- 相關(guān)推薦
兩種優(yōu)化開關(guān)模式在高頻SVPWM逆變電源中的應(yīng)用
摘要:針對(duì)數(shù)字化高頻空間矢量脈寬調(diào)制(SVPWM)逆變電源的特殊要求,對(duì)SVPWM算法進(jìn)行了改進(jìn),并提出兩種適用于高頻SVPWM算法的優(yōu)化開關(guān)模式。最后分別采用純軟件方法和硬件結(jié)合DSP內(nèi)部空間矢量PWM集成硬件的混合方法,來實(shí)現(xiàn)兩種優(yōu)化開關(guān)模式在一高頻SVPWM逆變電源樣機(jī)中的應(yīng)用。該樣機(jī)采用TMS320LF2407A構(gòu)成的最小控制系統(tǒng),可輸出0~1000Hz連續(xù)可調(diào)的三相交流電。關(guān)鍵詞:高頻;逆變器;電壓空間矢量;數(shù)字信號(hào)處理器;開關(guān)損耗
引言
現(xiàn)代化工業(yè)生產(chǎn)中高速電機(jī)和超高速電機(jī)被廣泛應(yīng)用于諸如高速機(jī)床,渦輪分子泵,離心機(jī),壓縮機(jī),飛輪貯能以及小型發(fā)電設(shè)備等工業(yè)領(lǐng)域。為使一臺(tái)電機(jī)的轉(zhuǎn)速達(dá)到60000r/min,逆變器必須提供至少1000Hz基頻的交流電。
目前,國內(nèi)在高頻逆變器領(lǐng)域的研究中,主要還是采用正弦脈寬調(diào)制(SPWM)技術(shù)[1]。近年來出現(xiàn)了在正弦波中注入零序信號(hào)的非正弦脈寬調(diào)制技術(shù)。電壓空間矢量脈寬調(diào)制技術(shù)(SVPWM)即是在正弦波中注入適當(dāng)?shù)娜沃C波的非正弦調(diào)制技術(shù),它的線性調(diào)制度較SPWM高15%,而且輸出諧波小。由于空間矢量控制實(shí)時(shí)算法含多個(gè)乘法運(yùn)算和矩陣運(yùn)算,而使運(yùn)算量大,所以,對(duì)CPU的運(yùn)算速度和數(shù)據(jù)處理技術(shù)要求就更高。為實(shí)現(xiàn)SVPWM的在線運(yùn)算,有人采用雙CPU,雙口RAM并行工作的原理,這樣雖然高速性很好,但用兩片CPU明顯提高了設(shè)計(jì)難度和成本;而且在高頻數(shù)字化控制領(lǐng)域,上述結(jié)構(gòu)中CPU的數(shù)據(jù)交換和處理速度也將無法滿足要求。本文針對(duì)全數(shù)字化高頻SVPWM逆變電源對(duì)高速性、實(shí)時(shí)性、可靠性的要求,首先,改進(jìn)了SVPWM算法,然后,在總結(jié)SVPWM開關(guān)模式后,提出了兩種適合于高頻SVPWM算法的優(yōu)化開關(guān)模式,并在由TI公司高性能數(shù)字信號(hào)處理器TMS320LF2407A組成的頻逆變數(shù)字控制系統(tǒng)中給予實(shí)現(xiàn),同時(shí)進(jìn)行了對(duì)比研究。
1SVPWM的算法改進(jìn)及兩種優(yōu)化開關(guān)模式
對(duì)于三相電壓源型逆變器的6個(gè)開關(guān)管,用“1”和“0”分別代表上下橋臂的開、關(guān)狀態(tài),則開關(guān)信號(hào)共有8種組合,U1(100),U2(110),U3(010),U4(011),U5(001),U6(101),以及U0(000)和U7(111)。這8種組合,在復(fù)平面上,分別產(chǎn)生8種電壓向量,如圖1所示。其中U0及U7為零向量,6個(gè)非零向量構(gòu)成了圖中的六邊形,并將六邊形分為6個(gè)扇區(qū)。圖中所示六邊形內(nèi)切圓和略小的同心圓分別表示SVPWM和SPWM的直流電壓利用率?臻g電壓矢量法即是通過選取同一扇區(qū)中相鄰兩個(gè)非零矢量和適當(dāng)?shù)牧闶噶縼砗铣梢粋(gè)等效的空間旋轉(zhuǎn)電壓矢量Uref(該電壓向量在空間上理想軌跡是一個(gè)圓),調(diào)控Uref的頻率、幅值和相位,即可實(shí)現(xiàn)逆變器輸出電壓頻率、幅值和相位的控制。設(shè)T1及T2分別為同一扇區(qū)兩相鄰非零向量UX及UX±1,在同一個(gè)采樣周期中對(duì)應(yīng)的作用時(shí)間,T0為零向量作用時(shí)間,由SVPWM的原理可得式(1)。
圖4兩種不對(duì)稱的優(yōu)化開關(guān)模式
TPWMUref=T1UX+T2UX±1+T0(UoorU7)(1)
對(duì)式(1),文獻(xiàn)[2]給出T1,T2和T0的解,如式(2)。
式中:0?α?π/3,為Uref與A(或D)軸的夾角;
T1+T2+T0=T=TPWM,為控制周期;
m為調(diào)制度。
這種解法在Uref的幅值和相位已知條件下,可以精簡控制算法,但在電機(jī)控制算法中,比如常用的轉(zhuǎn)子磁場定向控制或氣隙磁場定向控制中,電壓的給定量[Ud,Uq]T通常是由電流內(nèi)環(huán)id及iq通過電流調(diào)節(jié)器,或是文獻(xiàn)[3]中所述,直接對(duì)id及iq進(jìn)行定子電壓解耦得到,而此時(shí)再用以上求解算法需先把給定量轉(zhuǎn)換為Uref的向量表達(dá)式,這將會(huì)加大指令開銷,不利于快速實(shí)時(shí)控制,所以,有必要對(duì)式(1)的求解方法進(jìn)行改進(jìn)。
設(shè)D及Q為固定于定子的坐標(biāo)軸系,且D軸與電機(jī)A軸重合,Q軸超前D軸90°。通過式(3)可以進(jìn)行磁勢不變的坐標(biāo)變換,得到對(duì)應(yīng)于U1~U66個(gè)非零向量在D及Q坐標(biāo)軸系上的表示,即U1對(duì)應(yīng)S1(2/3,0),U2對(duì)應(yīng)S2(1/3,1/)等
,如圖1中所示。
由式(1)及式(3)可以得到一種求T1,T2和T0的新方程組式(4)。
對(duì)于式(4),在軟件中的求解是根據(jù)[SX,SX±1]所在的扇區(qū)數(shù)S(S=0,1,2,3,4,5)作一個(gè)關(guān)于[SX,SX±1]-1的長度為24(每扇區(qū)4個(gè))的表格,存入DSP的程序存儲(chǔ)器,在程序運(yùn)行中進(jìn)行查表計(jì)算,這樣可以方便快速地進(jìn)行矩陣運(yùn)算,而且運(yùn)算量小,速度快,適合于高頻逆變電源的控制要求。此外,無論電機(jī)采用經(jīng)典的V/F控制還是采用先進(jìn)的轉(zhuǎn)子磁場定向控制等,都可采用此改進(jìn)算法。
由式(4)可知,只要各向量的開關(guān)時(shí)間滿足T1,T2和T0的關(guān)系,即可實(shí)現(xiàn)電壓空間矢量脈寬調(diào)制技術(shù),對(duì)于開關(guān)狀態(tài)的先后順序及起點(diǎn)時(shí)間并無限制,這就為減少開關(guān)動(dòng)作次數(shù)和減少諧波的優(yōu)化控制提供了可能。圖2列出了所有可能的空間矢量開關(guān)狀態(tài)變化圖,每個(gè)箭頭表示一個(gè)開關(guān)動(dòng)作。例如,從開關(guān)狀態(tài)S0變到S1,至少需要1次開關(guān)動(dòng)作,而從S1到S4則至少需要3次的開關(guān)動(dòng)作。采用適當(dāng)?shù)拈_關(guān)模式可以減少每個(gè)采樣周期內(nèi)的開關(guān)動(dòng)作次數(shù),降低開關(guān)損耗,減小開關(guān)管的溫升,從而保證高頻逆變電源的安全運(yùn)行。經(jīng)過對(duì)比研究,可得出結(jié)論:優(yōu)化的空間矢量開關(guān)模式在任意兩相鄰空間矢量轉(zhuǎn)換中只有一次開關(guān)動(dòng)作。圖3及圖4分別給出了扇區(qū)1中對(duì)稱和不對(duì)稱的SVPWM優(yōu)化開關(guān)模式。它們的共同點(diǎn)是:在模式1的一個(gè)采樣周期中同時(shí)用到了S0和S7兩個(gè)零向量;而模式2只用到一個(gè)零向量,即S0或S7。圖3中的模式1在一個(gè)采樣周期中,3個(gè)橋臂有6次開關(guān)動(dòng)作;該開關(guān)序列在加入死區(qū)后,仍是對(duì)稱的。模式2在一個(gè)采樣周期中,3個(gè)橋臂只有4次開關(guān)動(dòng)作,開關(guān)損耗只有第一種的67%;但該開關(guān)序列在加入死區(qū)后是不對(duì)稱的,會(huì)增加諧波分量。同理分析,圖4中的兩種模式較之圖3中的兩種模式,開關(guān)次數(shù)均減少了一半,但由于它們是不對(duì)稱的脈沖模式,在輸出電流中會(huì)造成較大的諧波含量,從而增大脈動(dòng)轉(zhuǎn)矩,使電機(jī)在高速運(yùn)行時(shí)劇烈振動(dòng),會(huì)引起諸多不安全因素。所以,在高頻SVPWM逆變電源中,圖3所示的兩種優(yōu)化開關(guān)模式是其首選開關(guān)模式。以下將對(duì)之進(jìn)行實(shí)驗(yàn)分析。
2高頻SVPWM逆變器的設(shè)計(jì)
2.1硬件設(shè)計(jì)
高頻逆變電源要求控制器能夠在最短的時(shí)間內(nèi),完成全部控制運(yùn)算。對(duì)各種單片機(jī)和DSP的性能進(jìn)行比較篩選后,本文設(shè)計(jì)的逆變器數(shù)控系統(tǒng)采用TI公司DSP24x系列的最新成員TMS320LF2407A。該芯片具有同類DSP中最優(yōu)越的一些性能,只需一片TMS320LF2407A即可實(shí)現(xiàn)高頻SVPWM逆變電源數(shù)字控制系統(tǒng)的設(shè)計(jì)。在TMS320LF2407A時(shí)鐘輸入引腳上接20MHz晶振,后經(jīng)內(nèi)部鎖相環(huán)倍頻后得40MHz時(shí)鐘頻率,這樣指令執(zhí)行周期可縮為25ns,較C240DSP速度整整提高了1倍。另外,TMS320LF2407A還具有外部集成度更高,程序存儲(chǔ)器更大,A/D轉(zhuǎn)換速度更快的特點(diǎn),且其獨(dú)特的空間矢量PWM波形產(chǎn)生電路,更為完成高頻SVPWM算法提供了方便,同時(shí)可使數(shù)字控制系統(tǒng)最小化。
對(duì)于輸出頻率為1000Hz的逆變器,開關(guān)頻率至少要在20kHz以上,但是開關(guān)頻率過高又會(huì)給DSP的運(yùn)算及A/D轉(zhuǎn)換帶來壓力。另外,死區(qū)時(shí)間在理想脈寬中所占的比例過大,對(duì)調(diào)制線性度也會(huì)造成不良影響,經(jīng)權(quán)衡,本系統(tǒng)控制周期取為23.8μs,這樣采用優(yōu)化模式1時(shí)的開關(guān)頻率為6的倍數(shù)42kHz,而采用優(yōu)化模式2,開關(guān)頻率僅為28kHz。普通的IGBT已經(jīng)無法承受這么高的開關(guān)頻率,所以,逆變器主電路采用分立MOSFET(IRFPC60)組成的三相橋式電路結(jié)構(gòu)。為實(shí)現(xiàn)高頻信號(hào)驅(qū)動(dòng),和最大地簡化電路,硬件設(shè)計(jì)中除了采用貼片式DSP外,還采用IR公司的高壓浮動(dòng)MOS柵極驅(qū)動(dòng)芯片IR2130。
圖5為逆變器系統(tǒng)示意圖。實(shí)際工作時(shí),DSP在每個(gè)控制周期中經(jīng)A/D采樣頻率給定信號(hào)后,根據(jù)V/F控制原理和改進(jìn)的SVPWM算法,選擇優(yōu)化開關(guān)模式,來產(chǎn)生6路PWM信號(hào),經(jīng)高速光耦隔離后送IR2130驅(qū)動(dòng)6個(gè)MOS管來帶動(dòng)一個(gè)三相感性負(fù)載工作。
IR2130為單電源+15V工作;可直接驅(qū)動(dòng)600V高壓系統(tǒng);自帶硬件死區(qū)和欠壓鎖定功能與過流保護(hù)功能;通過外圍自舉電路,可同時(shí)驅(qū)動(dòng)3個(gè)橋臂的6個(gè)MOS管。注意到采用圖3所示優(yōu)化開關(guān)模式2時(shí),生成的PWM波中會(huì)出現(xiàn)一段長時(shí)間導(dǎo)通或關(guān)斷的脈沖信號(hào),這就要求IR2130的自舉電容能夠提供足夠大的驅(qū)動(dòng)電荷,否則,將無法驅(qū)動(dòng)高端MOS管。自舉電容所需的最小電容值,可由式(5)計(jì)算。
式中:Qg為高端器件柵極電荷;
f為工作頻率;
Iqbs(max)為高端驅(qū)動(dòng)電路最大靜態(tài)電流;
Icbs(leak)為自舉電容漏電流;
Qls為每個(gè)周期內(nèi),電平轉(zhuǎn)換電路中的電荷要求;
Vcc為芯片供電電壓;
Vf為自舉二極管正向壓降;
Vls為低端器件壓降或高端負(fù)載壓降。
圖7控制系統(tǒng)仿真模型
經(jīng)計(jì)算并取安全余量后,采用4.7μF的CBB電容作為自舉電容。
電路設(shè)計(jì)中考慮高頻逆變器的安全運(yùn)行,還通過DSP的信號(hào)采集,進(jìn)行過、欠壓,過流,過溫等保護(hù)電路的設(shè)計(jì)。
硬件系統(tǒng)采用TOPSwitch反激式電源,分別為控制電路,驅(qū)動(dòng)電路,保護(hù)電路提供+5V,±15V等5路相互隔離的輔助電源。
2.2軟件設(shè)計(jì)
在軟件編寫中,根據(jù)高頻逆變電源的控制要求,全部采用編譯效率最高的匯編語言,這樣可更有效地利用TMS320LF2407A的高速數(shù)據(jù)處理能力。同時(shí),軟件中盡量使用240x系列DSP的復(fù)合指令,如MPYA,SPAC,LTS,DMOV等,以最大程度地精簡程序,減小DSP運(yùn)算量。以下將結(jié)合改進(jìn)的SVPWM算法,分別對(duì)兩種開關(guān)優(yōu)化模式進(jìn)行編程。
2.2.1優(yōu)化模式1的純軟件波形生成法
該法從開關(guān)時(shí)間參數(shù)的計(jì)算到輸出向量的選取,全部采用軟件實(shí)現(xiàn)。軟件由三部分組成,即主程序,定時(shí)器周期中斷子程序和保護(hù)中斷子程序。主程序負(fù)責(zé)各種初始化工作;保護(hù)子程序完成故障監(jiān)控和故障處理功能。程序主體為定時(shí)器周期中斷子程序,負(fù)責(zé)完成SVPWM的改進(jìn)算法及模式1的PWM波輸出。程序流程圖如圖6所示。
2.2.2優(yōu)化模式2的混合波形生成法
為實(shí)現(xiàn)優(yōu)化模式2的開關(guān)動(dòng)作,可利用TMS320LF2407A內(nèi)部極大簡化的電壓空間矢量PWM波形產(chǎn)生硬件電路,即軟件結(jié)合集成硬件的混合波形生成法。在軟件中只要對(duì)相應(yīng)的控制寄存器進(jìn)行設(shè)置即可。必須添加的步驟如下:設(shè)置COMCONA寄存器使DSP工作于空間矢量PWM模式;查表并將每個(gè)控制周期中初始向量(UX)的開啟方式寫入到ACTRA.14~12位中,如U1的寫入值為(100);將“1”(“1”表示參考向量Uref為順時(shí)針旋轉(zhuǎn),“0”表示Uref為逆時(shí)針旋轉(zhuǎn))寫入ACTRA.15中;最后將T1/2寫入到CMPR1寄存器,將(T1+T2)/2寫入到CMPR2寄存器。這樣,空間矢量PWM波形產(chǎn)生硬件電路將根據(jù)初始向量和參考向量的旋轉(zhuǎn)方向,自動(dòng)選擇模式2所示的優(yōu)化開關(guān)組合。
3實(shí)驗(yàn)結(jié)果分析
為驗(yàn)證本文提出的SVPWM改進(jìn)算法和兩種優(yōu)化開關(guān)模式的實(shí)際效果,首先進(jìn)行了MATLAB仿真驗(yàn)證?刂葡到y(tǒng)仿真模型如圖7所示。由于數(shù)字化SVPWM逆變器模型實(shí)為一個(gè)離散控制系統(tǒng),所以采用MATLAB中的S函數(shù)編程,來模擬SVPWM離散算法,只要改變S函數(shù)輸出向量的時(shí)間和順序就可分別實(shí)現(xiàn)兩種優(yōu)化開關(guān)模式的控制仿真,圖7中cqc模塊為S函數(shù)模塊。
圖8及圖9分別為感性負(fù)載下兩種優(yōu)化模式在1000Hz輸出時(shí)的仿真波形。其中uan及ubn為經(jīng)過一階RC濾波后的相電壓波形,uab為RC濾波后的線電壓波形,is-a為對(duì)應(yīng)電流波形。由仿真波形可見,采用開關(guān)優(yōu)化模式1時(shí),相電壓為典型的馬鞍波形,其對(duì)應(yīng)的線電壓、線電流諧波含量很小,不過在一個(gè)采樣周期中開關(guān)次數(shù)較多。而采用優(yōu)化模式2時(shí),相電壓中出現(xiàn)了微小畸變,使得輸出線電流諧波含量增加,但是它的開關(guān)損耗僅為前面的67%,這將有利于高頻逆變器向更高的控制頻率發(fā)展。可見二者各有優(yōu)缺點(diǎn)。
圖10及圖11為在TMS320LF2407A最小控制系統(tǒng)下的實(shí)驗(yàn)波形,可見與仿真波形相似。實(shí)驗(yàn)樣機(jī)設(shè)計(jì)輸出功率為2000V·A,輸入是220V,50Hz單相交流電,輸出為可在0到1000Hz連續(xù)變化的三相交流電。由于IR2130自帶2μs的死區(qū),使得模式2的PWM波形不再具有對(duì)稱性,這導(dǎo)致了實(shí)驗(yàn)中輸出相電壓馬鞍波形畸變得更大些。但從線電壓,線電流上看,兩種方法所輸出的波形均具有很高的正弦性。
另外,經(jīng)過計(jì)算可知,改進(jìn)SVPWM算法后,采用兩種開關(guān)優(yōu)化模式的周期中斷子程序,TMS320LF2407A均可在7.2μs內(nèi)執(zhí)行完畢,而控制周期為23.8μs,這就為DSP完成其他更復(fù)雜的電機(jī)控制程序預(yù)留了足夠的程序處理時(shí)間。
4結(jié)語
實(shí)驗(yàn)證明改進(jìn)SVPWM算法后,本文所設(shè)計(jì)的基于TMS320LF2407A的高頻SVPWM逆變電源樣機(jī),在采用兩種優(yōu)化開關(guān)模式后,不但具有直流電壓利用率高,軟件開發(fā)周期短等優(yōu)點(diǎn),而且還可達(dá)到提高輸出波形質(zhì)量和減少開關(guān)損耗的效果,具有一定的實(shí)用價(jià)值。
【兩種優(yōu)化開關(guān)模式在高頻SVPWM逆變電源中的應(yīng)用】相關(guān)文章:
飽和電感及其在開關(guān)電源中的應(yīng)用08-06
“三三六”教學(xué)模式在初中教學(xué)中的創(chuàng)新應(yīng)用08-15
學(xué)案教學(xué)模式在高中地理中的應(yīng)用07-30
小組學(xué)習(xí)模式在初中數(shù)學(xué)教學(xué)中的應(yīng)用08-01
自主學(xué)習(xí)模式在初中物理教學(xué)中的應(yīng)用08-01
西方發(fā)達(dá)國家零售企業(yè)中電子商務(wù)的兩種應(yīng)用模式的探討08-05
高頻開關(guān)電源的并聯(lián)均流系統(tǒng)08-06