- 相關推薦
重實踐 重思維 巧突破“連乘應用題”的教學設計
小學《數(shù)學》第六冊P71的例4是本冊教材的難點,學生第一次碰到這種結構的連乘應用題。如何讓學生了解并掌握此類應用題的結構特點,如何培養(yǎng)學生的推理能力,如何突破重點、難點,我在“連乘應用題”這堂課的教學中作了如下努力:
一、從實際問題引入新課,引導學生理解題意,進行推理能力的訓練。
數(shù)學教學法上有句名言:“理解了題意,等于題目做出了一半”。理解題意也是進行推理的前提條件。三年級孩子的思維正是從形象思維向抽象思維過渡的時期,為此在進行例4這種特殊結構的連乘應用題的教學時,我創(chuàng)設“從學具操作掌握運算規(guī)律”的教學過程。首先從實際問題出發(fā),引起興趣:我拿出3盒圓珠筆,問學生知不知道老師這些圓珠筆一共用了多少錢,大家都說不知道;接著我請學生說出要求這個問題必須知道什么條件;然后根據(jù)實物給出“吳老師買來3盒圓珠筆”、“每盒10支”、“每支3元”這三個條件,請學生根據(jù)對應條件求出對應問題。學生反應熱烈。根據(jù)學生回答我板書如下:(“盒”、“支”、“元”分別用藍色、綠色、紅色寫出)
吳老師買來3盒圓筆,每盒10支,每支2元,一支多少元?(2元);3盒共有多少支?(?);1盒多少元?(?);一共有多少盒?(3盒);一共用了多少元?;一共用了多少元?
由于教師幫助學生從學具操作理解題意,形象性強,學生容易從實物分析中掌握題意,并隨著教師的設問激疑,引起探索興趣,從而進入分析推理的抽象思維訓練的環(huán)節(jié)。在教師的板書幫助下,自己找出對應條件,成功地得出解題方法。這時,學生們面露喜色,學習情緒高漲。
二、尋找突破口,突出重點,突破難點
本節(jié)課的難點是被乘數(shù)不易找對,被乘數(shù)與乘數(shù)的對應關系容易搞錯,因此我利用每份數(shù)、份數(shù)與總數(shù)之間的對應關系作突破口來解決重點、難點問題。
1、在“基本訓練”中加強對應關系訓練。我在“基本訓練”中出了兩道練習題:
⑴出示“每組種6棵”,“每班種6棵”,“每12個裝1箱”,請學生說出“6、6、12”分別表示什么數(shù),為什么,并說出對應的份數(shù)(組數(shù)、班數(shù)、箱數(shù)),然后教師給出對應的份數(shù),請學生說出對應的總數(shù),并列式。
這一題為新課找準對應關系作好初步的分析能力訓練。
⑵假定“一共可賣多少元”、“一共運進多少個”是要求的總數(shù),請學生在“每個賣9元”、“每箱有30個”中選取與總數(shù)對應的每份數(shù)。
這一題的練習為解決新課中出現(xiàn)兩個每份數(shù),而應把哪個每份數(shù)作被乘數(shù)作了突破重點問題的解題能力訓練。
2、在新授時突出尋找對應關系。在出示“吳老師買來3盒圓珠筆”、“每盒10支”、“每支2元”后,我讓學生邊找對應條件邊推理。學生回答說“每盒10支”中“10”對應的份數(shù)應該是“盒數(shù)”,故與“3盒”對應;“每支2元”中“2”對應的份數(shù)應該是“支數(shù)”,故與“每盒10支”對應。我說:“不對呀,怎么把2與10這兩個每份數(shù)對到一塊去了呢?”學生這下很得意地告訴我說“每盒10支”可理解為“一盒子里裝10支”,對于“2”來說,“10”是個份數(shù)。從而學生清楚地看到“每盒10支”這個條件的兩面性:與“3盒”對應時,“10”是每份數(shù);與“每支2元”對應時,“10”是份數(shù)。但為什么沒有人把“3盒”與“每支2元”看作對應條件呢?我把這個問題交與大家討論得出正確結論,避免出現(xiàn)被乘數(shù)與乘數(shù)不對應的錯誤。接著我乘勝追擊,引導學生解決兩個每份數(shù)中哪個作被乘數(shù)的問題。我在進行推理訓練的基礎上,先讓學生嘗試列式計算。由于學生理解題意,嘗試準確率達95%。我裝作疑惑不解地問:題目初看有兩個每份數(shù),你們?yōu)槭裁炊歼x“2”作被乘數(shù)而不選“10”呢?學生搶著告訴老師因為“2”才是與總數(shù)直接對應的每份數(shù),故作被乘數(shù)。
教師運用嘗試教學法,逐步由淺入深,由已知到未知,步步扎實地突破重點和難點,從而使學生從成功的喜悅中積極地掌握了本類應用題的結構特征和列式特點。
三、重視課堂練習,培養(yǎng)思維能力。
練習是使學生掌握知識、形成技能、發(fā)展智力的重要手段,為此我進行了多層次、多形式的練習。
1、鞏固練習
先讓學生找出對應條件及與總數(shù)直接對應的每份數(shù),再列式計算(半扶著走,進一步突出重點、難點、準確率100%)→只列式不計算(獨立走、準確率100%)→選擇題、判斷題(準確率98%)。
2、對比練習
為了消除思維定勢,防止新舊知識的相互干擾,我出了以下兩道練習題:(只列式)
⑴水泥廠用汽車運送水泥,每一輛汽車一次能運5噸,12輛汽車7次能運多少噸?
⑵水泥廠用汽車運送水泥,先來了4輛汽車,后又來了3輛汽車,每輛汽車運5噸,一共能運多少噸?
通過以上兩道練習,學生知道并非所有連乘題都是今天學的題型,也不要一看見每份數(shù)就盲目用連乘法,從而從比較中進一步掌握了例4的本質特征。
3、發(fā)展練習
在這一部分練習中,讓學生的知識與實際結合起來,進一步幫助學生掌握連乘應用題結構,升華認識,且充分調動學生學習的主動性和積極性。
⑴出示“我們三(3)班有56人,為扶助失學兒童如果每人捐款5元,全班一共可捐款多少元?” 要求將“56人”改成間接條件,改完口頭列式,并注意比較不同結構。(學生改成“三(3)班有8個小組,每組7人”和“三(3)班有男生27人,女生29人”等)這一題培養(yǎng)了學生思維的靈活性和創(chuàng)造性,還滲透了思想教育。⑵出示實物3包練習本(每包50本)和2包衛(wèi)生紙(每包10卷),請學生編出例4結構的連乘應用題。
⑶在最后一分鐘請學生回憶生活中有意義的連乘應用題,進一步把數(shù)學學習和解答生活實踐的問題結合起來。這時,全班同學分成小組熱烈討論搶著編題。我又鼓勵大家課后進行調查研究,編出更有意義的題。一節(jié)課在愉快的氣氛中結束。
【重實踐 重思維 巧突破“連乘應用題”的教學設計】相關文章:
物理教學如何突破重難點08-17
「連乘應用題」說課設計08-17
《連乘應用題》的說課設計08-13
《連乘應用題》說課設計08-07
連乘應用題08-16
合理利用電教媒體 突破教學重難點08-07
《亮亮捉蟲》一課重難點的突破08-15