四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>七年級數(shù)學(xué)教案>初中七年級數(shù)學(xué)教案

初中七年級數(shù)學(xué)教案

時(shí)間:2024-11-09 08:32:24 七年級數(shù)學(xué)教案 我要投稿

初中七年級數(shù)學(xué)教案精華【13篇】

  作為一無名無私奉獻(xiàn)的教育工作者,通常會被要求編寫教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。寫教案需要注意哪些格式呢?下面是小編整理的初中七年級數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。

初中七年級數(shù)學(xué)教案精華【13篇】

初中七年級數(shù)學(xué)教案1

  教學(xué)目標(biāo):

  1.通過對多個(gè)實(shí)際問題的分析感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義,通過觀察,歸納方程和一元一次方程的概念;

  2.能對具體情境中的數(shù)學(xué)信息做出合理的解釋,能用方程來描述和刻畫事物間的等量關(guān)系;

  3.體驗(yàn)數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識到許多問題可以用數(shù)學(xué)方法解決,體驗(yàn)實(shí)際問題“數(shù)學(xué)化”的過程;

  4.體會在解決問題的過程中同學(xué)們合作交流的重要性。

  教學(xué)重點(diǎn):

  認(rèn)識一元一次方程,經(jīng)歷探索等量關(guān)系,列方程的過程

  教學(xué)難點(diǎn):

  分析與確定問題中的等量關(guān)系,能用方程來描述和刻畫事物間的等量關(guān)系教學(xué)方法與教學(xué)手段:

  互動式、合作探究、多媒體設(shè)備

  教學(xué)過程:

  一、情境引入,回顧概念

  1.“猜猜老師的年齡”

 。ńo學(xué)生提供信息):我是9月份出生的,我的年齡的2倍加上14,正好是我出生那個(gè)月的總天數(shù)的兩倍。你們猜猜我的年齡是多少歲?

  學(xué)生根據(jù)老師提供的信息,尋找出正確答案

  老師提問:你是怎樣找到答案的?

  分析:

 。1)算術(shù)方法

 。2)方程:

  設(shè)老師的年齡為x歲,那么年齡的2倍加上14就是2x+14,而這個(gè)式等于9月份的總天數(shù)的2倍,即30x2,根據(jù)這個(gè)等量關(guān)系,我們就可以得到方程2x+14=30x2

  解這個(gè)方程,就知道老師的年齡了

  2.日歷中的方程

  請學(xué)生圈出日歷中一個(gè)豎列上相鄰三個(gè)日期,把它們的和告訴老師,老師能馬上知道這三天分別是幾號請學(xué)生加以解釋:

 。1)算術(shù)方法

 。2)方程:

  設(shè)中間那個(gè)數(shù)為x,則第一個(gè)數(shù)為x-7,第三個(gè)數(shù)為x+7,這樣可以得到方程x-7+x+x+7=a(其中a為這三個(gè)數(shù)的和)

  請學(xué)生回顧:像這樣含有未知數(shù)的等式叫做方程

  3.比較算術(shù)方法和方程

  兩種方法都可以求出問題的解(閱讀教材20頁內(nèi)容)

  4.“方程”史話

  詳見教材86頁86頁內(nèi)容“閱讀與思考”——“方程”史話

  二、聯(lián)系實(shí)際,探究新知1.根據(jù)下列實(shí)際問題列方程例1:教材80頁內(nèi)容(略)

  2.觀察例1所列方程:

  4x=+150x=.52x-()x=80請學(xué)生分析前四個(gè)方程有什么共同點(diǎn)教師歸納得出:

  在一個(gè)方程中,只含有一個(gè)未知數(shù)(元),并且未知數(shù)的指數(shù)都是1(次),這樣的方程叫做一元一次方程

  三、鞏固交流,拓展思維

  練習(xí)一:判斷下列各式是不是一元一次方程

  (1)7x+5=3x-9(2)3x-6(3)x-4x-5=0(4)2y+3=-6(5)-3x+2/3=7y(6)3a+9>2/3設(shè)計(jì)意圖:讓學(xué)生鞏固一元一次方程的概念練習(xí)二:教材82頁內(nèi)容(練習(xí))

  設(shè)計(jì)意圖:在教給學(xué)生數(shù)學(xué)知識的同時(shí),滲透對學(xué)生解決實(shí)際生活問題的能力

  練習(xí)三:根據(jù)方程2(x+3x)=40,設(shè)計(jì)一道有實(shí)際背景的應(yīng)用題,并進(jìn)行交流(供學(xué)生富有余力的學(xué)生做,也可做思考題)

  四、歸納小結(jié),布置作業(yè)以師生共同小結(jié)的方式進(jìn)行

  1.提出問題:本節(jié)課你主要學(xué)到什么知識?回顧方程,一元一次方程的概念

  2.提出問題:如何根據(jù)具體的實(shí)際問題列方程?歸納列方程的'思路

  世界問題→數(shù)學(xué)問題→已知量、未知量、等量關(guān)系→方程

  列方程的具體步驟:

 。1)認(rèn)真讀題,理解題意,弄清楚題目中的數(shù)量關(guān)系,找出期中的相等關(guān)系

 。2)設(shè)出未知數(shù),用含有未知數(shù)的代數(shù)式表示題目中涉及的數(shù)量關(guān)系

 。3)根據(jù)相等關(guān)系列出方程

  關(guān)鍵步驟是:根據(jù)題意找到“等量關(guān)系”布置作業(yè):84頁習(xí)題:教學(xué)設(shè)計(jì)說明:

  1.通過設(shè)置游戲情境引入方程,以培養(yǎng)學(xué)生的好奇心和主動參與學(xué)習(xí)的欲望

  2.介紹方程的有關(guān)歷史,讓學(xué)生了數(shù)學(xué)的發(fā)展過程

  3.關(guān)于例題與練習(xí)的設(shè)計(jì)是給學(xué)生提供豐富多彩的、貼近學(xué)生生活實(shí)際問題情境,鼓勵和培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的意識,并鼓勵學(xué)生從不同角度分析問題,根據(jù)不同的設(shè)法,列出不同的方程

  4.練習(xí)3的安排是通過鼓勵學(xué)生自己設(shè)計(jì)方程的實(shí)際背景,進(jìn)行交流,并對設(shè)計(jì)的問題進(jìn)行評價(jià),以加強(qiáng)對方程應(yīng)用的認(rèn)識,激發(fā)學(xué)生的主動性和創(chuàng)造性

  5.通過師生共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識,培養(yǎng)學(xué)生歸納,概括的能力

  6.作業(yè)的安排是為了讓學(xué)生進(jìn)一步鞏固基礎(chǔ)知識,激發(fā)學(xué)生探究新知的欲望,為以后的教學(xué)埋下伏筆

初中七年級數(shù)學(xué)教案2

  ●教學(xué)目標(biāo)

  知識與能力:借助于數(shù)軸,初步理解絕對值的概念,能求一個(gè)數(shù)的絕對值,初步學(xué)會求絕對值等于某一個(gè)正數(shù)的有理數(shù)。

  過程與方法:通過從數(shù)形兩個(gè)側(cè)面理解絕對值的意義,初步了解數(shù)形結(jié)合的思想方法。通過應(yīng)用絕對值解決實(shí)際問題,體會絕對值的意義。

  情感態(tài)度與價(jià)值觀:通過應(yīng)用絕對值解決實(shí)際問題,培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣,使學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心與求知欲。

  ●教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):絕對值的概念和求一個(gè)數(shù)的絕對值

  教學(xué)難點(diǎn):絕對值的幾何意義及求絕對值等于某一個(gè)正數(shù)的有理數(shù)。

  ●教學(xué)準(zhǔn)備

  多媒體課件

  ●教學(xué)過程

  一、創(chuàng)設(shè)問題情境

  用多媒體動畫顯示:兩只小狗從同一點(diǎn)O出發(fā),在一條筆直的街上跑,一只向右跑10米到達(dá)A點(diǎn),另一只向左跑10米到達(dá)B點(diǎn)。若規(guī)定向右為正,則A處記做__________,B處記做__________。

  以O為原點(diǎn),取適當(dāng)?shù)膯挝婚L度畫數(shù)軸,并標(biāo)出A、B的位置。

 。ㄓ蒙鷦佑腥さ膱D畫吸引學(xué)生,即復(fù)習(xí)了數(shù)軸和相反數(shù),又為下文作準(zhǔn)備)。

 。、這兩只小狗在跑的過程中,有沒有共同的地方?在數(shù)軸上的'A、B兩

  又有什么特征?(從形和數(shù)兩個(gè)角度去感受絕對值)。

 。、在數(shù)軸上找到-5和5的點(diǎn),它們到原點(diǎn)的距離分別是多少?表示-和的點(diǎn)呢?

  小結(jié):在實(shí)際生活中,有時(shí)存在這樣的情況,無需考慮數(shù)的正負(fù)性質(zhì),比如:在計(jì)算小狗所跑的路程中,與小狗跑的方向無關(guān),這時(shí)所走的路程只需用正數(shù),這樣就必須引進(jìn)一個(gè)新的概念———絕對值。

  二、建立數(shù)學(xué)模型

  絕對值的概念

 。ń柚跀(shù)軸這一工具,師生共同討論,引出絕對值的概念)

  絕對值的幾何定義:一個(gè)數(shù)在數(shù)軸上對應(yīng)的點(diǎn)到原點(diǎn)的距離叫做這個(gè)數(shù)的絕對值。比如:-5到原點(diǎn)的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。

  注意:①與原點(diǎn)的關(guān)系②是個(gè)距離的概念

  練習(xí)1:請學(xué)生舉一個(gè)生活中的實(shí)際例子,說明解決有的問題只需考慮的數(shù)絕對值。

 。ㄍㄟ^應(yīng)用絕對值解決實(shí)際問題,體會絕對值的意義與作用,感受數(shù)學(xué)在生活中的價(jià)值。)

  三、應(yīng)用深化知識

  1、例題求解

  例1、求下列各數(shù)的絕對值

 。1.6, , 0,-10,+10

  解:|-1.6|=1.6 ||= |0|=0

  |-10|=10 |+10|=10

  2、練習(xí)2:填表

  相反數(shù)絕對值2.05 1000 0--1000-2.05

  (以表格的形式將絕對值和相反數(shù)進(jìn)行比較,為歸納絕對值的特征作準(zhǔn)備)

  3、根據(jù)上述題目,讓學(xué)生歸納總結(jié)絕對值的特點(diǎn)。(教師進(jìn)行補(bǔ)充小結(jié))

  特點(diǎn):1、一個(gè)正數(shù)的絕對值是它本身

  2、一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù)

  3、零的絕對值是零

  4、互為相反數(shù)的兩個(gè)數(shù)的絕對值相等

  4、練習(xí)3:回答下列問題

 、僖粋(gè)數(shù)的絕對值是它本身,這個(gè)數(shù)是什么數(shù)?

 、谝粋(gè)數(shù)的絕對值是它的相反數(shù),這個(gè)數(shù)是什么數(shù)?

 、垡粋(gè)數(shù)的絕對值一定是正數(shù)嗎?

 、芤粋(gè)數(shù)的絕對值不可能是負(fù)數(shù),對嗎?

 、萁^對值是同一個(gè)正數(shù)的數(shù)有兩個(gè),它們互為相反數(shù),這句話對嗎?

 。ㄓ蓪W(xué)生口答完成,進(jìn)一步鞏固絕對值的概念)

  5、例2、求絕對值等于4的數(shù)。

 。ㄗ寣W(xué)生考慮這樣的數(shù)有幾個(gè),是怎樣得出這個(gè)結(jié)果的呢?對后一個(gè)問題由學(xué)生去討論,啟發(fā)學(xué)生從數(shù)與形兩個(gè)方面考慮,培養(yǎng)學(xué)生的發(fā)散思維能力。)

  分析:

 、購臄(shù)字上分析

  ∵|+4|=4|-4|=4 ∴絕對值等于4的數(shù)是+4和-4畫一個(gè)數(shù)軸(如下圖)

 、趶膸缀我饬x上分析,畫一個(gè)數(shù)軸(如下圖)

  ∵數(shù)軸上到原點(diǎn)的距離等于4個(gè)單位長度的點(diǎn)有兩個(gè),即表示+4的點(diǎn)P和表示-4的點(diǎn)M

  ∴絕對值等于4的數(shù)是+4和-4

  注意:說明符號“∵”讀作“因?yàn)椤,“∴”讀作“所以”

  6、練習(xí)本:做書上16頁課內(nèi)練習(xí)3、4兩題。

  四、歸納小結(jié)

  本節(jié)課我們學(xué)習(xí)了什么知識?

  你覺得本節(jié)課有什么收獲?

  由學(xué)生自行總結(jié)在自主探究,合作學(xué)習(xí)中的體會。

  五、課后作業(yè)

  讓學(xué)生去尋找一些生活中只考慮絕對值的實(shí)際例子。

  課本16頁的作業(yè)題。

  本人在近幾屆樂清市中、小、幼教師教學(xué)論文聯(lián)評中均有獲獎,特別是論文《談數(shù)學(xué)學(xué)困生的惰性心態(tài)及教學(xué)策略》在全國數(shù)學(xué)教研第十一屆年會論文(初中組)比賽中獲三等獎;而且在近幾年的說課比賽和優(yōu)質(zhì)課評比中表現(xiàn)出色;是校青年骨干教師,名教師培養(yǎng)對象。

  -4 -3 -2 -1 0 1 2 3 4

  4個(gè)單位長度4個(gè)單位長度

  M

初中七年級數(shù)學(xué)教案3

  教學(xué)目標(biāo):

  1、知識與技能

 。1)通過實(shí)例,感受引入負(fù)數(shù)的必要性和合理性,能應(yīng)用正負(fù)數(shù)表示生活中具有相反意義的量。

 。2)理解有理數(shù)的意義,體會有理數(shù)應(yīng)用的廣泛性。

  2、過程與方法

  通過實(shí)例的引入,認(rèn)識到負(fù)數(shù)的產(chǎn)生是來源于生產(chǎn)和生活,會用正、負(fù)數(shù)表示具有相反意義的量,能按要求對有理數(shù)進(jìn)行分類。

  重點(diǎn)、難點(diǎn):

  1、重點(diǎn):正數(shù)、負(fù)數(shù)有意義,有理數(shù)的意義,能正確對有理數(shù)進(jìn)行分類。

  2、難點(diǎn):對負(fù)數(shù)的理解以及正確地對有理數(shù)進(jìn)行分類。

  教學(xué)過程:

  一、創(chuàng)設(shè)情景,導(dǎo)入新課

  大家知道,數(shù)學(xué)與數(shù)是分不開的,現(xiàn)在我們一起來回憶一下,小學(xué)里已經(jīng)學(xué)過哪些類型的數(shù)?

  學(xué)生答后,教師指出:小學(xué)里學(xué)過的數(shù)可以分為三類:自然數(shù)(正整數(shù))、分?jǐn)?shù)和零(小數(shù)包括在分?jǐn)?shù)之中),它們都是由于實(shí)際需要而產(chǎn)生的

  為了表示一個(gè)人、兩只手、……,我們用到整數(shù)1,2,……

  為了表示“沒有人”、“沒有羊”、……,我們要用到0。

  但在實(shí)際生活中,還有許多量不能用上述所說的自然數(shù)、零或分?jǐn)?shù)、小數(shù)表示。

  二、合作交流,解讀探究

  1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個(gè)溫度,如果只用小學(xué)學(xué)過的數(shù),都記作5℃,就不能把它們區(qū)別清楚。它們是具有相反意義的'兩個(gè)量。

  現(xiàn)實(shí)生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的!斑\(yùn)進(jìn)”和“運(yùn)出”,其意義是相反的。

  同學(xué)們能舉例子嗎?

  學(xué)生回答后,教師提出:怎樣區(qū)別相反意義的量才好呢?

  待學(xué)生思考后,請學(xué)生回答、評議、補(bǔ)充。

  教師小結(jié):同學(xué)們成了發(fā)明家。甲同學(xué)說,用不同顏色來區(qū)分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學(xué)說,在數(shù)字前面加不同符號來區(qū)分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實(shí),中國古代數(shù)學(xué)家就曾經(jīng)采用不同的顏色來區(qū)分,古時(shí)叫做“正算黑,負(fù)算赤”。如今這種方法在記賬的時(shí)候還使用。所謂“赤字”,就是這樣來的。

  現(xiàn)在,數(shù)學(xué)中采用符號來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負(fù)5℃)。這樣,只要在小學(xué)里學(xué)過的數(shù)前面加上“+”或“—”號,就把兩個(gè)相反意義的量簡明地表示出來了。

  讓學(xué)生用同樣的方法表示出前面例子中具有相反意義的量:

  高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;

  教師講解:什么叫做正數(shù)?什么叫做負(fù)數(shù)?強(qiáng)調(diào),數(shù)0既不是正數(shù),也不是負(fù)數(shù),它是正、負(fù)數(shù)的界限,表示“基準(zhǔn)”的數(shù),零不是表示“沒有”,它表示一個(gè)實(shí)際存在的數(shù)量。并指出,正數(shù),負(fù)數(shù)的“+”“—”的符號是表示性質(zhì)相反的量,符號寫在數(shù)字前面,這種符號叫做性質(zhì)符號。

  2、給出新的整數(shù)、分?jǐn)?shù)概念

  引進(jìn)負(fù)數(shù)后,數(shù)的范圍擴(kuò)大了。過去我們說整數(shù)只包括自然數(shù)和零,引進(jìn)負(fù)數(shù)后,我們把自然數(shù)叫做正整數(shù),自然數(shù)前加上負(fù)號的數(shù)叫做負(fù)整數(shù),因而整數(shù)包括正整數(shù)(自然數(shù))、負(fù)整數(shù)和零,同樣分?jǐn)?shù)包括正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。

  3、給出有理數(shù)概念

  整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。

  4、有理數(shù)的分類

  為了便于研究某些問題,常常需要將有理數(shù)進(jìn)行分類,需要不同,分類的方法也常常不同根據(jù)有理數(shù)的定義可將有理數(shù)分成兩類:整數(shù)和分?jǐn)?shù)。有理數(shù)還有沒有其他的分類方法?

  待學(xué)生思考后,請學(xué)生回答、評議、補(bǔ)充。

  教師小結(jié):按有理數(shù)的符號分為三類:正有理數(shù)、負(fù)有理數(shù)和零。在有理數(shù)范圍內(nèi),正數(shù)和零統(tǒng)稱為非負(fù)數(shù)。向?qū)W生強(qiáng)調(diào):分類可以根據(jù)不同需要,用不同的分類標(biāo)準(zhǔn),但必須對討論對象不重不漏地分類。

  三、總結(jié)反思

  引導(dǎo)學(xué)生回答如下問題:本節(jié)課學(xué)習(xí)了哪些基本內(nèi)容?學(xué)習(xí)了什么數(shù)學(xué)思想方法?應(yīng)注意什么問題?

  由于實(shí)際生活中存在著許多具有相反意義的量,因此產(chǎn)生了正數(shù)與負(fù)數(shù)。正數(shù)是大于0的數(shù),負(fù)數(shù)就是在正數(shù)前面加上“—”號的數(shù),負(fù)數(shù)小于0.0既不是正數(shù),也不是負(fù)數(shù),0可以表示沒有,也可以表示一個(gè)實(shí)際存在的數(shù)量,如0℃。

  四、課后作業(yè):課本P5習(xí)題1.1A第1、2、4題

初中七年級數(shù)學(xué)教案4

  教學(xué)目標(biāo)

  1,掌握有理數(shù)的概念,會對有理數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;

  2,了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;

  3,體驗(yàn)分類是數(shù)學(xué)上的常用處理問題的方法。

  教學(xué)難點(diǎn)

  正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類

  知識重點(diǎn)

  正確理解有理數(shù)的概念

  教學(xué)過程

  探索新知

  在前兩個(gè)學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個(gè)數(shù)(同時(shí)請3個(gè)同學(xué)在黑板上寫出).

  問題1:觀察黑板上的9個(gè)數(shù),并給它們進(jìn)行分類.

  學(xué)生思考討論和交流分類的情況.

  學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時(shí),教師應(yīng)給予引導(dǎo)和鼓勵.

  例如,對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個(gè)人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個(gè)的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個(gè)的數(shù),稱為“正分?jǐn)?shù),.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))

  通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的.5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),”。

  按照書本的說法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.

  看書了解有理數(shù)名稱的由來.

  “統(tǒng)稱”是指“合起來總的名稱”的意思.

  試一試:

  按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來劃分的)分類是數(shù)學(xué)中解決問題的常用手段,這個(gè)引入具有開放的特點(diǎn),學(xué)生樂于參與

  學(xué)生自己嘗試分類時(shí),可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會

  練一練

  1,任意寫出三個(gè)有理數(shù),并說出是什么類型的數(shù),與同伴進(jìn)行交流.

  2,教科書第10頁練習(xí).

  此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.

  把一些數(shù)放在一起,就組成了一個(gè)數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;

  數(shù)集一般用圓圈或大括號表示,因?yàn)榧现械臄?shù)是無限的,而本題中只填了所給的幾個(gè)數(shù),所以應(yīng)該加上省略號:。

  思考:

  問題1:上面練習(xí)中的四個(gè)集合合并在一起就是全體有理數(shù)的集合嗎?

  創(chuàng)新探究

  問題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對嗎?為什么?

  教學(xué)時(shí),要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時(shí),分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個(gè)參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。

  小結(jié)與作業(yè)

  到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。

初中七年級數(shù)學(xué)教案5

  教學(xué)目標(biāo)

  使學(xué)生進(jìn)一步理解立方根的概念,并能熟練地進(jìn)行求一個(gè)數(shù)的立方根的運(yùn)算;

  能用有理數(shù)估計(jì)一個(gè)無理數(shù)的大致范圍,使學(xué)生形成估算的意識,培養(yǎng)學(xué)生的估算能力;

  經(jīng)歷運(yùn)用計(jì)算器探求數(shù)學(xué)規(guī)律的過程,發(fā)展合情推理能力。

  教學(xué)難點(diǎn)

  用有理數(shù)估計(jì)一個(gè)無理的大致范圍。

  知識重點(diǎn)

  用有理數(shù)估計(jì)一個(gè)無理的大致范圍。

  對于計(jì)算器的使用,在教學(xué)中采用學(xué)生自己閱讀計(jì)算器的說明書、自己操作練習(xí)來掌握用計(jì)算器進(jìn)行開立方運(yùn)算的方法,并讓學(xué)生互相交流,讓學(xué)生親身體會到利用計(jì)算器不僅能給運(yùn)算帶來很大的方便,也給探求數(shù)量間的關(guān)系與變化帶來方便。在教學(xué)過程中,教師要關(guān)注學(xué)生能否通過閱讀,掌握用計(jì)算器進(jìn)行開立方運(yùn)算的簡單操作;能否利用計(jì)算器探究數(shù)量間的關(guān)系,從而尋找出數(shù)量的變化關(guān)系。

  使用計(jì)算器進(jìn)行復(fù)雜運(yùn)算,可以使學(xué)生學(xué)習(xí)的重點(diǎn)更好地集中到理解數(shù)學(xué)的本質(zhì)上來,而估算也是一種具有實(shí)際應(yīng)用價(jià)值的運(yùn)算能力,在本節(jié)課的課堂教學(xué)中綜合運(yùn)用筆算、計(jì)算器和估算等培養(yǎng)學(xué)生的運(yùn)算能力。知識點(diǎn)一:多邊形的概念

 、哦噙呅味x:在平面內(nèi),由一些線段首位順次相接組成的圖形叫做________、

  如果一個(gè)多邊形由n條線段組成,那么這個(gè)多邊形叫做____________。(一個(gè)多邊形由幾條線段組成,就叫做幾邊形、)

  多邊形的表示:用表示它的各頂點(diǎn)的大寫字母來表示,表示多邊形必須按順序書寫,可按順時(shí)針或逆時(shí)針的順序。如五邊形ABCDE。

 、贫噙呅蔚倪、頂點(diǎn)、內(nèi)角和外角、

  多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________、

 、嵌噙呅蔚膶蔷

  連接多邊形的`不相鄰的兩個(gè)頂點(diǎn)的線段,叫做___________________、畫一個(gè)五邊形ABCDE,并畫出所有的對角線。知識點(diǎn)二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婥D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形,今后我們在習(xí)題、練習(xí)中提到的多邊形都是______多邊形、

  知識點(diǎn)二:正多邊形

  各個(gè)角都相等,各條邊都相等的多邊形叫做_____________、

  探究多邊形的對角線條數(shù)

  知識點(diǎn)三:多邊形的內(nèi)角和公式推導(dǎo)

  1、我們知道三角形的內(nèi)角和為__________、

  2、我們還知道,正方形的四個(gè)角都等于____°,那么它的內(nèi)角和為_____°,同樣長方形的內(nèi)角和也是______°、

  3、正方形和長方形都是特殊的四邊形,其內(nèi)角和為360度,那么一般的四邊形的內(nèi)角和為多少呢?

  4、畫一個(gè)任意的四邊形,用量角器量出它的四個(gè)內(nèi)角,計(jì)算它們的和,與同伴交流你的結(jié)果、從中你得到什么結(jié)論?

  探究1:任意畫一個(gè)四邊形,量出它的4個(gè)內(nèi)角,計(jì)算它們的和、再畫幾個(gè)四邊形,?量一量、算一算、你能得出什么結(jié)論?能否利用三角形內(nèi)角和等于180?°得出這個(gè)結(jié)論?結(jié)論:。

  探究2:從上面的問題,你能想出五邊形和六邊形的內(nèi)角和各是多少嗎?觀察圖3,?請?zhí)羁眨?/p>

 。1)從五邊形的一個(gè)頂點(diǎn)出發(fā),可以引_____條對角線,它們將五邊形分為_____個(gè)三角形,五邊形的內(nèi)角和等于180°×______、

 。2)從六邊形的一個(gè)頂點(diǎn)出發(fā),可以引_____條對角線,它們將六邊形分為_____個(gè)三角形,六邊形的內(nèi)角和等于180°×______、探究3:一般地,怎樣求n邊形的內(nèi)角和呢?請?zhí)羁眨?/p>

  從n邊形的一個(gè)頂點(diǎn)出發(fā),可以引____條對角線,它們將n邊形分為____個(gè)三角形,n邊形的內(nèi)角和等于180°×______、

  綜上所述,你能得到多邊形內(nèi)角和公式嗎?設(shè)多邊形的邊數(shù)為n,則

  n邊形的內(nèi)角和等于______________、

  想一想:要得到多邊形的內(nèi)角和必需通過“___________定理”來完成,就是把一個(gè)多邊形分成幾個(gè)三角形、除利用對角線把多邊形分成幾個(gè)三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內(nèi)角和公式嗎?

  知識點(diǎn)四:多邊形的外角和

  探究4:如圖8,在六邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,?這些外角的和叫做六邊形的外角和、六邊形的外角和等于多少?

  問題:如果將六邊形換為n邊形(n是大于等于3的整數(shù)),結(jié)果還相同嗎?多邊形的外角和定理:。理解與運(yùn)用

  例1如果一個(gè)四邊形的一組對角互補(bǔ),那么另一組對角有什么關(guān)系?已知:四邊形ABCD的∠A+∠C=180°、求:∠B與∠D的關(guān)系、

  自我檢測:

 。ㄒ唬、判斷題、

  1、當(dāng)多邊形邊數(shù)增加時(shí),它的內(nèi)角和也隨著增加、()

  2、當(dāng)多邊形邊數(shù)增加時(shí)、它的外角和也隨著增加、()

  3、三角形的外角和與一多邊形的外角和相等、()

  4、從n邊形一個(gè)頂點(diǎn)出發(fā),可以引出(n一2)條對角線,得到(n一2)個(gè)三角形、()

  5、四邊形的四個(gè)內(nèi)角至少有一個(gè)角不小于直角、()

 。ǘ、填空題、

  1、一個(gè)多邊形的每一個(gè)外角都等于30°,則這個(gè)多邊形為

  2、一個(gè)多邊形的每個(gè)內(nèi)角都等于135°,則這個(gè)多邊形為

  3、內(nèi)角和等于外角和的多邊形是邊形、

  4、內(nèi)角和為1440°的多邊形是

  5、若多邊形內(nèi)角和等于外角和的3倍,則這個(gè)多邊形是邊形、

  6、五邊形的對角線有

  7、一個(gè)多邊形的內(nèi)角和為4320°,則它的邊數(shù)為

  8、多邊形每個(gè)內(nèi)角都相等,內(nèi)角和為720°,則它的每一個(gè)外角為

  9、四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠、

  10、四邊形的四個(gè)內(nèi)角中,直角最多有個(gè),鈍角最多有銳角最

 。ㄈ┙獯痤}

  1、一個(gè)八邊形每一個(gè)頂點(diǎn)可以引幾條對角線?它共有多少條對角線?n邊形呢?

  2、在每個(gè)內(nèi)角都相等的多邊形中,若一個(gè)外角是它相鄰內(nèi)角的則這個(gè)多邊形是幾邊形?

  3、若一個(gè)多邊形的內(nèi)角和與外角和的比為7:2,求這個(gè)多邊形的邊數(shù)。

  4、一個(gè)多邊形的每一個(gè)內(nèi)角都等于其相等外角的

  5、一個(gè)多邊形少一個(gè)內(nèi)角的度數(shù)和為2300°、

 。1)求它的邊數(shù);

 。2)求少的那個(gè)內(nèi)角的度數(shù)、

初中七年級數(shù)學(xué)教案6

  教學(xué)目標(biāo)

  1.使學(xué)生掌握代數(shù)式的值的概念,會求代數(shù)式的值;

  2.培養(yǎng)學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透對應(yīng)的思想.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):當(dāng)字母取具體數(shù)字時(shí),對應(yīng)的代數(shù)式的值的求法及正確地書寫格式.

  難點(diǎn):正確地求出代數(shù)式的值.

  課堂教學(xué)過程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)識結(jié)構(gòu)提出問題

  1.用代數(shù)式表示:(投影)

  (1)a與b的和的平方;(2)a,b兩數(shù)的平方和;

  (3)a與b的和的50%.

  2.用語言敘述代數(shù)式2n+10的意義.

  3.對于第2題中的代數(shù)式2n+10,可否編成一道實(shí)際問題呢?(在學(xué)生回答的基礎(chǔ)上,教師打出投影)

  某學(xué)校為了開展體育活動,要添置一批排球,每班配2個(gè),學(xué)校另外留10個(gè),如果這個(gè)學(xué)校共有n個(gè)班,總共需多少個(gè)排球?

  若學(xué)校有15個(gè)班(即n=15),則添置排球總數(shù)為多少個(gè)?若有20個(gè)班呢?

  最后,教師根據(jù)學(xué)生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當(dāng)班數(shù)n取不同的數(shù)值時(shí),代數(shù)式2n+10的計(jì)算結(jié)果也不同,顯然,當(dāng)n=15時(shí),代數(shù)式的值是40;當(dāng)n=20時(shí),代數(shù)式的值是50.我們將上面計(jì)算的結(jié)果40和50,稱為代數(shù)式2n+10當(dāng)n=15和n=20時(shí)的值.這就是本節(jié)課我們將要學(xué)習(xí)研究的內(nèi)容.

  二、師生共同研究代數(shù)式的值的意義

  1.用數(shù)值代替代數(shù)式里的字母,按代數(shù)式指明的運(yùn)算,計(jì)算后所得的結(jié)果,叫做代數(shù)式的值.

  2.結(jié)合上述例題,提出如下幾個(gè)問題:

  (1)求代數(shù)式2n+10的值,必須給出什么條件?

  (2)代數(shù)式的值是由什么值的確定而確定的'?

  當(dāng)教師引導(dǎo)學(xué)生說出:“代數(shù)式的值是由代數(shù)式

  里字母的取值的確定而確定的”之后,可用圖示幫助

  學(xué)生加深印象.

  然后,教師指出:只要代數(shù)式里的字母給定一個(gè)確定的值,代數(shù)式就有唯一確定的值與它對應(yīng).

  (3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?

  下面教師結(jié)合例題來引導(dǎo)學(xué)生歸納,概括出上述問題的答案.(教師板書例題時(shí),應(yīng)注意格式規(guī)范化)

  例1?當(dāng)x=7,y=4,z=0時(shí),求代數(shù)式x(2x-y+3z)的值.

  解:當(dāng)x=7,y=4,z=0時(shí),x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70.

  注意:如果代數(shù)式中省略乘號,代入后需添上乘號.

  解:(1)當(dāng)a=4,b=12時(shí),a2-=42-=16-3=13;

  注意(1)如果字母取值是分?jǐn)?shù),作乘方運(yùn)算時(shí)要加括號;

  (2)注意書寫格式,“當(dāng)……時(shí)”的字樣不要丟;

  (3)代數(shù)式里的字母可取不同的值,但是所取的值不應(yīng)當(dāng)使代數(shù)式或代數(shù)式所表示的數(shù)量關(guān)系失去實(shí)際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個(gè)數(shù),n不能取分?jǐn)?shù).

  最后,請學(xué)生總結(jié)出求代數(shù)值的步驟:

 、俅霐(shù)值?②計(jì)算結(jié)果

  三、課堂練習(xí)

  1.(1)當(dāng)x=2時(shí),求代數(shù)式x2-1的值;

  2.填表:(投影)

  (1)(a+b)2;?(2)(a-b)2.

  四、師生共同小結(jié)

  首先,請學(xué)生回答下面問題:

  1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2.求代數(shù)式的值應(yīng)分哪幾步?

  3.在“代入”這一步應(yīng)注意什么?

  其次,結(jié)合學(xué)生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式的運(yùn)算順序,直接計(jì)算后所得的結(jié)果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.

  五、作業(yè)

  1.當(dāng)a=2,b=1,c=3時(shí),求下列代數(shù)式的值:

  2.填表

  3.填表

初中七年級數(shù)學(xué)教案7

  教學(xué)目標(biāo)

  1,掌握數(shù)軸的概念,理解數(shù)軸上的點(diǎn)和有理數(shù)的對應(yīng)關(guān)系;

  2,會正確地畫出數(shù)軸,會用數(shù)軸上的點(diǎn)表示給定的有理數(shù),會根據(jù)數(shù)軸上的點(diǎn)讀出所表示的有理數(shù);

  3,感受在特定的條件下數(shù)與形是可以相互轉(zhuǎn)化的,體驗(yàn)生活中的數(shù)學(xué)。

  教學(xué)難點(diǎn)數(shù)軸的概念和用數(shù)軸上的點(diǎn)表示有理數(shù)

  知識重點(diǎn)

  教學(xué)過程(師生活動)設(shè)計(jì)理念

  設(shè)置情境

  引入課題教師通過實(shí)例、課件演示得到溫度計(jì)讀數(shù).

  問題1:溫度計(jì)是我們?nèi)粘I钪杏脕頊y量溫度的重要工具,你會讀溫度計(jì)嗎?請你嘗試讀出圖中三個(gè)溫度計(jì)所表示的溫度?

 。ǘ嗝襟w出示3幅圖,三個(gè)溫度分別為零上、零度和零下)

  問題2:在一條東西向的馬路上,有一個(gè)汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

 。ㄐ〗M討論,交流合作,動手操作)創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,發(fā)現(xiàn)生活中的數(shù)學(xué)

  點(diǎn)表示數(shù)的感性認(rèn)識。

  點(diǎn)表示數(shù)的理性認(rèn)識。

  合作交流

  探究新知教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點(diǎn)表示有理數(shù)嗎?

  讓學(xué)生在討論的.基礎(chǔ)上動手操作,在操作的基礎(chǔ)上歸納出:可以表示有理數(shù)的直線必須滿足什么條件?

  從而得出數(shù)軸的三要素:原點(diǎn)、正方向、單位長度體驗(yàn)數(shù)形結(jié)合思想;只描述數(shù)軸特征即可,不用特別強(qiáng)調(diào)數(shù)軸三要求。

  從游戲中學(xué)數(shù)學(xué)做游戲:教師準(zhǔn)備一根繩子,請8個(gè)同學(xué)走上來,把位置調(diào)整為等距離,規(guī)定第4個(gè)同學(xué)為原點(diǎn),由西向東為正方向,每個(gè)同學(xué)都有一個(gè)整數(shù)編號,請大家記住,現(xiàn)在請第一排的同學(xué)依次發(fā)出口令,口令為數(shù)字時(shí),該數(shù)對應(yīng)的同學(xué)要回答“到”;口令為該同學(xué)的名字時(shí),該同學(xué)要報(bào)出他對應(yīng)的“數(shù)字”,如果規(guī)定第3個(gè)同學(xué)為原點(diǎn),游戲還能進(jìn)行嗎?學(xué)生游戲體驗(yàn),對數(shù)軸概念的理解

  尋找規(guī)律

  歸納結(jié)論問題3:

  1,你能舉出一些在現(xiàn)實(shí)生活中用直線表示數(shù)的實(shí)際例子嗎?

  2,如果給你一些數(shù),你能相應(yīng)地在數(shù)軸上找出它們的準(zhǔn)確位置嗎?如果給你數(shù)軸上的點(diǎn),你能讀出它所表示的數(shù)嗎?

  3,哪些數(shù)在原點(diǎn)的左邊,哪些數(shù)在原點(diǎn)的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?

  4,每個(gè)數(shù)到原點(diǎn)的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?

 。ㄐ〗M討論,交流歸納)

  歸納出一般結(jié)論,教科書第12的歸納。這些問題是本節(jié)課要求學(xué)會的技能,教學(xué)中要以學(xué)生探究學(xué)習(xí)為主來完成,教師可結(jié)合教科書給學(xué)生適當(dāng)指導(dǎo)。

  鞏固練習(xí)

  教科書第12頁練習(xí)

  小結(jié)與作業(yè)

  課堂小結(jié)請學(xué)生總結(jié):

  1,數(shù)軸的三個(gè)要素;

  2,數(shù)軸的作以及數(shù)與點(diǎn)的轉(zhuǎn)化方法。

  本課作業(yè)1,必做題:教科書第18頁習(xí)題1.2第2題

  2,選做題:教師自行安排

  本課教育評注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

  1,數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計(jì)的原型來源于生活實(shí)際,學(xué)生易于體驗(yàn)和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗(yàn)數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時(shí)培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識,到理性認(rèn)識,到抽象概括的認(rèn)識規(guī)律。

  2,教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。

  3,注意從學(xué)生的知識經(jīng)驗(yàn)出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。

初中七年級數(shù)學(xué)教案8

  教學(xué)目標(biāo)

  1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;

  2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;

  3, 體驗(yàn)分類是數(shù)學(xué)上的常用處理問題的方法。

  教學(xué)難點(diǎn) 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類

  知識重點(diǎn) 正確理解有理數(shù)的概念

  教學(xué)過程(師生活動) 設(shè)計(jì)理念

  探索新知 在前兩個(gè)學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個(gè)數(shù)(同時(shí)請3個(gè)同學(xué)在黑板上寫出).

  問題1:觀察黑板上的9個(gè)數(shù),并給它們進(jìn)行分類.

  學(xué)生思考討論和交流分類的情況.

  學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時(shí),教師應(yīng)給予引導(dǎo)和鼓勵.

  例如,

  對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個(gè)人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個(gè)的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個(gè)的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))

  通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),’.

  按照書本的說法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.

  看書了解有理數(shù)名稱的由來.

  “統(tǒng)稱”是指“合起來總的名稱”的意思.

  試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來劃分的) 分類是數(shù)學(xué)中解決問題的常用手段,這個(gè)引入具有開放的特點(diǎn),學(xué)生樂于參與

  學(xué)生自己嘗試分類時(shí),可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會

  練一練 1,任意寫出三個(gè)有理數(shù),并說出是什么類型的數(shù),與同伴進(jìn)行交流.

  2,教科書第10頁練習(xí).

  此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.

  把一些數(shù)放在一起,就組成了一個(gè)數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;

  數(shù)集一般用圓圈或大括號表示,因?yàn)榧现械臄?shù)是無限的,而本題中只填了所給的幾個(gè)數(shù),所以應(yīng)該加上省略號.

  思考:上面練習(xí)中的四個(gè)集合合并在一起就是全體有理數(shù)的集合嗎?

  也可以教師說出一些數(shù),讓學(xué)生進(jìn)行判斷。

  集合的概念不必深入展開。

  創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對嗎?為什么?

  教學(xué)時(shí),要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。

  有理數(shù) 這個(gè)分類可視學(xué)生的程度確定是否有必要教學(xué)。

  應(yīng)使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時(shí),分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個(gè)參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

  小結(jié)與作業(yè)

  課堂小結(jié) 到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。

  本課作業(yè)

  1, 必做題:教科書第18頁習(xí)題1.2第1題

  2, 教師自行準(zhǔn)備

  本課教育評注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

  1,本課在引人了負(fù)數(shù)后對所學(xué)過的數(shù)按照一定的.標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進(jìn)行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。

  2,本課具有開放性的特點(diǎn),給學(xué)生提供了較大的思維空間,能促進(jìn)學(xué)生積極主動地參加學(xué)習(xí),親自體驗(yàn)知識的形成過程,可避免直接進(jìn)行分類所帶來的枯燥性;同時(shí)還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點(diǎn),對學(xué)生分類能力的養(yǎng)成有很好的作用。

  3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進(jìn)行。

初中七年級數(shù)學(xué)教案9

  教學(xué)目標(biāo)

  1. 使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;

  2. 初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):列代數(shù)式.

  難點(diǎn):弄清楚語句中各數(shù)量的意義及相互關(guān)系.

  課堂教學(xué)過程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

  1?用代數(shù)式表示乙數(shù):(投影)

  (1)乙數(shù)比x大5;(x+5)

  (2)乙數(shù)比x的2倍小3;(2x-3)

  (3)乙數(shù)比x的倒數(shù)小7;( -7)

  (4)乙數(shù)比x大16%?((1+16%)x)

  (應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)

  2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計(jì)算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點(diǎn)同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴?jì)算關(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學(xué)習(xí)這個(gè)問題?

  二、講授新課

  例1 用代數(shù)式表示乙數(shù):

  (1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;

  (3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?

  分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?

  解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  最后,教師需指出:第4小題的答案也可寫成x+16%x?

  例2 用代數(shù)式表示:

  (1)甲乙兩數(shù)和的2倍;

  (2)甲數(shù)的 與乙數(shù)的 的差;

  (3)甲乙兩數(shù)的平方和;

  (4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

  (5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

  分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?

  解:設(shè)甲數(shù)為a,乙數(shù)為b,則

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  此時(shí),教師指出:a與b的和,以及b與a的和都是指(a+b),這是因?yàn)榧臃ㄓ薪粨Q律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運(yùn)算順序?

  例3 用代數(shù)式表示:

  (1)被3整除得n的數(shù);

  (2)被5除商m余2的數(shù)?

  分析本題時(shí),可提出以下問題:

  (1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

  (2)被5除商1余2的數(shù)是幾?如何表示這個(gè)數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

  解:(1)3n; (2)5m+2?

  (這個(gè)例子直接為以后讓學(xué)生用代數(shù)式表示任意一個(gè)偶數(shù)或奇數(shù)做準(zhǔn)備)?

  例4 設(shè)字母a表示一個(gè)數(shù),用代數(shù)式表示:

  (1)這個(gè)數(shù)與5的和的3倍;(2)這個(gè)數(shù)與1的差的 ;

  (3)這個(gè)數(shù)的5倍與7的和的一半;(4)這個(gè)數(shù)的平方與這個(gè)數(shù)的 的和?

  分析:啟發(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的`數(shù)量關(guān)系分解為幾個(gè)基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力?)

  例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:

  (1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個(gè)座位?

  (2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個(gè)座位?

  分析本題時(shí),可提出如下問題:

  (1)教室里有6行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?

  (2)教室里有m行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?

  (3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

  解:(1)m(m+6)個(gè); (2)( m)m個(gè)?

  三、課堂練習(xí)

  1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

  (1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;

  (3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

  2?用代數(shù)式表示:

  (1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);

  (3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?

  3?用代數(shù)式表示:

  (1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);

  (3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、師生共同小結(jié)

  首先,請學(xué)生回答:

  1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?

  其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:

  (1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);

  (2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個(gè)基本的數(shù)量關(guān)系;

  (3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握?

  五、作業(yè)

  1?用代數(shù)式表示:

  (1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?

  (2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?

  2?已知一個(gè)長方形的周長是24厘米,一邊是a厘米,

  求:(1)這個(gè)長方形另一邊的長;(2)這個(gè)長方形的面積.

  學(xué)法探究

  已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個(gè)這樣的圓環(huán)一個(gè)接著一個(gè)環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

  分析:先深入研究一下比較簡單的情形,比如三個(gè)圓環(huán)接在一起的情形,看 有沒有規(guī)律.

  當(dāng)圓環(huán)為三個(gè)的時(shí)候,如圖:

  此時(shí)鏈長為,這個(gè)結(jié)論可以繼續(xù)推廣到四個(gè)環(huán)、五個(gè)環(huán)、…直至100個(gè)環(huán),答案不難得到:

  解:

  =99a+b(cm)

初中七年級數(shù)學(xué)教案10

  問:你會解這個(gè)方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?

  這個(gè)方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗(yàn)的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個(gè)數(shù)能使兩邊的值相等,這個(gè)數(shù)就是這個(gè)方程的解。

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,

  因?yàn)樽筮叄接疫,所以x=3就是這個(gè)方程的解。

  這種通過試驗(yàn)的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗(yàn)一下一個(gè)數(shù)是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?

  同學(xué)們動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗(yàn)的方法也很難得到方程的解,因?yàn)檫@里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗(yàn)根本無法人手,又該怎么辦?

  這正是我們本章要解決的問題。

  三、鞏固練習(xí)

  1、教科書第3頁練習(xí)1、2。

  2、補(bǔ)充練習(xí):檢驗(yàn)下列各括號內(nèi)的數(shù)是不是它前面方程的解。

 。1)x-3(x+2)=6+x(x=3,x=-4)

  (2)2y(y-1)=3(y=-1,y=2)

  (3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小結(jié)。本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實(shí)際問題。談?wù)勀愕膶W(xué)習(xí)體會。

  五、作業(yè)。教科書第3頁,習(xí)題6。1第1、3題。

  解一元一次方程

  1、方程的`簡單變形

  教學(xué)目的

  通過天平實(shí)驗(yàn),讓學(xué)生在觀察、思考的基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。

  重點(diǎn)、難點(diǎn)

  1、重點(diǎn):方程的兩種變形。

  2、難點(diǎn):由具體實(shí)例抽象出方程的兩種變形。

  教學(xué)過程

  一、引入

  上一節(jié)課我們學(xué)習(xí)了列方程解簡單的應(yīng)用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學(xué)習(xí)如何將方程變形。

  二、新授

  讓我們先做個(gè)實(shí)驗(yàn),拿出預(yù)先準(zhǔn)備好的天平和若干砝碼。

  測量一些物體的質(zhì)量時(shí),我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當(dāng)天平處于平衡狀態(tài)時(shí),顯然兩邊的質(zhì)量相等。

  如果我們在兩盤內(nèi)同時(shí)加入相同質(zhì)量的砝碼,這時(shí)天平仍然平衡,天平兩邊盤內(nèi)同時(shí)拿去相同質(zhì)量的砝碼,天平仍然平衡。

  如果把天平看成一個(gè)方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?

  讓同學(xué)們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個(gè)大砝碼和2個(gè)小砝碼,右盤上有5個(gè)小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。

初中七年級數(shù)學(xué)教案11

  教學(xué)目標(biāo):

  1、在解決問題的過程中,探索分?jǐn)?shù)除以整數(shù)的計(jì)算方法,并能正確的進(jìn)行計(jì)算。

  2、在探索分?jǐn)?shù)除以整數(shù)計(jì)算方法的過程中,體驗(yàn)算法的多樣性,養(yǎng)成獨(dú)立思考的習(xí)慣,促進(jìn)個(gè)性化學(xué)習(xí)。

  3、在解決現(xiàn)實(shí)問題的過程中,感受數(shù)學(xué)與生活的密切聯(lián)系,體驗(yàn)學(xué)數(shù)學(xué),用數(shù)學(xué)的樂趣。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,提出問題。

  師:同學(xué)們,我們學(xué)校設(shè)立了許多課外興趣小組,同學(xué)們在課余時(shí)間可以根據(jù)自己的興趣愛好參加小組的活動。今天我們一起走進(jìn)布藝興趣小組,看看那里的同學(xué)給我們提出了哪些數(shù)學(xué)問題。

  師:看大屏幕,從情境圖中你找到了哪些數(shù)學(xué)信息?

  生:布藝興趣小組的同學(xué)要用9/10米的布給小猴做衣服。如果做背心,可以做3件;如果做褲子,可以做2條。

  師:根據(jù)這些信息,你能提出什么數(shù)學(xué)問題?

  生1:做一件背心需要花布多少米?

  生2:做一條褲子需要花布多少米?

  (教師根據(jù)學(xué)生的提問,有選擇的進(jìn)行板書)

  二、自主探索,獲取新知

  1、獨(dú)立思考、自主探究。

  師:我們先看第一個(gè)問題“做一件背心需要花布多少米?”怎樣列算式?

  生1:9/10÷3=

  師:為什么用除法?

  生1:把9/10平均分成3份,求1份是多少,所以用除法。

  師:誰還能再說一遍?

  生重復(fù)。

  師:9/10÷3結(jié)果是多少呢?請?jiān)谧约旱木毩?xí)本寫一寫、畫一畫,算一算。

  生自主操作,師適時(shí)巡視指導(dǎo),找出兩位同學(xué)上臺板演。

  2、合作交流,解決問題。

  師:將你的想法和同桌交流一下。

  生交流。

  師:我們來看幾位同學(xué)的方法。

  (投影展示,畫線段圖的方法)

  師:我們先看第一位同學(xué)的方法,這是哪位同學(xué)的,你能來介紹一下嗎?

  生:(畫線段圖的方法)把9/10米平均分成3份,每份是3/10米。

  師:我們再來看一位同學(xué)的,他用的是長方形布條,這是哪位同學(xué)的,介紹一下?

  生:把9/10米平均分成3份,每份是3/10米。

  師:不管是畫線段圖還是用長方形來表示,我們都可以得到每份是3/10米。

  板書方法:畫線段圖。

  師:我們再來看黑板上這兩位同學(xué)的(學(xué)生板演),請這位同學(xué)來介紹一下你的做法。

  生:9/10÷3=9÷3/10=3/10(米)

  把9/10米平均分成3段,就是把9個(gè)1/10米平均分成3份,每份是(9÷3)個(gè)1/10米,即3/10米

  師:誰能再重復(fù)一遍?生重復(fù)。

  師:我們可以用平均分的思想直接進(jìn)行計(jì)算。(板書:平均分的方法)

  師:看這種方法9/10÷3=9/10×1/3=3/10(米),(學(xué)生板演內(nèi)容)誰來介紹一下?

  生:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法計(jì)算,每段是9/10×1/3=3/10(米)。

  生似懂非懂。

  師:你們能明白嗎?我們結(jié)合這條形圖來看一下,(出示課件)。

  師:把條形圖平均分成3份,一份占多少?

  生:1/3。

  師:也就是求什么/

  生:也就是求9/10米的1/3。

  師:我們可以怎樣計(jì)算?

  生:9/10×1/3

  師:看一下算式?有什么變化?

  生1:前面是除法,后面是乘法。

  生2:3和1/3互為倒數(shù)

  師:也就是除法轉(zhuǎn)化成了乘法。(板書:轉(zhuǎn)化)

  師:誰能再說一說這種方法?

  師:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法計(jì)算,每段是9/10×1/3=3/10(米)。

  師:這就是第三種方法,利用乘法的意義進(jìn)行計(jì)算。(板書:乘法的意義)

  師:除了這幾種方法,你還有哪些辦法?

  生:轉(zhuǎn)化成小數(shù)來計(jì)算。

  師:說一下

  生:9/10米化成小數(shù)0.9米,平均分成3份,每份就是0.9÷3=0.3(米)。

  師板書:9/10÷3=0.9÷3=0.3(米)

  師:同學(xué)們想出了這么多方法解決問題,它們的結(jié)果相同,說明大家的思路是正確的,哪種方法更好一些呢?

  生1:我認(rèn)為第三種方法比較好,因?yàn)樗闫饋肀容^簡便。

  生2:我認(rèn)為第三種方法比較好,因?yàn)榈诙N方法只適用于能出開的情況。

  師:說得非常好,到底他說的對不對,等會我們來驗(yàn)證一下。

  3、選擇算法,解決問題。

  師:同學(xué)們,看來大家都已經(jīng)有自己喜歡的方法了,我們來看第二個(gè)問題“做一條褲子需要花布多少米?”用你喜歡的方法獨(dú)立完成。

  (讓學(xué)生獨(dú)立列式,教師巡回指導(dǎo),了解學(xué)生情況,找一位同學(xué)進(jìn)行板演)

  9/10÷2=9/10×1/2=9/20(米)

  師:我們來看這位同學(xué)的,你們都和這位同學(xué)一樣嗎?誰來說說這種方法?

  生:把9/10米平均分成2段,求每份是多少米?也就是求9/10米的1/2,用乘法來計(jì)算。

  師:誰能再說一遍

  生重復(fù)。

  師:看算式,我們把除法轉(zhuǎn)化成了乘法來計(jì)算?磥泶蠹叶加X得這種方法比較簡單。

  4、歸納概括,推廣應(yīng)用。

  (1)師:仔細(xì)觀察、分析剛才所解決的兩個(gè)問題,想一想:我們怎樣計(jì)算分?jǐn)?shù)除以整數(shù)?看這兩個(gè)算式,前面是除法,后面是?

  生:乘法

  師:看圈起來的兩個(gè)數(shù)字,有什么關(guān)系?

  生1:倒數(shù)

  生2:互為倒數(shù)

  師:一定要說完整。現(xiàn)在誰能用一句話來總結(jié)一下怎樣計(jì)算分?jǐn)?shù)除以整數(shù)的計(jì)算方法?

  生:分?jǐn)?shù)除以整數(shù)等于分?jǐn)?shù)乘這個(gè)整數(shù)的倒數(shù)。(師板書)

  師:誰能再說一遍?

  生重復(fù),全班同學(xué)一塊交流。

  三、鞏固練習(xí),加深理解

  1、自主練習(xí)1

  先讓學(xué)生獨(dú)立填寫,然后組織交流。

  交流時(shí)讓學(xué)生說說自己的算法,體會到此題分?jǐn)?shù)的分子都能被除數(shù)整除,所以采用分子除以除數(shù)的方法相對簡捷。

  2、自主練習(xí)2

  讓學(xué)生運(yùn)用分?jǐn)?shù)除以整數(shù)的`計(jì)算方法連一連。獨(dú)立完成,組織交流。

  首先讓學(xué)生觀察第一行算式與第二行算式的特點(diǎn)以及之間的關(guān)系,從而悟出此題的意圖,學(xué)生就可以順利地利用分?jǐn)?shù)除以整數(shù)的計(jì)算方法得出應(yīng)該連的相應(yīng)算式。

  3、自主練習(xí)5

  獨(dú)立完成,投影展示交流。(兩種方法,直接去除或者轉(zhuǎn)化成乘法計(jì)算)

  此題把解決問題和計(jì)算知識的練習(xí)融為一體,實(shí)現(xiàn)解決問題能力的培養(yǎng)與基礎(chǔ)知識和基本技能的學(xué)習(xí)同步發(fā)展的教學(xué)目標(biāo)。

  4、自主練習(xí)4

  獨(dú)立完成,板演交流

  此題把解決問題和計(jì)算知識的練習(xí)融為一體,實(shí)現(xiàn)解決問題能力的培養(yǎng)與基礎(chǔ)知識和基本技能的學(xué)習(xí)同步發(fā)展的教學(xué)目標(biāo)。

  四、課堂小結(jié)

  師:這節(jié)課我們主要學(xué)習(xí)了什么知識?

  生:分?jǐn)?shù)除以整數(shù)(板書)

  師:通過這節(jié)課的學(xué)習(xí),你有什么收獲?

  生匯報(bào)。

初中七年級數(shù)學(xué)教案12

  【學(xué)習(xí)目標(biāo)】:

  1、掌握正數(shù)和負(fù)數(shù)概念;

  2、會區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負(fù)數(shù);

  3、體驗(yàn)數(shù)學(xué)發(fā)展是生活實(shí)際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  【重點(diǎn)難點(diǎn)】:正數(shù)和負(fù)數(shù)概念

  【教學(xué)過程】:

  一、知識鏈接:

  1、小學(xué)里學(xué)過哪些數(shù)請寫出來:

  2、閱讀課本P2三幅圖(重點(diǎn)是三個(gè)例子,邊閱讀邊思考)回答下面提出的問題:

  3、在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?有沒有比0小的數(shù)?如果有,那叫做什么數(shù)?

  二、自主學(xué)習(xí)

  1、正數(shù)與負(fù)數(shù)的產(chǎn)生

  (1)、生活中具有相反意義的量

  如:運(yùn)進(jìn)5噸與運(yùn)出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。請你也舉一個(gè)具有相反意義量的例子:。

 。2)負(fù)數(shù)的產(chǎn)生同樣是生活和生產(chǎn)的需要

  2、正數(shù)和負(fù)數(shù)的表示方法

  (1)一般地,我們把上升、運(yùn)進(jìn)、零上、收入、前進(jìn)、高出等規(guī)定為正的,而與它相反的量,如:下降、運(yùn)出、零下、支出、后退、低于等規(guī)定為負(fù)的。正的量就用小學(xué)里學(xué)過的數(shù)表示,有時(shí)也在它前面放上一個(gè)“+”(讀作正)號,如前面的5、7、50;負(fù)的量用小學(xué)學(xué)過的數(shù)前面放上“—”(讀作負(fù))號來表示,如上面的—3、—8、—47。

 。2)活動:兩個(gè)同學(xué)為一組,一同學(xué)任意說意義相反的兩個(gè)量,另一個(gè)同學(xué)用正負(fù)數(shù)表示.

  (3)閱讀P2的內(nèi)容

  3、正數(shù)、負(fù)數(shù)的概念

  1)大于0的數(shù)叫做,小于0的數(shù)叫做。

  2)正數(shù)是大于0的數(shù),負(fù)數(shù)是的數(shù),0既不是正數(shù)也不是負(fù)數(shù)。

  【課堂練習(xí)】:

  1. P3第1,2題(直接做在課本上)。

  2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應(yīng)記作_______,-4萬元表示________________。

  3.已知下列各數(shù):13,?2,3.14,+3065,0,-239;54

  則正數(shù)有_____________________;負(fù)數(shù)有____________________。

  4.下列結(jié)論中正確的是()

  A.0既是正數(shù),又是負(fù)數(shù)

  C.0是最大的'負(fù)數(shù)

  【要點(diǎn)歸納】:

  正數(shù)、負(fù)數(shù)的概念:

 。1)大于0的數(shù)叫做,小于0的數(shù)叫做。

  (2)正數(shù)是大于0的數(shù),負(fù)數(shù)是的數(shù),0既不是正數(shù)也不是負(fù)數(shù)。

  【拓展訓(xùn)練】:

  1.零下15℃,表示為_________,比O℃低4℃的溫度是_________。

  2.地圖上標(biāo)有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,其中最高處為_______地,最低處為_______地.

  3.“甲比乙大-3歲”表示的意義是______________________。

  4.如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負(fù)數(shù)分別表示潛水艇和鯊魚的高度。

  【課后作業(yè)】P5第1、2題

初中七年級數(shù)學(xué)教案13

  平行線的判定(1)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學(xué)習(xí)目標(biāo)

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進(jìn)一步發(fā)展推理能力和有條理表達(dá)能力.

  2.掌握直線平行的條件,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學(xué)思想

  學(xué)習(xí)重難點(diǎn):探索并掌握直線平行的條件是本課的重點(diǎn)也是難點(diǎn).

  一、探索直線平行的條件

  平行線的判定方法1:

  二、練一練1、判斷題

  1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯角也相等.( )

  2.兩條直線被第三條直線所截,如果內(nèi)錯角互補(bǔ),那么同旁內(nèi)角相等.( )

  2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_(dá)______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、選擇題

  1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右圖,由圖和已知條件,下列判斷中正確的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關(guān)系,并說明理由.

  五、作業(yè)課本15頁-16頁練習(xí)的`1、2、3、

  5.2.2平行線的判定(2)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學(xué)習(xí)目標(biāo)

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進(jìn)一步發(fā)展空

  間觀念,推理能力和有條理表達(dá)能力.

  毛2.分析題意說理過程,能靈活地選用直線平行的方法進(jìn)行說理.

  學(xué)習(xí)重點(diǎn):直線平行的條件的應(yīng)用.

  學(xué)習(xí)難點(diǎn):選取適當(dāng)判定直線平行的方法進(jìn)行說理是重點(diǎn)也是難點(diǎn).

  一、學(xué)習(xí)過程

  平行線的判定方法有幾種?分別是什么?

  二.鞏固練習(xí):

  1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1題) (第2題)

  2.如圖,一個(gè)合格的變形管道ABCD需要AB邊與CD邊平行,若一個(gè)拐角∠ABC=72°,則另一個(gè)拐角∠BCD=_______時(shí),這個(gè)管道符合要求.

  二、選擇題.

  1.如圖,下列判斷不正確的是( )

  A.因?yàn)椤?=∠4,所以DE∥AB

  B.因?yàn)椤?=∠3,所以AB∥EC

  C.因?yàn)椤?=∠A,所以AB∥DE

  D.因?yàn)椤螦DE+∠BED=180°,所以AD∥BE

  2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答題.

  1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

  2.已知,如圖2,點(diǎn)B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

【初中七年級數(shù)學(xué)教案】相關(guān)文章:

初中七年級數(shù)學(xué)教案12-30

初中七年級數(shù)學(xué)教案10-25

初中七年級下冊數(shù)學(xué)教案01-13

初中七年級數(shù)學(xué)教案[精品]11-26

初中七年級數(shù)學(xué)教案11篇12-30

初中七年級數(shù)學(xué)教案(11篇)12-30

初中七年級數(shù)學(xué)教案(通用15篇)03-17

初中數(shù)學(xué)教案11-15

初中數(shù)學(xué)教案【熱】01-12