初三上冊數(shù)學(xué)教學(xué)計劃集錦5篇
光陰的迅速,一眨眼就過去了,我們又將迎來新的喜悅、新的收獲,做好計劃可是讓你提高工作效率的方法喔!那么你真正懂得怎么寫好計劃嗎?以下是小編精心整理的初三上冊數(shù)學(xué)教學(xué)計劃5篇,僅供參考,大家一起來看看吧。
初三上冊數(shù)學(xué)教學(xué)計劃 篇1
初三《代數(shù)》包括一元二次方程、函數(shù)及其圖象和統(tǒng)計初步三章內(nèi)容,其中一元二次方程一章的主要內(nèi)容為:一元二次方程的解法和列方程解應(yīng)用題,一元二次方程的根的判別式,根與系數(shù)的關(guān)系,以及與一元二次方程有關(guān)的分式方程的解法;重點是一元二次方程的解法和列方程解應(yīng)用題;難點是配方法和列方程解應(yīng)用題;關(guān)鍵是一元二次方程的解法。函數(shù)及其圖象一章的主要內(nèi)容是函數(shù)的概念、表示法、以及幾種簡單的函數(shù)的初步介紹;重點是一次函數(shù)的概念、圖象和性質(zhì);難點是對函數(shù)的意義和函數(shù)的表示法的理解;關(guān)鍵是處理好新舊知識聯(lián)系,盡可能減少學(xué)生接受新知識的困難。統(tǒng)計初步一章的主要內(nèi)容和重點是平均數(shù)、方差、眾數(shù)、中位數(shù)的概念及其計算,頻率分布的概念和獲取方法,以及樣本與總體的關(guān)系。
初三《幾何》包括解直角三角形和圓兩章內(nèi)容,其中解直角三角形一章的主要內(nèi)容為銳角三角函數(shù)和解直角三角形,也是本章重點;難點和關(guān)鍵是銳角三角函數(shù)的概念。圓一章的主要內(nèi)容為圓的概念、性質(zhì)、圓與直線、圓與角、圓與圓、圓與正多邊形的位置、數(shù)量關(guān)系;重點是圓的有關(guān)性質(zhì)、直線與圓、圓與圓相切的位置關(guān)系,以及和圓有關(guān)的計算問題;難點是運用本章及以前所學(xué)幾何或代數(shù)知識解決一些綜合性較強的題目;關(guān)鍵是對圓的有關(guān)性質(zhì)的掌握。
初三《代數(shù)》和《幾何》是初中數(shù)學(xué)的重要組成部分,通過初三數(shù)學(xué)的教學(xué),要使學(xué)生學(xué)會適應(yīng)日常生活,參加生產(chǎn)和進一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識與基本技能,進一步培養(yǎng)學(xué)生的運算能力、思維能力和空間想象能力,能夠運用所學(xué)知識。
本學(xué)年我擔(dān)任初三年級x、x兩個班的數(shù)學(xué)教學(xué)工作。其兩班學(xué)生在數(shù)學(xué)學(xué)科的基本情況是:大多數(shù)學(xué)生對初二學(xué)年的'數(shù)學(xué)基礎(chǔ)知識掌握太差,很多知識只限于表面了解,機械記憶,忽視內(nèi)在的、本質(zhì)的聯(lián)系與區(qū)別,不注重對知識的理解、掌握及靈活運用,特別是少數(shù)學(xué)生對某些章節(jié)(如四邊形、分式、二次根式等)或者是一問三不知,或者是張冠李戴。就班級整體而言,x班成績大多處于中等偏下,x班成績大多處于中等層次。
針對上述情況,我計劃在即將開始的學(xué)年教學(xué)工作中采取以下幾點措施:
1、 新課開始前,用一個周左右的時間簡要復(fù)習(xí)初二學(xué)年的所有內(nèi)容,特別是幾何部分。
2、 教學(xué)過程中盡量采取多鼓勵、多引導(dǎo)、少批評的教育方法。
3、 教學(xué)速度以適應(yīng)大多數(shù)學(xué)生為主,盡量兼顧后進生,注重整體推進。
4、 新課教學(xué)中涉及到舊知識時,對其作相應(yīng)的復(fù)習(xí)回顧。
5、 堅持以課本為主,要求學(xué)行完成課本中的練習(xí)、習(xí)題(A組)、復(fù)習(xí)題(A組)和自我測驗題,學(xué)生做完后教師講解,少做或不做繁、難、偏的數(shù)學(xué)題目。
6、 復(fù)習(xí)階段多讓學(xué)生動腦、動手,通過各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識點,并能熟練運用。
7、 利用各種綜合試卷、模擬試卷和樣卷考試訓(xùn)練,使學(xué)生逐步適應(yīng)考試,最終適應(yīng)并考出好成績。
8、 教學(xué)中在不放松x班的同時,狠抓x班的基礎(chǔ)部分。
初三上冊數(shù)學(xué)教學(xué)計劃 篇2
教學(xué)目標(biāo)
(1)會用公式法解一元二次方程;
(2)經(jīng)歷求根公式的發(fā)現(xiàn)和探究過程,提高學(xué)生觀察能力、分析能力以及邏輯思維能力;
(3)滲透化歸思想,領(lǐng)悟配方法,感受數(shù)學(xué)的內(nèi)在美.
教學(xué)重點
知識層面:公式的推導(dǎo)和用公式法解一元二次方程;
能力層面:以求根公式的發(fā)現(xiàn)和探究為載體,滲透化歸的數(shù)學(xué)思想方法.
教學(xué)難點:求根公式的推導(dǎo).
總體設(shè)計思路:
以舊知識為起點,問題為主線,以教師指導(dǎo)下學(xué)生自主探究為基本方式,突出數(shù)學(xué)知識的內(nèi)在聯(lián)系與探究知識的方法,發(fā)展學(xué)生的理性思維.
教學(xué)過程
。ㄒ唬┮耘f引新,提出問題
解下列一元二次方程:(學(xué)生選兩題做)
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
(3)4x2-16x+17=0 ; (4)3x2+4x+7=0.
然后讓學(xué)生仔細(xì)觀察四題的解答過程,由此發(fā)現(xiàn)有什么相同之處,有什么不同之處?
接著再改變上面每題的其中的一個系數(shù),得到新的四個方程:(學(xué)生不做,思考其解題過程)
(1)3x2+4x+2=0; (2)3x2-2x+1=0;
(3)4x2-16x-3=0 ; (4)3x2+x+7=0.
思考:新的四題與原題的解題過程會發(fā)生什么變化?
設(shè)計意圖: 1.復(fù)習(xí)鞏固舊知識,為本節(jié)課的學(xué)習(xí)掃除障礙;
2.讓學(xué)生充分感受到用配方法解題既存在著共性,也存在著不同的現(xiàn)象,由此激發(fā)學(xué)生的求知欲望.
3、學(xué)生根據(jù)自己的情況選兩題,這樣做能保證運算的正確和繼續(xù)學(xué)習(xí)數(shù)學(xué)的信心。
(二)分析問題,探究本質(zhì)
由學(xué)生的觀察討論得到:用配方法解不同一元二次方程的過程中,相同之處是配方的過程----程序化的操作,不同之處是方程的根的情況及其方程的根.
進而提出下面的問題:
既然過程是相同的,為什么會出現(xiàn)根的不同?方程的根與什么有關(guān)?有怎樣的關(guān)系?如何進一步探究?
讓學(xué)生討論得出:從一元二次方程的一般形式去探究根與系數(shù)的關(guān)系.
ax2+bx+c=0(a≠0) 注:根據(jù)學(xué)生學(xué)習(xí)程度的不同,可
ax2+bx=-c 以采用學(xué)生獨立嘗試配方, 合
x2+ x=- 作嘗試配方或教師引導(dǎo)下進行
x2+ x+ =- + 配方等各種教學(xué)形式.
(x+ )2=
然后再議開方過程(讓學(xué)生結(jié)合前面四題方程來加以討論),使學(xué)生充分認(rèn)識到“b2 -4ac”的重要性.
當(dāng)b2-4ac≥0時,
(x+ )2= 注:這樣變形可以避免對a正、負(fù)的討論,
x+ = 便于學(xué)生的理解.
x=- 即x=
x1= , x2=
當(dāng)b2-4ac<0時,
方程無實數(shù)根.
設(shè)計意圖:讓學(xué)生通過經(jīng)歷知識形成的全過程,從而提高自身的觀察能力、分析問題和解決問題的能力,發(fā)展了理性思維.
(三)得出結(jié)論,解決問題
由上面的探究過程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c確定. 當(dāng)b2-4ac≥0時,
x=;
當(dāng)b2-4ac<0時,方程無實數(shù)根.
這個式子對解題有什么幫助?通過討論加深對式子的理解,同時讓學(xué)生進一步感受到數(shù)學(xué)的簡潔美、和諧美.
進而闡述這個式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.
設(shè)計意圖: 理解是記憶的基礎(chǔ)。只有理解了公式才能爛熟于心,才能在題目中熟練應(yīng)用,不會因記不清公式造成運算的錯誤。
運用公式法解一元二次方程.(前兩道教師示范,后兩道學(xué)生練習(xí))
(1)2x2-x-1=0; (2)4x2-3x+2=0 ;
(3)x2+15x=-3x; (4)x2- x+ =0.
注:( 教師在示范時多強調(diào)注意點、易錯點,會減少學(xué)生做題的錯誤,讓學(xué)生在做題中獲得成功感。)
設(shè)計意圖:進一步闡述求根公式,歸納總結(jié)用公式法解一元二次方程的一般步驟,及時總結(jié)簡化運算,節(jié)約時間又提高做題的.準(zhǔn)確性。
用公式法解一元二次方程:(比一比,看誰做得又快又對)
(1)x2+x-6=0; (2)x2- x- =0;
(3)3x2-6x-2=0;(4)4x2-6x=0;
設(shè)計意圖:能夠熟練運用公式法解一元二次方程,讓每位學(xué)生都有所收獲,通過大量練習(xí),熟悉公式法的步驟,訓(xùn)練快速準(zhǔn)確的計算能力。
(四)拓展運用,升華提高
[想一想]
清清和楚楚剛學(xué)了用公式法解一元二次方程,看到一個關(guān)于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清說:“此方程有兩個不相等的實數(shù)根”,
而楚楚反駁說:“不一定,根的情況跟m的值有關(guān)”.那你們認(rèn)為呢?并說明理由.
設(shè)計意圖:基于學(xué)生基礎(chǔ)較好,因此對求根公式作進一步深化,并綜合運用了配方法,使不同層次的學(xué)生都有不同提高.比較配方法在不同題型中的用法,
避免以后出現(xiàn)運算錯誤。
歸納小結(jié), 結(jié)合上面想一想,讓學(xué)生嘗試對本節(jié)課的知識進行梳理,對方法進行提煉,從而使學(xué)生的知識和方法更具系統(tǒng)化和網(wǎng)絡(luò)化,同時也是情感的升華過程.
。ㄎ澹 布置作業(yè)
㈠必做題
、孢x做題:P46第12題。
設(shè)計意圖:結(jié)合學(xué)生的實際情況,可以分層布置。 適合的練習(xí)既鞏固了所學(xué)提高了計算的速度又保養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。
初三上冊數(shù)學(xué)教學(xué)計劃 篇3
一、基本情況:
本學(xué)期我擔(dān)任九年級159班的數(shù)學(xué)教學(xué)工作。共有學(xué)生48人,我深感教育教學(xué)的壓力很大,在本學(xué)期的數(shù)學(xué)教學(xué)中務(wù)必精耕細(xì)作。使用的教材是新課程標(biāo)準(zhǔn)實驗教材《湘教版數(shù)學(xué)九年級上冊》,如何用新理念使用好新課程標(biāo)準(zhǔn)教材?如何在教學(xué)中貫徹新課標(biāo)精神?這要求在教學(xué)過程中具有創(chuàng)新意識、每一個教學(xué)環(huán)節(jié)都必須巧做安排。為此,特制定本計劃。
二、指導(dǎo)思想:
以黨和國家的教育教學(xué)方針為指導(dǎo),按照九年義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)來實施,其目的是教書育人,使每個學(xué)生都能夠在數(shù)學(xué)學(xué)習(xí)過程中獲得最適合自己的發(fā)展。通過初三數(shù)學(xué)的教學(xué),提供參加生產(chǎn)實踐和進一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識與基本技能,進一步培養(yǎng)學(xué)生的運算能力、思維能力和空間想象能力,能夠運用所學(xué)知識解決實際問題,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新意識、良好個性品質(zhì)以及初步的唯物主義觀。
三、教學(xué)內(nèi)容:
本學(xué)期所教初三數(shù)學(xué)包括第一章一元二次方程,第二章命題定理與證明,第三章 解直角三角形,第四章 相似形,第五章概率的計算。
四、教學(xué)目的:
教育學(xué)生掌握基礎(chǔ)知識與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學(xué)生逐步學(xué)會正確、合理地進行運算, 逐步學(xué)會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進行簡單的推理。使學(xué)生懂得數(shù)學(xué)來源與實踐又反過來作用于實踐。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué) 生具有良好的學(xué)習(xí)習(xí)慣,實事求是的.態(tài)度。頑強的學(xué)習(xí)毅力和獨立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決問題的能力。
知識技能目標(biāo):掌握一元二次方程的有關(guān)概念;會解一元二次方程;能建立一元二次方程的模型解決實際問題;理解命題、定理、證明等概念;能正確寫出證明;掌握銳角三角函數(shù)的性質(zhì);理解直角三角形的性質(zhì);能運用三角函數(shù)及勾股定理解直角三角形;掌握相似三角形的概念、性質(zhì)及判定方法; 掌握概率的計算方法;理解概率在生活中的應(yīng)用。
過程方法目標(biāo):培養(yǎng)學(xué)生的觀察、探究、推理、歸納的能力,發(fā)展學(xué)生合情推理能力、邏輯推理能力和推理認(rèn)證表達(dá)能力,提高知識綜合應(yīng)用能力。
態(tài)度情感目標(biāo):進一步感受數(shù)學(xué)與日常生活密不可分的聯(lián)系,同時對學(xué)生進行辯證唯物主義世界觀教育。
通過講授證明的有關(guān)知識,使學(xué)生經(jīng)歷探索、猜測、證明的過程,進一步發(fā)展學(xué)生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進
一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關(guān)的性質(zhì)定理及判定定理,并能夠證明其他相關(guān)的結(jié)論。在解直角三角形和相似圖形這兩章時,通過具體活動,積累數(shù)學(xué)活動經(jīng)驗,進一步增強學(xué)生的動手能力發(fā)展學(xué)生的空間思維。在教學(xué)概率的計算時讓學(xué)生進一步體會概率是描述隨機現(xiàn)象的數(shù)學(xué)模型。
在教學(xué)一元二次方程這一章時,讓學(xué)生了解一元二次方程的各種解法,并能運用一元二次方程和函數(shù)解決一些數(shù)學(xué)問題逐步提高觀察和歸納分析能力,體驗數(shù)學(xué)結(jié)合的數(shù)學(xué)方法。同時學(xué)會對知識的歸納、整理、和運用。從而培養(yǎng)學(xué)生的思維能力和應(yīng)變能力。
五、教學(xué)重點、難點
《一元二次方程》的重點是1、掌握一元二次方程的多種解法;2、列一元二次方程解應(yīng)用題。難占是1、會運用方程和函數(shù)建立數(shù)學(xué)模型,鼓勵學(xué)生進行探索和交流,倡導(dǎo)解決問題策略的多樣化。《命題定理與證明》的重點是1、要求學(xué)生掌握證明的基本要求和方法,學(xué)會推理論證;2、探索證明的思路和方法,提倡證明的多樣性。難點是1、引導(dǎo)學(xué)生探索、猜測、證明,體會證明的必要性;
2、在教學(xué)中滲透如歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想。《解直角三角形》的重點是通過學(xué)習(xí)和實踐活動探索銳角三角函數(shù),在直角三角形中根據(jù)已知的邊與角求出未知的邊與角。難點是運用直角三角形的有關(guān)知識解決實際問題!断嗨茍D形》的重點是相似三角形的性質(zhì)與判定。難點是綜合運用三角形、四邊形等知識進行推理論證,正確寫出證明!陡怕实挠嬎恪返闹攸c是通過實驗活動,理解事件發(fā)生的頻率與概率之間的關(guān)系,體會概率是描述隨機現(xiàn)象的的數(shù)學(xué)模型,體會頻率的穩(wěn)定性,掌握概率的計算方法。難點是注重素材的真實性、科學(xué)性、以及來源渠道的多樣性,理解試驗頻率穩(wěn)定于理論概率,必須借助于大量重復(fù)試驗,從而提示概率與統(tǒng)計之間的內(nèi)存聯(lián)系。
六、教學(xué)措施:
1、認(rèn)真研讀新課程標(biāo)準(zhǔn),鉆研新教材,根據(jù)新課程標(biāo)準(zhǔn)及教材適度安排教學(xué)內(nèi)容,認(rèn)真上課,批改作業(yè),認(rèn)真輔導(dǎo),認(rèn)真制作測試試卷。
2、激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家,數(shù)學(xué)史,介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。
3、引導(dǎo)學(xué)生積極參與知識的構(gòu)建,營造自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的課堂。
4、引導(dǎo)學(xué)生積極歸納解題規(guī)律,引導(dǎo)學(xué)生一題多解,多解歸一,培養(yǎng)學(xué)生透過現(xiàn)象看本質(zhì)的能力,這是提高學(xué)生素質(zhì)的根本途徑之一,培養(yǎng)學(xué)生的發(fā)散思維,讓學(xué)生處于一種思如泉涌的狀態(tài)。
5、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的非智力因素,彌補智力上的不足。
6、教學(xué)中注重數(shù)學(xué)理論與社會實踐的聯(lián)系,鼓勵學(xué)生多觀察、多思考實際生活中蘊藏的數(shù)學(xué)問題,逐步培養(yǎng)學(xué)生運用書本知識解決實際問題的能力,重視實習(xí)作業(yè)。指導(dǎo)成立課外興趣小組,開展豐富多彩的課外活動,帶動班級學(xué)生學(xué)習(xí)數(shù)學(xué),同時發(fā)展這一部分學(xué)生的特長。
7、開展分層教學(xué),布置作業(yè)設(shè)置a、b、c三類分層布置分別適合于差、中、好三類學(xué)生,課堂上的提問照顧好各個層次的學(xué)生,使他們都得到發(fā)展。
8、把輔優(yōu)補潛工作落到實處,進行個別輔導(dǎo)。
初三上冊數(shù)學(xué)教學(xué)計劃 篇4
【學(xué)習(xí)目標(biāo)】
1.了解整式方程和一元二次方程的概念 。
2. 知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【重點、難點】
重點:一元二次方程的概念和它的一般形式。
難點:對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定
【學(xué)習(xí)過程】
一、
知識回顧
1.什么是整式方程?_什么是-元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程。就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程.
2、指出下列方程那些是一元二次方程:那些是一元一次方程?
(1) 3x十2=5x-3
(2) x2=4
(3) (x十3)(3xo4)=(x十2)2;
(4) (x-1)(x-2)=x2十8;
以上是 一元二次方程的為: ___________ 以上是 一元一次方程的為________
二、
探究新知[一]
1.一元二次方程的一般形式是( )
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠ 0 就成了一元一次方程了)
2).方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱各是什么?
3).強調(diào):一元二次方程的一般形式中"="的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是"="的右邊必須整理成0.
探究新知(二)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x 2十3x十2=O ___________
(2)x 2-3x十4=0; __________
(3)3x 2-5=0 ____________
(4)4x 2十3x-2=0; _________
(5)3x 2-5=0; ________
(6)6x 2-x=0. _______
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;
(3) (3x十2) 2=4(x-3) 2
[學(xué)以致用:]
強化概念:
1. 說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=O ______
(2)x2-3x十4=0;_______
(3) 3x2-5=0 _____________
(4)4x2十3x-2=0;____________
(5)3x2-5=0______________
(6)6x2-x=0________
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x
(2)3x(x-1)=2(x十2)-4
(3)(3x十2)2=4(x-3)2
[知識總結(jié):]
(1) 什么是一元二次方程?是一元二次方程滿足哪幾個條件?
(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左邊最多幾項、其中( )可以不出現(xiàn)、但( )必須存在。特別注意的是"="的`右邊必須整理成( );
(3) 要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).如:(3x十2) 2=4(x-3)____________
診斷檢測題一:
1.一元二次方程的一般形式是_________,其中_____是二次項,____是一次項,_______是常數(shù)項.
2.方程(3x-7)(2x+4)=4化為一般形式為_____,其中二次項系數(shù)為_____,一次項系數(shù)為_______.
3.方程mx2+5x+n=0一定是( ).
A.一元二次方程 B.一元一次方程
C.整式方程 D.關(guān)于x的一元二次方程
4.關(guān)于x的方程(m+1)x2+2mx-3=0是一元二次方程,則m的取值范圍是( )
A.任意實數(shù) B. m≠-1 C. m>1 D. m>0
5.方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);
3X2+Y=2X那些是一元二次方程?
6.把下列方程化成一般形式,且指出其二次項,一次項和常數(shù)項
(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x
診斷檢測題二:
1.方程 的二次項系數(shù)是 ,一次項系數(shù)是 ,常數(shù)項是 .
2.把一元二次方程 化成二次項系數(shù)大于零的一般式是 ,其中二次項系數(shù)是 ,一次項的系數(shù)是 ,常數(shù)項是 ;
3.一元二次方程 的一個根是3,則 ;
4. 是實數(shù),且 ,則 的值是 .
5.關(guān)于 的方程 是一元二次方程,則 .
6.方程:① ② ③ ④ 中一元二次程是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和③
初三上冊數(shù)學(xué)教學(xué)計劃 篇5
一、基本情況:
本學(xué)期是初中學(xué)習(xí)的關(guān)鍵時期本學(xué)期我擔(dān)任初三年級三(5、6)兩個班的數(shù)學(xué)教學(xué)工作,是新課程標(biāo)準(zhǔn)實驗教材,如何用新理念使用好新課程標(biāo)準(zhǔn)教材?如何在教學(xué)中貫徹新課標(biāo)精神?這要求在教學(xué)過程中的創(chuàng)新意識、引導(dǎo)學(xué)生進行思考問題方式都必須不同與以往的教學(xué)。因此,在完成教學(xué)任務(wù)的同時,必須盡可能性的創(chuàng)設(shè)情景,讓學(xué)生經(jīng)歷探索、猜想、發(fā)現(xiàn)的過程。并結(jié)合教學(xué)內(nèi)容和學(xué)生實際,把握好重點、難點。樹立素質(zhì)教育觀念,以培養(yǎng)全面發(fā)展的高素質(zhì)人才為目標(biāo),面向全體學(xué)生,使學(xué)生在德、智、體、美、勞等諸方面都得到發(fā)展。為做好本學(xué)期的教育教學(xué)工作,特制定本計劃。
二、指導(dǎo)思想:
初三數(shù)學(xué)是以黨和國家的教育教學(xué)方針為指導(dǎo),按照九年義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)來實施的,其目的是教書育人,使每個學(xué)生都能夠在此數(shù)學(xué)學(xué)習(xí)過程中獲得最適合自己的發(fā)展。通過初三數(shù)學(xué)的教學(xué),提供參加生產(chǎn)和進一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識與基本技能,進一步培養(yǎng)學(xué)生的運算能力、思維能力和空間想象能力,能夠運用所學(xué)知識解決簡單的實際問題,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新意識、良好個性品質(zhì)以及初步的唯物主義觀。
三、教學(xué)內(nèi)容:
本學(xué)期所教初三數(shù)學(xué)包括第一章 證明(二),第二章 一元二次方程,第三章 證明(三),第四章 視圖與投影,第五章 反比例函數(shù),第六章 頻率與概率。其中證明(二),證明(三),視圖與投影,這三章是與幾何圖形有關(guān)的。一元二次方程,反比例函數(shù) 這兩章是與數(shù)及數(shù)的運用有關(guān)的。頻率與概率 則是與統(tǒng)計有關(guān)。
四、教學(xué)目的:
在新課方面通過講授《證明(二)》和《證明(三)》的.有關(guān)知識,使學(xué)生經(jīng)歷探索、猜測、證明的過程,進一步發(fā)展學(xué)生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關(guān)的性質(zhì)定理及判定定理,并能夠證明其他相關(guān)的結(jié)論。在《視圖與投影》這一章通過具體活動,積累數(shù)學(xué)活動經(jīng)驗,進一步增強學(xué)生的動手能力發(fā)展學(xué)生的空間思維。在《頻率與概率》這一章》讓學(xué)生理解頻率與概率的關(guān)頻率與概率系進一步體會概率是描述隨機現(xiàn)象的數(shù)學(xué)模型。
在《一元二次方程》和《反比例函數(shù)》這兩章,讓學(xué)生了解一元二次方程的各種解法,并能運用一元二次方程和函數(shù)解決一些數(shù)學(xué)問題逐步提高觀察和歸納分析能力,體驗數(shù)學(xué)結(jié)合的數(shù)學(xué)方法。同時學(xué)會對知識的歸納、整理、和運用。從而培養(yǎng)學(xué)生的思維能力和應(yīng)變能力。
五、教學(xué)重點、難點
本冊教材包括幾幾何何部分《證明(二)》,《證明(三)》,《視圖與投影》。代婁部分《一元二次方程》, 《反比例函數(shù)》。以及與統(tǒng)計有關(guān)的《頻率與概率》。《證明(二)》,《證明(三)》的重點是
1、要求學(xué)生掌握證明的基本要求和方法,學(xué)會推理論證;
2、探索證明的思路和方法,提倡證明的多樣性。
難點是
1、引導(dǎo)學(xué)生探索、猜測、證明,體會證明的必要性;
2、在教學(xué)中滲透如歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想!兑晥D與投影》和重點是通過學(xué)習(xí)和實踐活動判斷簡單物體的三種視圖,并能根據(jù)三種圖形描述基本幾何體或?qū)嵨镌,實現(xiàn)簡單物體與其視圖之間的相互轉(zhuǎn)化。難點是理解平行投影與中心投影,明確視點、視線和盲區(qū)的內(nèi)容。
《一元二次方程》, 《反比例函數(shù)》的重點是
1、掌握一元二次方程的多種解法;
2、會畫出反比例函數(shù)的圖像,并能根據(jù)圖像和解析式探索和理解反比例函數(shù)的性質(zhì)。難占是1、會運用方程和函數(shù)建立數(shù)學(xué)模型,鼓勵學(xué)生進行探索和交流,倡導(dǎo)解決問題策略的多樣化!额l率與概率》的重點是通過實驗活動,理解事件發(fā)生的頻率與概率之間的關(guān)系,體會概率是描述隨機現(xiàn)象的的數(shù)學(xué)模型,體會頻率的穩(wěn)定性。難點是注重素材的真實性、科學(xué)性、以及來源渠道的多樣性,理解試驗頻率穩(wěn)定于理論概率,必須借助于大量重復(fù)試驗,從而提示概率與統(tǒng)計之間的內(nèi)存聯(lián)系。
六、教學(xué)措施:
針對上述情況,我計劃在即將開始的學(xué)年教學(xué)工作中采取以下幾點措施:
1、新課開始前,用一個周左右的時間簡要復(fù)習(xí)上學(xué)期的所有內(nèi)容,特別是幾何部分。
2、教學(xué)過程中盡量采取多鼓勵、多引導(dǎo)、少批評的教育方法。
3、教學(xué)速度以適應(yīng)大多數(shù)學(xué)生為主,盡量兼顧后進生,注重整體推進。
4、新課教學(xué)中涉及到舊知識時,對其作相應(yīng)的復(fù)習(xí)回顧。
5、復(fù)習(xí)階段多讓學(xué)生動腦、動手,通過各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識點,并能熟練運用。
七、教學(xué)進度:
除了以上計劃外,我還將預(yù)計開展轉(zhuǎn)化個別后進生工作,教學(xué)中注重數(shù)學(xué)理論與社會實踐的聯(lián)系,鼓勵學(xué)生多觀察、多思考實際生活中蘊藏的數(shù)學(xué)問題,逐步培養(yǎng)學(xué)生運用書本知識解決實際問題的能力,重視實習(xí)作業(yè)。
【初三上冊數(shù)學(xué)教學(xué)計劃】相關(guān)文章:
初三數(shù)學(xué)上冊教學(xué)計劃01-18
初三上冊數(shù)學(xué)教學(xué)計劃06-28
初三數(shù)學(xué)上冊教學(xué)計劃12篇04-04
初三上冊數(shù)學(xué)教學(xué)計劃六篇10-02
精選初三上冊數(shù)學(xué)教學(xué)計劃三篇10-16
初三上冊數(shù)學(xué)教學(xué)計劃13篇02-28
初三上冊數(shù)學(xué)教學(xué)計劃合集五篇10-12