高一上學期數(shù)學教學工作計劃五篇
時光飛逝,時間在慢慢推演,我們的工作又邁入新的階段,我們要好好計劃今后的學習,制定一份計劃了。好的計劃是什么樣的呢?以下是小編整理的高一上學期數(shù)學教學工作計劃5篇,歡迎大家分享。
高一上學期數(shù)學教學工作計劃 篇1
一、 指導思想:
在新課程改革的教學理念下,以發(fā)展教育的觀念為指引,以學校和教導處的工作計劃為指南,改變教學觀念,改進教學方法,更新教學手段,提高教學效率,提高學生的閱讀能力、解題能力,促進學生學習態(tài)度、學習方式的轉變,培養(yǎng)學生自主學習、積極探究、樂于合作的精神,注重學生數(shù)學素養(yǎng)的提高, 關注學生的思想情感和交流,培養(yǎng)學生的創(chuàng)新思維和創(chuàng)造能力,為學生的可持續(xù)發(fā)展奠定基礎。新課標理念下的政治教學活動應該不同于傳統(tǒng)的課堂教學,改變教師的教法和學生的學法是在教學活動中體現(xiàn)最新教學理念的關鍵!皩W案”應課堂教學改革與傳統(tǒng)教學模式的矛盾而生,它既可以將學生自主學習引入正軌,又將學生可以自主探究理解完成的知識點與題目在課下解決,這樣,課堂上教師就有足夠的時間與學生共同研究解決本節(jié)課的重點與難點,從而提高了課堂效率。我們應該認識到改革是教學的生命,課程改革與課堂教學改革是一個不斷發(fā)展、不斷探索的過程。在這個過程中,要求教師能夠正確、深刻地理解新課程理念,辯證地分析和處理各種在課程改革中產(chǎn)生的觀念和做法,樹立正確的育人理念,開拓進取,不斷尋求新的有效的方法促進學生的全面發(fā)展。 二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數(shù)學(A版)》必修1、必修2,根據(jù)必修1、2設計的導學案。它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的'關系,體現(xiàn)基礎性,時代性,典型性和可接受性,辯證地分析和處理各種在課程改革中產(chǎn)生的觀念和做法,樹立正確的育人理念,開拓進取,不斷尋求新的有效的方法促進學生的全面發(fā)展。
三、學情分析:
本學期任教高一(35、36)班的數(shù)學,(35、36)班是平衡班,部分學生學習數(shù)學的熱情較高漲,比較自覺,能認真完成作業(yè),但數(shù)學層次并不相同,部分同學基礎薄弱,缺乏學習數(shù)學的方法。
四、教學策略、教研活動:
1、落實提高課堂效率,導學案的設計目的是為了將學生的導學案與教師的集體備課設計為一體,第一、課前預習。教師設計此部分內容之前必須針對本課
題的三維目標與考綱認真?zhèn)湔n,列出本節(jié)課的知識要點,對于重難點做特殊標記,并針對預習提綱給出的內容設計預習檢測題,預習檢測題難度不易過高,與本課題的重難點相關的知識點有選擇性的錄入此處,讓學生在做此部分時不能感覺太簡單了也不能感覺無從下手,要有一部分題目讓他能夠通過討論探究完成。第二,探究活動。第三、課堂檢測。此處設置的題目難度深度一定比預習檢測部分要更難更深。此部分不要求所有的學生都在課前做。從此處開始分“才”完成,有能力的同學可以提前嘗試著做,做題慢的同學可以先不必看,學生按照自己的情況自行決定。第四,拓展延伸。這里出現(xiàn)的題目屬于拔高題,一般很少有學生在課前能夠做對,所以此處也不要求學生課前做,當然不排除有的同學想要挑戰(zhàn)一下,這是提倡并且大力表揚的。第五,反思總結。學生利用這部分一方面可以小結本節(jié)課的內容,另一方面可以對自己本課題從預習探究到課堂探究各個環(huán)節(jié)進行反思,便于日后改進。上課時要明確重點、難點,重點要突出,難點要分散,并且難點要解決好。課堂講新課的時間一定要控制在20分鐘之內,最好能在10分鐘之內解決問題,多給時間學生練習或進行與學習有關的活動。
2、做到課后教學反思
上完課之后需要思考三個問題:我這節(jié)課上得如何有沒有要糾正與改進的?有誰的課比我還優(yōu)秀?怎樣上這節(jié)課更好、最好?并在學案、備課筆記上做好記錄,為以后的教育教學提供參考。
3、落實好備課電子化,為加快對試驗課的理解和掌握,積極探索教改進程,建立備課組資料庫,備課組成員要積極借助網(wǎng)絡信息收集和篩選資料存庫,發(fā)揮集體智慧,在備課組會議上整理,及時應用到具體教學中。注重學案導學,編好用好導學案。
4、積極聽有經(jīng)驗的教師的課,認真改進課堂教學上的薄弱環(huán)節(jié)。注重研究教師如何講、注重研究學生如何學,積極推進新課改,提高課堂效率。
五、教學措施:
1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生交流等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣。
3、抓住公式的推導和內在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
4、扎實基礎的同時重視數(shù)學應用意識及應用能力的培養(yǎng)。
5、落實抓好平時的一周一限時訓練,一周一綜合,注重知識的滲透 6、落實競賽輔導:主要利用下午第三節(jié)時間,一個星期進行一至兩次輔導。
高一上學期數(shù)學教學工作計劃 篇2
指導思想:
。1)隨著素質教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設服務,必須與生產(chǎn)勞動相結合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術所需要的數(shù)學知識和基本技能。其內容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。
(2)培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數(shù)學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3)根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。
(4)使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養(yǎng),又要滲透有關高考的思想方法,為三年的學習做好準備。
學情分析及相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環(huán)節(jié),才能不負眾望。我們要從學生的認識水平和實際能力出發(fā),研究學生的心理特征,做好初三與高一的銜接工作,幫助學生解決好從初中到高中學習方法的過渡。從高一起就注意培養(yǎng)學生良好的數(shù)學思維方法,良好的學習態(tài)度和學習習慣,以適應高中領悟性的學習方法。
具體措施如下:
(1)注意研究學生,做好初、高中學習方法的銜接工作。
(2)集中精力打好基礎,分項突破難點.所列基礎知識依據(jù)課程標準設計,著眼于基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙于過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進,使高一的數(shù)學教學與高中教學的全局有機結合。
。3)培養(yǎng)學生解答考題的能力,通過例題,從形式和內容兩方面對所學知識進行能力方面的'分析,引導學生了解數(shù)學需要哪些能力要求。
。4)讓學生通過單元考試,檢測自己的實際應用能力,從而及時總結經(jīng)驗,找出不足,做好充分的準備
。5)抓好尖子生與后進生的輔導工作,提前展開數(shù)學奧競選拔和數(shù)學基礎輔導。
。6)注意運用現(xiàn)代化教學手段輔助數(shù)學教學;注意運用投影儀、電腦軟件等現(xiàn)代化教學手段輔助教學,提高課堂效率,激發(fā)學生學習興趣。
教學進度安排:
周 次
時
內 容
重 點、難 點
第1周
9.2~9.6
集合的含義與表示、
集合間的基本關系、
會求兩個簡單集合的并集與交集;會求給定子集的補集;
難點:理解概念
第2周
9.7~9.13
集合的基本運算
函數(shù)的概念、
函數(shù)的表示法
能使用Venn圖表達集合的關系及運算,會求一些簡單函數(shù)的定義域和值域;能簡單應用
第3周
9.14~9.20
單調性與最值、
奇偶性、實習、小結
學會運用函數(shù)圖象理解和研究函數(shù)的性質,理解函數(shù)單調性、最大(小)值及幾何意義
第4周
9.21~9.27
指數(shù)與指數(shù)冪的運算、
指數(shù)函數(shù)及其性質
掌握冪的運算;探索并理解指數(shù)函數(shù)的單調性與特殊點。難點:理解概念
第5周
9.28~10.4
。9月月考國慶放假)
第6周
10.5~10.11
對數(shù)與對數(shù)運算、
對數(shù)函數(shù)及其性質
理解對數(shù)的概念及其運算性質,知道用換底公式;探索并了解對數(shù)函數(shù)單調性與特殊點;知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)
第7周
10.12~10.18
冪函數(shù)
從五個具體的冪函數(shù)(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認識冪函數(shù)的一些性質
第8周
10.19~10.25
方程的根與函數(shù)零點,
二分法求方程近似解,
能夠借助計算器用二分法求相應方程的近似解;
第9周
10.26~11.1
幾類不同增長的模型、函數(shù)模型應用舉例
對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義
第10周
11.2~11.8
期中復習及考試
分章歸納復習+1套模擬測試
第11周
11.9~11.15
任意角和弧度制
任意角的三角函數(shù)
了解任意角的概念和弧度制,能進行弧度和度的互化;借助單位圓理解任意角三角函數(shù)的定義
第12周
11.16~11.22
三角函數(shù)的誘導公式
三角函數(shù)的圖像和性質
借助三角函數(shù)線推導出誘導公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性
第13周
11.23~11.29
函數(shù)y=Asin(wx+q)的圖像
借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質,借助計算機畫出圖像觀察A w q對函數(shù)圖像變化的影響
第14周
11.30~12.6
三角函數(shù)模型的簡單應用 單元考試
會用三角函數(shù)解決一些簡單實際問題,體會三角函數(shù)是描述周期變化的重要函數(shù)模型
第15周
12.7~12.13
平面向量的實際背景及基本概念,平面向量的線性運算
掌握向量加、減法的運算,理解其幾何意義掌握數(shù)乘運算及兩個向量共線的含義了解平面向量的基本定理掌握正交分解及坐標表示、會用坐標表示平面向量的加減及數(shù)乘運算
第16周
12.14~12.20
平面向量的基本定理及坐標表示,平面向量的數(shù)量積,
理解用坐標表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義,體會平面向量數(shù)量積與向量投影的關系,掌握數(shù)量積的坐標表達式,會進行平面,向量數(shù)量積的運算、求夾角、及垂直關系
第17周
12.21~12.27
平面向量應用舉例,
小結
用向量方法解決莫些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種幾何問題,物理問題的工具,發(fā)展運算能力和解決實際問題的能力
第18周
12.28~1.3
兩角和與差點正弦、余弦和正切公式
能以兩角差點余弦公式導出兩角和與差點正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內在聯(lián)系
第19周
1.4~1.10
簡單的三角恒等變換
期末復習
高一上學期數(shù)學教學工作計劃 篇3
一、具體目標:
1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,了解概念、結論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學
二、本學期要達到的教學目標
1.雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數(shù)學思想和方法。在基本技能方面能按照一定的程序與步驟進行運算、處理數(shù)據(jù)、能使用計數(shù)器及簡單的推理、畫圖。
2.能力培養(yǎng):
能運用數(shù)學概念、思想方法,辨明數(shù)學關系,形成良好的思維品質;會根據(jù)法則、公式正確的進行運算、處理數(shù)據(jù),并能根據(jù)問題的.情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產(chǎn)和生活的數(shù)學問題,并進行交流,形成數(shù)學的意思;從而通過獨立思考,會從數(shù)學的角度發(fā)現(xiàn)和提出問題,進行探索和研究。
3. 思想教育:
三、進度授課計劃及進度表(略)
高中是人生中的關鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級上學期數(shù)學教學計劃,希望大家喜歡。
高一上學期數(shù)學教學工作計劃 篇4
進一步深化教育教學改革,樹立全新的語文教育觀,構建全新而科學的教學目標體系、數(shù)學網(wǎng)特制定高一上學期數(shù)學函數(shù)的基本性質教學計劃模板。
教材分析
函數(shù)性質是函數(shù)的固有屬性,是認識函數(shù)的重要手段,而函數(shù)性質可以由函數(shù)圖象直觀的反應出來,因此,函數(shù)各個性質的學習要從特殊的、已知的圖象入手,抽象出此類函數(shù)的共同特征,并用數(shù)學語言來定義敘述。基于此,本節(jié)的`概念課教學要注重引導,注重知識的形成過程,習題課教學以具體技巧、方法作為輔助練習。
學情分析
學生對函數(shù)概念重新認識之后,可以結合初中學過的簡單函數(shù)的圖象對函數(shù)性質進行抽象定義。另外,為了方便學生做題及熟悉函數(shù)性質,還需要補充一些函數(shù)圖象的知識,例如平移、二次函數(shù)圖象、含絕對值函數(shù)的圖象、反比例函數(shù)及其變形的函數(shù)圖象?傊,本節(jié)課的教學要從學生認知實際出發(fā),堅持從圖象中來到圖象中去的原則。
教學建議
以圖象作為切入點進行概念課教學,引導學生對概念的形成有一個清晰的認識,尤其是概念中的部分關鍵詞要做深入講解,用函數(shù)圖象指導學生做題。
教學目標
知識與技能
(1)能理解函數(shù)單調性、最值、奇偶性的圖形特征
(2)會用單調性定義證明具體函數(shù)的單調性;會求函數(shù)的最值;會用奇偶性定義判斷函數(shù)奇偶性
(3)單調性與奇偶性的綜合題
(4)培養(yǎng)學生觀察、歸納、推理的抽象思維能力
過程與方法
(1)從觀察具體函數(shù)的圖像特征入手,結合相應問題引導學生一步步轉化到用數(shù)學語言形式化的建立相關概念
(2)滲透數(shù)形結合的數(shù)學思想進行習題課教學
情感、態(tài)度與價值觀
(1)使學生學會認識事物的一般規(guī)律:從特殊到一般,抽象歸納
(2)培養(yǎng)學生嚴密的邏輯思維能力,進一步規(guī)范學生用數(shù)學語言、數(shù)學符號進行表達
課時安排
(1)概念課:單調性2課時,最值1課時,奇偶性1課時
(2)習題課:5課時
高一上學期數(shù)學教學工作計劃 篇5
(一)教學目標
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關的術語和符號,并會用它們正確進行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質與內涵,增強學生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.
3.情感、態(tài)度與價值觀
通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學生運用數(shù)學知識和數(shù)學思想認識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學的應用價值.
(二)教學重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認識符號之間的區(qū)別與聯(lián)系
(三)教學方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結合.
(四)教學過程
教學環(huán)節(jié) 教學內容 師生互動 設計意圖
提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進行類似“加法”運算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數(shù)},
B = {x | x是無理數(shù)},
C = {x | x是實數(shù)}.
師:兩數(shù)存在大小關系,兩集合存在包含、相等關系;實數(shù)能進行加減運算,探究集合是否有相應運算.
生:集合A與B的元素合并構成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,
導入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或屬于集合B的元素組成的,稱C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請同學們將上述兩組實例的共同規(guī)律用數(shù)學語言表達出來.
學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應用舉例 例1 設A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數(shù)軸,運用數(shù)形結合思想求解.
生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時注意集合元素的互異性. 學生嘗試求解,老師適時適當指導,評析.
固化概念
提升能力
探究性質 ①A∪A = A, ②A∪ = A,
、跘∪B = B∪A,
、 ∪B, ∪B.
老師要求學生對性質進行合理解釋. 培養(yǎng)學生數(shù)學思維能力.
形成概念 自學提要:
、儆蓛杉系乃性睾喜⒖傻脙杉系牟⒓,而由兩集合的公共元素組成的集合又會是兩集合的`一種怎樣的運算?
②交集運算具有的運算性質呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義. 并總結交集的性質.
生:①A∩A = A;
②A∩ = ;
、跘∩B = B∩A;
、蹵∩ ,A∩ .
師:適當闡述上述性質.
自學輔導,合作交流,探究交集運算. 培養(yǎng)學生的自學能力,為終身發(fā)展培養(yǎng)基本素質.
應用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學開運動會,設
A = {x | x是新華中學高一年級參加百米賽跑的同學},
B = {x | x是新華中學高一年級參加跳高比賽的同學},求A∩B.
例2 設平面內直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系. 學生上臺板演,老師點評、總結.
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合. 所以,A∩B = {x | x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.
例2 解:平面內直線l1,l2可能有三種位置關系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學生的動手實踐能力.
歸納總結 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質:①A∩A = A,A∪A = A,
、贏∩ = ,A∪ = A,
、跘∩B = B∩A,A∪B = B∪A. 學生合作交流:回顧→反思→總理→小結
老師點評、闡述 歸納知識、構建知識網(wǎng)絡
課后作業(yè) 1.1第三課時 習案 學生獨立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當a = –3時,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范圍;
(2)若A∪B = {x | x<1},求a的取值范圍.
【解析】(1)如下圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = – 1左側.
∴a≤–1.
(2)如右圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = –1和x = 1之間.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數(shù)時,A∩B 與A∩C = 同時成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
當a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設A∩C = 相矛盾,故不適合.
當a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數(shù)a = –2.
例4 設集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
當x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.
當x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.
當x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.
綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
【高一上學期數(shù)學教學工作計劃】相關文章:
高一上學期數(shù)學教學工作計劃01-19
高一上學期數(shù)學教學計劃11-30
高一上學期數(shù)學教學工作計劃7篇10-06
高一上學期數(shù)學教學工作計劃4篇01-19
高一上學期數(shù)學教學計劃8篇12-23
高一上學期數(shù)學教學計劃10篇12-01