)教師打出字幕練習,要求學生獨立思考,完成練習;請甲、乙兩位學生板演;巡視學生的解題情況,對正確的給予肯定,對偏差及時糾正;點評練習中存在的問題.
。▽W生活動)在筆記本上完成練習,甲、乙兩位同學板演.
。圩帜唬菥毩暎1.設(shè),比較與的大小.
2.已知,求證
設(shè)計意圖:掌握比較法證明不等式及思想方法的應用.靈活掌握因式分解法對差式的變形和分類討論確定符號.反饋信息,調(diào)節(jié)課堂教學.
【分析歸納、小結(jié)解法】
。ń處熁顒樱┓治鰵w納例題的解題過程,小結(jié)對差式變形、確定符號的常用方法和利用不等式解決實際問題的解題步驟.
。▽W生活動)與教師一道小結(jié),并記錄在筆記本上.
1.比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個式子大小的一種重要方法.
2.對差式變形的常用方法有:配方法,通分法,因式分解法等.
3.會用分類討論的方法確定差式的符號.
4.利用不等式解決實際問題的.解題步驟:①類比列方程解應用題的步驟.②分析題意,設(shè)未知數(shù),找出數(shù)量關(guān)系(函數(shù)關(guān)系,相等關(guān)系或不等關(guān)系),③列出函數(shù)關(guān)系、等式或不等式,④求解,作答.
設(shè)計意圖:培養(yǎng)學生分析歸納問題的能力,掌握用比較法證明不等式的知識體系.
。ㄈ┬〗Y(jié)
。ń處熁顒樱┙處熜〗Y(jié)本節(jié)課所學的知識及數(shù)學 思想與方法.
。▽W生活動)與教師一道小結(jié),并記錄筆記.
本節(jié)課學習了對差式變形的一種常用方法因式分解法;對符號確定的分類討論法;應用比較法的思想解決實際問題.
通過學習比較法證明不等式,要明確比較法證明不等式的理論依據(jù),理解轉(zhuǎn)化,使問題簡化是比較法證明不等式中所蘊含的重要數(shù)學思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學習中繼續(xù)積累方法,培養(yǎng)用數(shù)學知識解決實際問題的能力.
設(shè)計意圖:培養(yǎng)學生對所學的知識進行概括歸納的能力,鞏固所學的知識,領(lǐng)會化歸、類比、分類討論的重要數(shù)學 思想方法.
。ㄋ模┎贾米鳂I(yè)
1.課本作業(yè):P17 7、8。
2,思考題:已知,求證
3.研究性題:對于同樣的距離,船在流水中來回行駛一次的時間和船在靜水中來回行駛一次的時間是否相等?(假設(shè)船在流水中的速度和部在靜水中的速度保持不變)
設(shè)計意圖:思考題讓學生了解商值比較法,掌握分類討論的思想.研究性題是使學生理論聯(lián)系實際,用數(shù)學解決實際問題,提高應用數(shù)學的能力.
。ㄎ澹┱n后點評
1.教學評價、反饋調(diào)節(jié)措施的構(gòu)想:本節(jié)課采用啟發(fā)引導,講練結(jié)合的授課方式,發(fā)揮教師主導作用,體現(xiàn)學生主體地位,通過啟發(fā)誘導學生深入思考問題,解決問題,反饋學習信息,調(diào)節(jié)教學活動.
2.教學措施的設(shè)計:由于對差式變形,確定符號是掌握比較法證明不等式的關(guān)鍵,本節(jié)課在上節(jié)課的基礎(chǔ)上繼續(xù)學習差式變形的方法和符號的確定,例3和例4分別使學生掌握因式分解變形和分類討論確定符號,例5使學生對所學的知識會應用.例題設(shè)計目的在于突出重點,突破難點,學會應用
高中數(shù)學教案13
一、教學目標:
掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
二、教學重點:
向量的性質(zhì)及相關(guān)知識的`綜合應用。
三、教學過程:
。ㄒ唬┲饕R:
1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
。ǘ├}分析:略
四、小結(jié):
1、進一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應用問題,
2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。
五、作業(yè):
略
高中數(shù)學教案14
一、課題:
人教版全日制普通高級中學教科書數(shù)學第一冊(上)《2。7對數(shù)》
二、指導思想與理論依據(jù):
《數(shù)學課程標準》指出:高中數(shù)學課程應講清一些基本內(nèi)容的實際背景和應用價值,開展“數(shù)學建模”的學習活動,把數(shù)學的應用自然地融合在平常的教學中。任何一個數(shù)學概念的引入,總有它的現(xiàn)實或數(shù)學理論發(fā)展的需要。都應強調(diào)它的現(xiàn)實背景、數(shù)學理論發(fā)展背景或數(shù)學發(fā)展歷史上的背景,這樣才能使教學內(nèi)容顯得自然和親切,讓學生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學生認識數(shù)學內(nèi)容的實際背景和應用的價值。在教學設(shè)計時,既要關(guān)注學生在數(shù)學情感態(tài)度和科學價值觀方面的發(fā)展,也要幫助學生理解和掌握數(shù)學基礎(chǔ)知識和基本技能,發(fā)展能力。在課程實施中,應結(jié)合教學內(nèi)容介紹一些對數(shù)學發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學在人類社會進步、人類文化建設(shè)中的作用,同時反映社會發(fā)展對數(shù)學發(fā)展的促進作用。
三、教材分析:
本節(jié)內(nèi)容主要學習對數(shù)的概念及其對數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識。而對數(shù)的概念是對數(shù)函數(shù)部分教學中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學教學的始終。通過對數(shù)的學習,可以解決數(shù)學中知道底數(shù)和冪值求指數(shù)的問題,以及對數(shù)函數(shù)的相關(guān)問題。
四、學情分析:
在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學習指數(shù)的基礎(chǔ)上學習對數(shù)的概念是水到渠成的事。
五、教學目標:
(一)教學知識點:
1。對數(shù)的概念。
2。對數(shù)式與指數(shù)式的互化。
(二)能力目標:
1。理解對數(shù)的概念。
2。能夠進行對數(shù)式與指數(shù)式的互化。
。ㄈ┑掠凉B透目標:
1。認識事物之間的相互聯(lián)系與相互轉(zhuǎn)化,2。用聯(lián)系的`觀點看問題。
六、教學重點與難點:
重點是對數(shù)定義,難點是對數(shù)概念的理解。
七、教學方法:
講練結(jié)合法八、教學流程:
問題情景(復習引入)——實例分析、形成概念(導入新課)——深刻認識概念(對數(shù)式與指數(shù)式的互化)——變式分析、深化認識(對數(shù)的性質(zhì)、對數(shù)恒等式,介紹自然對數(shù)及常用對數(shù))——練習小結(jié)、形成反思(例題,小結(jié))
八、教學反思:
對本節(jié)內(nèi)容在進行教學設(shè)計之前,本人反復閱讀了課程標準和教材,教材內(nèi)容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設(shè)計中所預想的目標。然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學中,對于一些較簡單的內(nèi)容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設(shè)計課堂教學,關(guān)注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。
對于本教學設(shè)計,時間倉促,不足之處在所難免,期待與各位同仁交流。
高中數(shù)學教案15
一.教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領(lǐng)域種得到應用。
二.目標分析:
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關(guān)數(shù)學對象;
2.過程與方法
(1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節(jié)所學知識.
3.情感.態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
三.教法分析
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
四.過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學!、“班級”等,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節(jié)要學的內(nèi)容。
設(shè)計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學20xx年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設(shè)計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導學生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的',我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);(2)我國的小河流.讓學生充分發(fā)表自己的建解.
3.讓學生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,
高一(4)班的一位同學,那么a,b與集合A分別有什么關(guān)系?由此引導學生得出元素與集合的關(guān)系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學生完成習題1.1A組第1題.
6.教師引導學生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當?shù)募媳硎痉?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9}; (2)用例舉法表示集合A?{x?N|1?x?8}
(3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.
設(shè)計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)
小結(jié):在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內(nèi)容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):1.課后書面作業(yè):第13頁習題1.1A組第4題.
2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種
呢?如何表示?請同學們通過預習教材.
五.板書分析
【高中數(shù)學教案】相關(guān)文章:
高中數(shù)學教案02-21
高中數(shù)學教案12-30
【熱】高中數(shù)學教案01-25
高中數(shù)學教案【推薦】01-25
高中數(shù)學教案【合集】07-27
高中數(shù)學教案(精品)06-28
高中數(shù)學教案(熱)06-28
【通用】高中數(shù)學教案06-17
高中數(shù)學教案(通用)10-27
【推薦】高中數(shù)學教案01-25