《最大公因數(shù)》教學(xué)反思15篇
身為一名人民老師,課堂教學(xué)是重要的工作之一,寫(xiě)教學(xué)反思能總結(jié)教學(xué)過(guò)程中的很多講課技巧,如何把教學(xué)反思做到重點(diǎn)突出呢?以下是小編收集整理的《最大公因數(shù)》教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
《最大公因數(shù)》教學(xué)反思1
一.教學(xué)設(shè)計(jì)學(xué)科名稱:
北師大版數(shù)學(xué)五年級(jí)上冊(cè)《找最大公因數(shù)》
二.所在班級(jí)情況,學(xué)生特點(diǎn)分析:
我校地處城郊,所帶班級(jí)學(xué)生共25人,學(xué)生的思維比較活躍,比較善于提出數(shù)學(xué)問(wèn)題,能在小組合作學(xué)習(xí)中主動(dòng)探究知識(shí)。本冊(cè)一單元,學(xué)生已經(jīng)理解了因數(shù)和倍數(shù)的意義,能用乘法算式、集合等方式列舉出一個(gè)數(shù)的因數(shù)。因此用列舉法找最大公因數(shù)沒(méi)有困難。而利用因數(shù)關(guān)系、互質(zhì)數(shù)關(guān)系找還有一定的難度。因?yàn)閷W(xué)生不易發(fā)現(xiàn)這兩個(gè)數(shù)具有這些關(guān)系。
三.教學(xué)內(nèi)容分析:
教材直接呈現(xiàn)了找公因數(shù)的一般方法:先用想乘法算式的方式分別找出12和18 的因數(shù),再找出公因數(shù)和最大公因數(shù)。在此基礎(chǔ)上,引出公因數(shù)與最大公因數(shù)的概念。教材用集合的方式呈現(xiàn)探索的過(guò)程。在練習(xí)1、2中引出了用因數(shù)關(guān)系、互質(zhì)數(shù)關(guān)系找最大公因數(shù),教師要引導(dǎo)學(xué)生發(fā)現(xiàn)這個(gè)方法并會(huì)運(yùn)用。教師要注意讓學(xué)生經(jīng)歷知識(shí)的形成過(guò)程,要重視引發(fā)學(xué)生的數(shù)學(xué)思考。
四.教學(xué)目標(biāo):
知識(shí)與技能:探索找兩個(gè)數(shù)的公因數(shù)的方法,會(huì)用列舉法找出兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)。
過(guò)程與方法:經(jīng)歷找兩個(gè)數(shù)的公因數(shù)的過(guò)程,理解公因數(shù)和最大公因數(shù)的意義。
情感、態(tài)度與價(jià)值:培養(yǎng)學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)的興趣。通過(guò)觀察、分析、歸納等數(shù)學(xué)活動(dòng),體驗(yàn)數(shù)學(xué)問(wèn)題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考的條理性。
五.教學(xué)難點(diǎn)分析:
教學(xué)重點(diǎn):探索找兩個(gè)數(shù)的公因數(shù)的方法,會(huì)用列舉法找出兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)。
教學(xué)難點(diǎn):經(jīng)歷找兩個(gè)數(shù)的公因數(shù)的過(guò)程,理解公因數(shù)和最大公因數(shù)的意義。
六.教學(xué)課時(shí):
一課時(shí)
七.教學(xué)過(guò)程:
(一)復(fù)習(xí)
師:出示3×4=12,( )是12的因數(shù)。
生:3和4是12的因數(shù)。
(二)探究新知
1、認(rèn)識(shí)公因數(shù)和最大公因數(shù)
。1)師:除了3和4是12的因數(shù),12的因數(shù)還有哪些?
生獨(dú)立完成后匯報(bào),板書(shū) 12的因數(shù)有:1、2、3、4、6、12。
師:要找出一個(gè)數(shù)的全部因數(shù),需要注意什么?
生:要一對(duì)一對(duì)有序地寫(xiě),這樣才不會(huì)遺漏。
師:照這樣的方法,請(qǐng)你寫(xiě)出18的全部因數(shù)。
生獨(dú)立寫(xiě)后匯報(bào):18的因數(shù)有:1、2、3、6、9、18
。ù藭r(shí)出示集合圖)
師:在這兩個(gè)圈里,應(yīng)該填上什么數(shù)?請(qǐng)大家完成正在書(shū)45頁(yè)上。
生做后匯報(bào)師板書(shū)于圈中。
。2)師:請(qǐng)大家找一找在12和18的因數(shù)中,有沒(méi)有相同的因數(shù),相同的因數(shù)有哪幾個(gè)。
生找出12和18相同的因數(shù)有:1、2、3、6
師:像這樣,既是12的因數(shù),又是18的因數(shù),我們就說(shuō)這些數(shù)都是12和18的公因數(shù)。
師:這里最大的公因數(shù)是幾?
生:最大是6。
師:6就是12和18的最大公因數(shù)。這就是我們這節(jié)課學(xué)習(xí)的內(nèi)容——找最大公因數(shù)。
板書(shū)課題:找最大公因數(shù)
。ù藭r(shí)出示集合圖)
師:中間這一區(qū)域有什么特征?應(yīng)該填什么數(shù)字?獨(dú)立思考后小組討論
。ㄉ纸M討論)
匯報(bào):中間區(qū)域是12的因數(shù)和18的因數(shù)的交叉區(qū)域,所填的數(shù)應(yīng)該既是12的因數(shù)又是18的因數(shù),也就是12和18的公因數(shù)填在這里。
師:請(qǐng)大家完成這個(gè)題。(生做后訂正)
2、探索找最大公因數(shù)的方法
(1)列舉法
剛才我們找最大公因數(shù)的`方法叫做列舉法。(板書(shū):列舉法)
請(qǐng)大家用這種方法找出下面每組數(shù)的最大公因數(shù)。 9和15
(2)利用因數(shù)關(guān)系找
師:請(qǐng)大家翻到書(shū)第45頁(yè),獨(dú)立完成第一題。
生匯報(bào):
8的因數(shù): 1、2、4、8
16的因數(shù): 1、2、4、8、16
8和16的公因數(shù): 1、2、4、8
8和16的最大公因數(shù)是 8
師引導(dǎo)學(xué)生觀察最后一句,想想8和16之間是什么關(guān)系,與他們的最大公因數(shù)有什么關(guān)系?
生獨(dú)立思考后分組討論。
生匯報(bào):8是16的因數(shù),所以8和16的最大公因數(shù)就是8。
師引導(dǎo)生歸納并板書(shū):如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個(gè)數(shù)的最大公因數(shù)。(板書(shū):用因數(shù)關(guān)系找)
練習(xí):找出下面每組數(shù)的最大公因數(shù)。 4和12 28和7 54和9
(3)利用互質(zhì)數(shù)關(guān)系找
師:請(qǐng)大家獨(dú)立完成第二題。
生匯報(bào):
5的因數(shù): 1、5
7的因數(shù): 1、7
5和7的最大公因數(shù)是 1
師引導(dǎo)學(xué)生觀察最后一句5和7之間是什么關(guān)系,與他們的最大公因數(shù)有什么關(guān)系?
生獨(dú)立思考后分組討論。
生匯報(bào):5和7都是質(zhì)數(shù),所以5和7的最大公因數(shù)就是1。
師:像這樣只有公因數(shù)1的兩個(gè)數(shù)叫互質(zhì)數(shù)。如果兩個(gè)數(shù)是互質(zhì)數(shù),那么它們的公因數(shù)只有1。(板書(shū):用互質(zhì)數(shù)關(guān)系找)
練習(xí):找出下面每組數(shù)的最大公因數(shù)。 4和5 11和7 8和9
(4)整理找最大公因數(shù)的方法
師:今天我們學(xué)習(xí)了用哪些方法找最大公因數(shù)?
生:列舉法,用因數(shù)關(guān)系找,用互質(zhì)數(shù)關(guān)系找。
師:我們?cè)谧鲱}時(shí),要觀察給出的數(shù)字的特征選用不同的方法。
(三)練習(xí)
書(shū)46頁(yè)3、4、5題。生獨(dú)立完成,師巡視指導(dǎo)。
(四)全課小結(jié)
這節(jié)課你有什么收獲?
八.課堂練習(xí):
在括號(hào)里填寫(xiě)每組數(shù)的最大公因數(shù)
6和18( ) 14和21( ) 15和25( )
12和8( ) 16和24( ) 18和27( )
9和10( ) 17和18( ) 24和25( )
九.作業(yè)安排:
完成練習(xí)冊(cè)上的習(xí)題
十. 附錄(教學(xué)資料及資源):
1、教師用書(shū):北師大版五年級(jí)數(shù)學(xué)上冊(cè)
2、數(shù)字卡片
十一. 自我問(wèn)答:
短除法求最大公因數(shù)在書(shū)中暫時(shí)沒(méi)有出現(xiàn),只在求最小公倍數(shù)后以“你知道嗎”的形式出現(xiàn),但這種方法我覺(jué)得很實(shí)用,不知教材的意圖是什么?究竟怎樣處理?
教學(xué)反思:
本節(jié)課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進(jìn)行教學(xué),通過(guò)解決故事中的問(wèn)題,讓學(xué)生逐層深入地懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,在填寫(xiě)公因數(shù)時(shí),學(xué)生往往容易出現(xiàn)重復(fù)的現(xiàn)象。
在教學(xué)過(guò)程中,我鼓勵(lì)孩子歸納總結(jié)找最大公因數(shù)特征和方法。先看兩個(gè)數(shù)是不是倍數(shù)關(guān)系,如果是倍數(shù)關(guān)系,那么小的那個(gè)數(shù)就是最大公因數(shù)。如果兩個(gè)數(shù)是互質(zhì)數(shù)或者是相鄰的兩個(gè)自然數(shù),那么這兩個(gè)數(shù)的最大公因數(shù)就是1。
找最大公因數(shù)時(shí),我向?qū)W生介紹了短除法,當(dāng)數(shù)字比較大時(shí),用短除法比較簡(jiǎn)單。
《最大公因數(shù)》教學(xué)反思2
公因數(shù)與最大公因數(shù)這一課教材設(shè)計(jì)了一個(gè)用邊長(zhǎng)6厘米和4厘米正方形鋪長(zhǎng)18厘米,寬12厘米長(zhǎng)方形的問(wèn)題,讓學(xué)生在解決實(shí)際問(wèn)題中探索公因數(shù)的認(rèn)識(shí)。因此,在教學(xué)中要重視通過(guò)嘗試解決問(wèn)題讓學(xué)生聯(lián)系已有的知蝕引入公因數(shù)的認(rèn)識(shí)。使學(xué)生初步體會(huì)學(xué)習(xí)公因數(shù)在解決實(shí)際問(wèn)題中有著重要作用。
這節(jié)課的上課情況感覺(jué)較好,課堂比較流暢,重難點(diǎn)也都注意到了,但是通過(guò)學(xué)生作業(yè)反饋情況來(lái)看,部分學(xué)生在尋找公因數(shù)和最大公因數(shù)時(shí),容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫(xiě)公因數(shù)的示意圖時(shí),部分學(xué)生出現(xiàn)中間寫(xiě)了公因數(shù)后,兩邊還是將所有因數(shù)都寫(xiě)了進(jìn)去,這一情況在預(yù)設(shè)時(shí)我雖然想到了學(xué)生會(huì)錯(cuò),也在課堂上進(jìn)行了說(shuō)明,但是少數(shù)學(xué)生還是出現(xiàn)了錯(cuò)誤。
用例舉的策略找出所有公因數(shù)的教學(xué)中,教材上有種層次不同學(xué)生可以掌握的.方法參考,在這里的教學(xué)中我只是參照教材注重了這兩種方法的講解,這里教材的應(yīng)是要求學(xué)生有序地列舉就行了,不同水平的學(xué)生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學(xué)時(shí),有些學(xué)生運(yùn)用了一些比較特的方法尋找公因數(shù),教師應(yīng)該給予肯定,說(shuō)明只要有序地列舉出因數(shù)來(lái)尋找公因數(shù)就可以了。但是,對(duì)于學(xué)生出現(xiàn)的各種方法可以讓學(xué)生進(jìn)行對(duì)比,體會(huì)哪種方法更好,更適合自己,進(jìn)而對(duì)自己的算法進(jìn)行優(yōu)化。
《最大公因數(shù)》教學(xué)反思3
一、,找一個(gè)數(shù)的因數(shù)
要成對(duì)找,這在教學(xué)因數(shù)時(shí)就是一個(gè)難點(diǎn)。
二、教學(xué)例題3時(shí),應(yīng)先組織學(xué)生大膽猜測(cè):“哪種紙片能正好鋪滿這個(gè)長(zhǎng)方形?”再讓學(xué)生實(shí)踐驗(yàn)證。
猜測(cè)、驗(yàn)證的過(guò)程是學(xué)生進(jìn)行探究活動(dòng)的必要途徑。在實(shí)踐驗(yàn)證的'過(guò)程中,我緊扣用邊長(zhǎng)( )厘米的正方形鋪長(zhǎng)方形,能鋪( )層,每層鋪( )個(gè)。并與其中有兩種正方形不能正好鋪滿長(zhǎng)方形的情況作比較,組織學(xué)生交流:“怎樣的正方形才能正好鋪滿這個(gè)長(zhǎng)方形?”由于前面鋪墊充分,學(xué)生很順利地得出了結(jié)論。例題3的教學(xué), “哪種哪種紙片能正好鋪滿這個(gè)長(zhǎng)方形?”“還有哪些邊長(zhǎng)整厘米數(shù)的正方形能正好鋪滿這個(gè)長(zhǎng)方形?”“任何兩個(gè)數(shù)的公因數(shù)個(gè)數(shù)都是有限的嗎?”將學(xué)生的思維一步步引向深入,就能激發(fā)學(xué)生自主探究的熱情。
三、教學(xué)例4時(shí),應(yīng)充分放手讓學(xué)生探索8和12的公因數(shù)以及最大公因數(shù)。
交流中,應(yīng)充分肯定學(xué)生的方法,學(xué)生在交流中出現(xiàn)問(wèn)題時(shí),應(yīng)讓他們自我修正,自我完善。并對(duì)四種方法進(jìn)行比較“看哪種方法更便捷”。最大公因數(shù)的概念也要通過(guò)練習(xí),讓學(xué)生自己談對(duì)最大公因數(shù)的感悟。
《最大公因數(shù)》教學(xué)反思4
這部分內(nèi)容是在學(xué)生掌握了因數(shù)、倍數(shù)概念的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為下續(xù)學(xué)習(xí)約分作準(zhǔn)備。教材先創(chuàng)設(shè)了一個(gè)剪紙的問(wèn)題情境,從實(shí)際生活中抽象出概念。這樣處理的好處便于揭示數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,有利于學(xué)生理解公因數(shù)、最大公因數(shù)的概念及現(xiàn)實(shí)意義,也有利于培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力。但是將解決問(wèn)題與概念引入結(jié)合在一起,教學(xué)上自然會(huì)有一定的難度,所以我將主題圖的自由探索與嘗試選正方形的大小來(lái)剪。適當(dāng)降低了一些難度并提高了教學(xué)的效率,最后的效果還是不錯(cuò)的,很容易就引入了公因數(shù)和最大公因數(shù)的概念。
在現(xiàn)行《課標(biāo)》中有關(guān)求最大公因數(shù)的.要求是:“能找出兩個(gè)自然數(shù)的公因數(shù)和最大公因數(shù)”。重在“找”,而現(xiàn)行教材的分子分母都比較小,學(xué)生熟練了以后都能準(zhǔn)確的進(jìn)行約分,關(guān)鍵還是在練習(xí)的力度上多下功夫。
融入生活實(shí)際。我把找公因數(shù)的問(wèn)題融入實(shí)際生活情景中,比如:“有兩根繩子,一根長(zhǎng)12米,另一根長(zhǎng)28米,要把它們截成同樣長(zhǎng)的小段,而且沒(méi)有剩余,每段最長(zhǎng)應(yīng)是幾米?一共截幾段?”這時(shí)學(xué)生理解了求最大公因數(shù)的方法和作用,就不難解決這一問(wèn)題。結(jié)合生活實(shí)際,使學(xué)生真正體會(huì)到數(shù)學(xué)學(xué)習(xí)的價(jià)值,并清楚地知道“為什么學(xué)”,真正做到了生活知識(shí)數(shù)學(xué)化。
《最大公因數(shù)》教學(xué)反思5
學(xué)生的學(xué)習(xí)過(guò)程是一種特殊的認(rèn)知過(guò)程,必須在積極主動(dòng)的情況下在自己的逐步思考和探究中達(dá)到解決的目的。
1、小組討論合作學(xué)習(xí)研究多了,獨(dú)立思考就有所忽視。從數(shù)學(xué)學(xué)習(xí)的本質(zhì)來(lái)說(shuō),獨(dú)立思考是主流,合作交流應(yīng)在獨(dú)立思考的基礎(chǔ)上進(jìn)行。只有在獨(dú)立思考的前提下,才有交流的可能。因此,在本課設(shè)計(jì)時(shí),求兩數(shù)的最大公約數(shù)。先讓學(xué)生課前獨(dú)立探究方法,在學(xué)生有充分獨(dú)立思考的基礎(chǔ)上再交流評(píng)價(jià)。才真正實(shí)現(xiàn)每個(gè)學(xué)生潛質(zhì)的開(kāi)發(fā)和學(xué)生之間真正的差異互補(bǔ)。
2、獨(dú)特的'見(jiàn)解總是在主體迷戀執(zhí)著,充分自由的狀態(tài)中萌芽出來(lái)的,在教學(xué)中應(yīng)放下架子,蹲下身子來(lái)傾聽(tīng)學(xué)生,相信每個(gè)學(xué)生都會(huì)有精彩的表現(xiàn)。正如陶行知所說(shuō)的:“學(xué)生能做許多你不能做的事,也能做許多你認(rèn)為他不能做的事!辈灰】戳撕⒆,要對(duì)每位孩子充滿信心,從而使課堂頻頻發(fā)出精彩的光芒。如本課時(shí)在開(kāi)放題的解答過(guò)程中,學(xué)生能在一些簡(jiǎn)單的嘗試開(kāi)始,從中逐步發(fā)現(xiàn)其中的規(guī)律,以至于應(yīng)用獲得的規(guī)律來(lái)實(shí)現(xiàn)問(wèn)題解決的最優(yōu)化,不得不驚奇孩子能力的巨大。
3、當(dāng)數(shù)學(xué)問(wèn)題情境作用于思考者時(shí)就有可能展開(kāi)數(shù)學(xué)思維活動(dòng),可以說(shuō),問(wèn)題的設(shè)計(jì)和問(wèn)題的情境的創(chuàng)設(shè)是促進(jìn)數(shù)學(xué)思考的客觀性因素。讓學(xué)生在問(wèn)題情境中層層推出數(shù)學(xué)思考“還有沒(méi)有其他的方法”“他的方法你認(rèn)為怎樣”“你是怎么想的”鼓勵(lì)表?yè)P(yáng)敢于思索的同學(xué),錯(cuò)誤的回答也是對(duì)正確知識(shí)的一種辨析過(guò)程,新知識(shí)對(duì)每個(gè)每一次學(xué)習(xí)的學(xué)生都是一個(gè)發(fā)現(xiàn)、創(chuàng)造的大空間。
兩個(gè)數(shù)的最大公約數(shù)的教學(xué)反思有探究就有發(fā)現(xiàn),有發(fā)現(xiàn)就是
學(xué)習(xí)的成功。成功所帶來(lái)的喜悅總是進(jìn)一步學(xué)習(xí)的最大動(dòng)力,自主探究的課堂,為個(gè)性不同的學(xué)生的發(fā)展留下了必要的空間,讓他們都有機(jī)會(huì)表達(dá)自己的思想,以自己獨(dú)特的方式去學(xué)習(xí)數(shù)學(xué),發(fā)展知識(shí),各自體驗(yàn)到學(xué)習(xí)數(shù)學(xué)的成功感。
《最大公因數(shù)》教學(xué)反思6
公因數(shù)和最大公因數(shù)這一課應(yīng)注重引導(dǎo)學(xué)生體驗(yàn)“概念形成”的過(guò)程,讓學(xué)生“研究學(xué)習(xí)”、“自主探索”,學(xué)生不應(yīng)是被動(dòng)接受知識(shí)的容器,而應(yīng)是在學(xué)習(xí)過(guò)程中主動(dòng)積極的參與者,是認(rèn)知過(guò)程的探索者,是學(xué)習(xí)活動(dòng)的主體。
我是這樣組織教學(xué)的:
在教學(xué)過(guò)程中,我們不僅要求學(xué)生掌握抽象的數(shù)學(xué)結(jié)論,更應(yīng)注重學(xué)生概念形成的過(guò)程。應(yīng)引導(dǎo)學(xué)生參與探討知識(shí)的形成過(guò)程,盡可能挖掘?qū)W生潛能,能讓學(xué)生通過(guò)努力,自己解決問(wèn)題,形成概念。通過(guò)創(chuàng)設(shè)生活情境,幫助王叔叔鋪地裝,將學(xué)生自然地帶入求知的情境中去,在學(xué)生已有知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上放手讓學(xué)生去交流、探索。“哪一個(gè)正方形紙片能正好鋪滿長(zhǎng)16厘米寬12厘米的長(zhǎng)方形,為什么?”這樣更利于培養(yǎng)學(xué)生自主探索、提出問(wèn)題和解決問(wèn)題的能力。接著進(jìn)一步引導(dǎo)學(xué)生思考“還有哪些正方形紙片也能正好鋪滿長(zhǎng)16厘米寬12厘米的長(zhǎng)方形?”“為什么邊長(zhǎng)是1厘米、2厘米、4厘米的地磚可以正好鋪滿?而邊長(zhǎng)是3厘米的正方形地磚不能正好鋪滿?”讓學(xué)生在反復(fù)地思考和交流中加深對(duì)公因數(shù)這一概念的理解。
教師拋出問(wèn)題后,讓學(xué)生立探究。為了解決問(wèn)題,學(xué)生充分調(diào)動(dòng)了已有知識(shí)經(jīng)驗(yàn)、方法、技能,找出“16和12的公因數(shù)和最大公因數(shù)”。在這個(gè)過(guò)程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動(dòng)探索知識(shí)的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識(shí)。
思考:
1.增強(qiáng)師生和生生之間的互動(dòng)
在教學(xué)過(guò)程中各個(gè)環(huán)節(jié)的'銜接不夠緊湊,本課時(shí)的教學(xué)內(nèi)容比較枯燥,在課堂上如何調(diào)動(dòng)學(xué)生的積極性,活躍課堂氣氛,使學(xué)生學(xué)的輕松、扎實(shí)。今后的教學(xué)中,在這一點(diǎn)上要都多下功夫。本課時(shí)的教學(xué)中,在組織學(xué)生交流找“16和12的公因數(shù)”的方法時(shí),指名回答的形式過(guò)于單調(diào),有的同學(xué)沒(méi)有選著擺一擺的方法,而是直接用邊長(zhǎng)去除以小正方形邊長(zhǎng)來(lái)判斷,我沒(méi)有很好利用學(xué)生生成的資源,幫助學(xué)生理解,局限學(xué)生的思維發(fā)展。
2.方法多樣化和方法優(yōu)化
在組織學(xué)生進(jìn)行交流時(shí),應(yīng)該注重引導(dǎo)學(xué)生有層次地介紹各種不同的方法。同時(shí)還要引導(dǎo)學(xué)生進(jìn)行方法的比較和優(yōu)化。
《最大公因數(shù)》教學(xué)反思7
1、創(chuàng)設(shè)情境引入新知。
我在教學(xué)時(shí),改變教材中從單調(diào)的計(jì)算引出概念的做法,而是創(chuàng)設(shè)情景,通過(guò)生動(dòng)有趣的畫(huà)面,吸引學(xué)生積極思維,其特有的感染力和表現(xiàn)力,能直觀生動(dòng)地對(duì)學(xué)生心理起到催化作用,有效地激發(fā)了學(xué)生探究新知識(shí)的興趣,使教與學(xué)始終處于活化狀態(tài)。
2、合理利用教材。
“循環(huán)小數(shù)”是學(xué)生較難準(zhǔn)確地掌握和表述的一個(gè)概念,特別是表述其意義的“從某一位起”、“依次”、“不斷”、“重復(fù)出現(xiàn)”等抽象說(shuō)法,學(xué)生難以理解。這節(jié)課的內(nèi)容也較多,我打破教材編排順序,將教學(xué)內(nèi)容重新整合,靈活處理教材,先以王鵬喜歡跑步引入計(jì)算400÷75讓學(xué)生計(jì)算發(fā)現(xiàn)商中重復(fù)出現(xiàn)一個(gè)相同的數(shù)字,再以王鵬喜歡游泳引出計(jì)算25÷22讓學(xué)生計(jì)算發(fā)現(xiàn)商中有兩個(gè)不斷重復(fù)出現(xiàn)的數(shù)字。從而引導(dǎo)學(xué)生發(fā)現(xiàn)發(fā)現(xiàn)商的特點(diǎn),引出“循環(huán)小數(shù)”。這樣可以將難點(diǎn)分散,各個(gè)擊破。
3、引導(dǎo)學(xué)生探索,讓學(xué)生成為真正的參與者。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們?cè)谧灾魈剿骱秃献鹘涣鞯倪^(guò)程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)!睌(shù)學(xué)學(xué)習(xí)不應(yīng)是簡(jiǎn)單個(gè)體接受知識(shí)的過(guò)程,而是一個(gè)主體對(duì)自己感興趣的且是現(xiàn)實(shí)的'生活性主題的探究與發(fā)展的過(guò)程。在新課中,我首先從生活中的現(xiàn)象入手,再引導(dǎo)學(xué)生主動(dòng)探究數(shù)學(xué)中的問(wèn)題,通過(guò)讓學(xué)生選擇自己感興趣的信息試算、觀察、分析、比較、討論等學(xué)習(xí)方式充分調(diào)動(dòng)學(xué)生多種感官的參與,給學(xué)生提供自主合作探究的空間,讓學(xué)生全面參與新知的發(fā)生、發(fā)展和形成過(guò)程,使學(xué)生真正體驗(yàn)到探究的樂(lè)趣和做數(shù)學(xué)的價(jià)值。
當(dāng)然,在這節(jié)課中也有很多不足之處。如我在教學(xué)中過(guò)多地注意預(yù)設(shè),使教學(xué)放不開(kāi)手腳,環(huán)節(jié)安排趨于飽和,這樣壓縮了學(xué)生思維空間,在今后的教學(xué)中,特別是環(huán)節(jié)預(yù)設(shè)應(yīng)在于精、在于厚實(shí)。
《最大公因數(shù)》教學(xué)反思8
這節(jié)課是在學(xué)習(xí)了公因數(shù)和最大公因數(shù)之后教學(xué)的,在實(shí)際教學(xué)中我發(fā)現(xiàn)學(xué)生不能靈活利用最大公因數(shù)的知識(shí)解決實(shí)際問(wèn)題,有的同學(xué)一看到求最大、最多、最長(zhǎng)是多少,便不假思索,直接求它們的最大公因數(shù),至于為什么是求最大公因數(shù),有的同學(xué)不理解,或是知其然而不知其所以然。基于此,我設(shè)計(jì)了這節(jié)課。在教學(xué)中,我努力做大了以下幾點(diǎn):
1、借助操作活動(dòng),讓學(xué)生形成解決問(wèn)題的策略。在教學(xué)中,我以學(xué)生感興趣的六一節(jié)活動(dòng)貫穿始終,讓學(xué)生在積極、歡愉的氛圍中學(xué)習(xí)。通過(guò)給學(xué)生提供具體的.材料,讓他們利用已有的材料,剪一剪、畫(huà)一畫(huà)、折一折、想一想、算一算,用不同的方法來(lái)解決問(wèn)題。從動(dòng)手操作中理解要解決這個(gè)問(wèn)題,實(shí)質(zhì)上是求已知數(shù)量的最大公因數(shù),并結(jié)合課件演示明確為什么是求最大公因數(shù)。提升了學(xué)生的思維層次。再通過(guò)后面的嘗試應(yīng)用,練一練,靈活應(yīng)用等環(huán)節(jié)進(jìn)一步明確思路。學(xué)生在解決問(wèn)題的過(guò)程中獲得感悟,初步形成解決此類問(wèn)題的策略。
2、預(yù)設(shè)探究過(guò)程,增強(qiáng)學(xué)生的主體意識(shí)。嘗試應(yīng)用環(huán)節(jié)更是學(xué)生自主探究的廣闊平臺(tái),我拋出問(wèn)題后讓學(xué)生獨(dú)立探究。為了解決問(wèn)題,學(xué)生充分調(diào)動(dòng)已有知識(shí)經(jīng)驗(yàn)、方法、技能,八仙過(guò)海各顯神通,找出各種求正方形的邊長(zhǎng)最長(zhǎng)是多少的方法,從中再次體驗(yàn)到要解決這個(gè)問(wèn)題實(shí)質(zhì)上還是求已知數(shù)量的最大公因數(shù)。整個(gè)教學(xué)過(guò)程學(xué)生能主動(dòng)的建構(gòu)知識(shí),而不是簡(jiǎn)單模仿,充分體現(xiàn)了學(xué)生是課堂學(xué)習(xí)的主人,課堂是學(xué)生學(xué)習(xí)的天地。
3、教學(xué)中我充分發(fā)揮小組合作學(xué)習(xí)能力,給學(xué)生充分的交流與研究時(shí)間,讓學(xué)生在交流展示中明確解決此類問(wèn)題的策略,達(dá)到把復(fù)雜的問(wèn)題變得簡(jiǎn)單,把簡(jiǎn)單的問(wèn)題變得有厚度。
《最大公因數(shù)》教學(xué)反思9
一、分析基礎(chǔ)知識(shí),準(zhǔn)確制定教學(xué)目標(biāo)。
本節(jié)課是在學(xué)生已經(jīng)理解和掌握因數(shù)、倍數(shù)的含義,初步學(xué)會(huì)找一個(gè)數(shù)的倍數(shù)和因數(shù),知道一個(gè)數(shù)的倍數(shù)和因數(shù)的特點(diǎn)的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識(shí)的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和分?jǐn)?shù)四則計(jì)算的基礎(chǔ)。我根據(jù)教材的編寫(xiě)特點(diǎn)準(zhǔn)確地制定了教學(xué)目標(biāo),即理解公因數(shù)及最大公因數(shù)的意義。知道任意兩個(gè)數(shù)都有公因數(shù);能夠采用枚舉法找到兩個(gè)數(shù)的最大公因數(shù)。通過(guò)動(dòng)手、觀察、思考等教學(xué)活動(dòng),從拼擺過(guò)程中發(fā)現(xiàn)公因數(shù),再通過(guò)進(jìn)一步探究明確公因數(shù)及最大公因數(shù)的含義。
二、在現(xiàn)實(shí)的情境中教學(xué)概念,借助直觀操作活動(dòng),經(jīng)歷概念的形成過(guò)程。
以往教學(xué)公因數(shù)的概念,通常是直接找出兩個(gè)自然數(shù)的.因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個(gè)數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。而本節(jié)課注意引導(dǎo)學(xué)生通過(guò)找出已知面積的長(zhǎng)方形的長(zhǎng)和寬的長(zhǎng)度,確定怎樣使這樣的兩個(gè)長(zhǎng)方形拼成一個(gè)新的長(zhǎng)方形。其次,引導(dǎo)學(xué)生觀察這樣的幾組數(shù)據(jù)與長(zhǎng)方形面積之間的關(guān)系——右面的這些數(shù)據(jù)都是左面這些數(shù)據(jù)的因數(shù)。三是揭示出公因數(shù)和最大公因數(shù)的含義——指出用紅筆標(biāo)出的這些數(shù)據(jù)是左面這兩個(gè)數(shù)的公因數(shù),找到這里面最大的一個(gè)公因數(shù),完成由形象到抽象的過(guò)程,把感性認(rèn)識(shí)提升為理性認(rèn)識(shí)。
三、把握內(nèi)涵外延,準(zhǔn)確理解概念的含義。
概念的內(nèi)涵是指這個(gè)概念的所反映的一切對(duì)象的共同的本質(zhì)屬性。公因數(shù)是幾個(gè)數(shù)公有的因數(shù),可見(jiàn)“幾個(gè)數(shù)公有的”是公因數(shù)的本質(zhì)屬性。因此在因數(shù)的基礎(chǔ)上學(xué)習(xí)公因數(shù),關(guān)鍵在于突出“公有”的含義。本節(jié)課突出概念的內(nèi)涵是“既是……也是……”即“公有”。教學(xué)中,我首先讓學(xué)生在練習(xí)本上找出12和16的因數(shù),然后借助直觀的集合圖揭示出“既是12的因數(shù),又是16的因數(shù)”這句話的含義,幫助學(xué)生進(jìn)一步理解公因數(shù)和最大公因數(shù)的意義。這樣安排有兩點(diǎn)好處:一是學(xué)生通過(guò)操作活動(dòng),能體會(huì)公因數(shù)的實(shí)際背景,加深對(duì)抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過(guò)操作和交流經(jīng)歷學(xué)習(xí)過(guò)程。
概念的外延是指這個(gè)概念包含的一切對(duì)象。對(duì)具體事例是否屬于概念作出判斷,就是識(shí)別概念的外延,這對(duì)加深概念的認(rèn)識(shí)很有好處。本節(jié)課我注意利用反例,來(lái)凸現(xiàn)公因數(shù)的含義。在用集合圖法來(lái)表示12和16的公因數(shù)的時(shí)候,找到填寫(xiě)錯(cuò)誤的學(xué)生的例子,提示學(xué)生注意:并集里填寫(xiě)的是兩個(gè)數(shù)的公因數(shù),而沒(méi)有交在一起的集合圖中,只填寫(xiě)這兩個(gè)數(shù)的都有的因數(shù),從而進(jìn)一步明確公因數(shù)的概念。
四、教學(xué)中的不足:
教師的提問(wèn)有時(shí)指向性不是很強(qiáng),學(xué)生不能很快地明白老師的意圖,影響了學(xué)生的思考,須進(jìn)一步提高。在教學(xué)“兩個(gè)長(zhǎng)和寬都是整厘米數(shù)的長(zhǎng)方形的面積分別是2平方厘米和3平方厘米,這兩個(gè)長(zhǎng)方形的長(zhǎng)、寬分別是多少?”時(shí),學(xué)生有些困難,我應(yīng)該讓學(xué)生動(dòng)手在本上畫(huà)一畫(huà),幫助學(xué)生找到,降低難度,這點(diǎn)考慮不周,沒(méi)有切實(shí)聯(lián)系實(shí)際。
自己要學(xué)的東西還有很多,應(yīng)注意提高自身修養(yǎng)。多閱讀、多聽(tīng)課,努力提高自己的教學(xué)水平,更好地為學(xué)生服務(wù)。
《最大公因數(shù)》教學(xué)反思10
本節(jié)課教學(xué)的內(nèi)容是認(rèn)識(shí)公因數(shù)、最大因數(shù)以及求兩個(gè)數(shù)的最大公因數(shù)的方法,這些知識(shí)是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上教學(xué)的。結(jié)合本節(jié)課的特點(diǎn),聯(lián)系本班學(xué)生的實(shí)際情況,教師在教學(xué)過(guò)程中做了如下的嘗試
一、適時(shí)地滲透集合思想。在教學(xué)例1時(shí),解題過(guò)程不僅呈現(xiàn)了用列舉法解決問(wèn)題。還引導(dǎo)學(xué)生用集合圖來(lái)表示答案,從而滲透了集合思想,為后續(xù)的學(xué)習(xí)奠定感性認(rèn)識(shí)。
二、關(guān)注學(xué)生探究活動(dòng)的.空間,將自主探究活動(dòng)貫徹始終。在教學(xué)中,教師為學(xué)生創(chuàng)設(shè)了三次自主探究的機(jī)會(huì)。即一在情境中通過(guò)動(dòng)手操作認(rèn)識(shí)公因數(shù),二用集合圖表示因數(shù)之間的關(guān)系,三用自己的方法求出兩個(gè)數(shù)的最大公因數(shù)。在這幾次的探究活動(dòng)中,教師始終積極地調(diào)動(dòng)學(xué)生的情感,啟發(fā)他們主動(dòng)參與,引導(dǎo)學(xué)生感知、理解,從而在腦中形成系統(tǒng)的知識(shí)體系。
本節(jié)課是教學(xué)運(yùn)用最大公因數(shù)的有關(guān)知識(shí)來(lái)解決生活中的實(shí)際問(wèn)題。通過(guò)創(chuàng)設(shè)生活情境,讓學(xué)生借助學(xué)具擺一擺,算一算或在紙上用彩筆畫(huà)一畫(huà)的方法把出現(xiàn)的幾種情況記錄下來(lái),既提高學(xué)生的學(xué)習(xí)積極性,也讓學(xué)生體會(huì)到新知與生活的密切聯(lián)系。同時(shí),通過(guò)引導(dǎo)學(xué)生自主探索、組織交流并驗(yàn)證結(jié)論,讓學(xué)生體會(huì)獲得成功的喜悅,更加積極地探索新知,掌握所學(xué)知識(shí)。
本節(jié)課的不足之處在于練習(xí)部分時(shí)間過(guò)于倉(cāng)促,沒(méi)有足夠的時(shí)間讓學(xué)生交流與理解,部分學(xué)困生掌握不夠到位。這需要教師在今后教堂中合理安排時(shí)間,避免時(shí)間過(guò)于緊迫。
《最大公因數(shù)》教學(xué)反思11
分析基礎(chǔ)知識(shí):本單元是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會(huì)找一個(gè)數(shù)的倍數(shù)和因數(shù),知道一個(gè)數(shù)的倍數(shù)和因數(shù)的特點(diǎn)的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識(shí)的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和通分以及分?jǐn)?shù)四則計(jì)算的基礎(chǔ)。教材分兩段安排教學(xué)內(nèi)容:第一段,認(rèn)識(shí)公倍數(shù)、最小公倍數(shù),探索找兩個(gè)數(shù)的最小公倍數(shù)的方法;第二段,認(rèn)識(shí)公因數(shù)、最大公因數(shù),探索找兩個(gè)數(shù)的最大公因數(shù)的方法。此外,在本單元的最后還安排了實(shí)踐與綜合應(yīng)用《數(shù)字與信息》。
一、借助操作活動(dòng),經(jīng)歷概念的形成過(guò)程。
以往教學(xué)公因數(shù)的概念,通常是直接找出兩個(gè)自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個(gè)數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。本單元教材注意以直觀的操作活動(dòng),讓學(xué)生經(jīng)歷公因數(shù)和最大公因數(shù)概念的形成過(guò)程。這樣安排有兩點(diǎn)好處:一是學(xué)生通過(guò)操作活動(dòng),能體會(huì)公倍數(shù)和公因數(shù)的實(shí)際背景,加深對(duì)抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過(guò)操作和交流經(jīng)歷學(xué)習(xí)過(guò)程。在這節(jié)課上,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用邊長(zhǎng)6厘米的正方形正好鋪滿長(zhǎng)18厘米,寬12厘米的長(zhǎng)方形。在發(fā)現(xiàn)結(jié)果的同時(shí),還引導(dǎo)學(xué)生聯(lián)系除法算式進(jìn)行思考,對(duì)直觀操作活動(dòng)的初步抽象。再把初步發(fā)現(xiàn)的結(jié)論進(jìn)行類推,發(fā)現(xiàn)用邊長(zhǎng)1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長(zhǎng)18厘米,寬12厘米的長(zhǎng)方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、3、6這些數(shù)和18、12有什么關(guān)系。這時(shí)揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合圖顯示公因數(shù)的意義。實(shí)實(shí)在在讓學(xué)生經(jīng)歷了概念的形成過(guò)程,效果較好。
二、預(yù)設(shè)探究過(guò)程,增強(qiáng)學(xué)生主體意識(shí)。
例3中,教師宣布游戲規(guī)則后,放手讓學(xué)生動(dòng)手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學(xué)生探究廣闊的平臺(tái),教師拋出問(wèn)題后,讓學(xué)生獨(dú)立探究。為了解決問(wèn)題,學(xué)生充分調(diào)動(dòng)了已有知識(shí)經(jīng)驗(yàn)、方法、技能,八仙過(guò)海各顯神通,找出了各種求“12和18的公因數(shù)和最大公因數(shù)”的方法。在這個(gè)過(guò)程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動(dòng)探索知識(shí)的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識(shí),也充分體現(xiàn)了教師駕馭教材,調(diào)控學(xué)生的能力。
三、重視方法和策略的滲透,提高學(xué)生學(xué)習(xí)能力。
課程標(biāo)準(zhǔn)只要求在1~100的自然數(shù)中,能找出10以內(nèi)兩個(gè)自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1~100的'自然數(shù)中,能找出兩個(gè)自然數(shù)的公因數(shù)和最大公因數(shù),而不是用分解質(zhì)因數(shù)的方法求出公倍數(shù)或公因數(shù)。不教學(xué)用分解質(zhì)因數(shù)的方法求最小公倍數(shù)和最大公因數(shù)還有兩個(gè)原因:一是通過(guò)列舉出兩個(gè)數(shù)的倍數(shù)或因數(shù)的方法,找出公倍數(shù)或公因數(shù)。突出對(duì)公倍數(shù)和公因數(shù)意義的理解;二是學(xué)生對(duì)用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān)。所以在教學(xué)找公倍數(shù)或公因數(shù)時(shí),應(yīng)提倡思考方法多樣化。例4教學(xué)中,學(xué)生得出了三種方法來(lái)尋找12和18的公因數(shù)和最大公因數(shù)。(當(dāng)然到底是三種還是兩種有待商榷,不過(guò)在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個(gè)方法優(yōu)化的過(guò)程,哪一種方法會(huì)更簡(jiǎn)單?通過(guò)對(duì)比,大多數(shù)學(xué)生贊同方法二。通過(guò)討論,引導(dǎo)學(xué)生以后解決此類問(wèn)題時(shí)可以多運(yùn)用較好的方法二。在這中間教師注意到了引導(dǎo)、小結(jié)、鼓勵(lì),師生共同得出結(jié)論。
復(fù)習(xí)題中回顧了四年級(jí)知識(shí)基礎(chǔ)、列舉法和標(biāo)記法,在例3中,學(xué)生思考“還有哪些邊長(zhǎng)整厘米的正方形紙片也能正好鋪滿這個(gè)長(zhǎng)方形?”時(shí)就有了基礎(chǔ)。例4中,學(xué)生也知道用列舉法和標(biāo)記法來(lái)解決問(wèn)題。
特別是用集合圖來(lái)表示因數(shù)和公因數(shù)的教學(xué)值得一提。有趣的游戲,預(yù)料中的爭(zhēng)執(zhí),恰到好處的體現(xiàn)了圖的妙用,圖的填法比一步步教學(xué)生如何填更有效,也更不易遺忘。練習(xí)五,第一題在填完集合圖后對(duì)公有因數(shù)和獨(dú)有因數(shù)意義的的提升,為下面的學(xué)習(xí)作了伏筆。體會(huì)初步的集合思想。
練一練,并沒(méi)有局限于畫(huà)畫(huà)△、○,找找公因數(shù)和最大公因數(shù),而是進(jìn)一步指導(dǎo)學(xué)生觀察,發(fā)現(xiàn)公因數(shù)都比小的數(shù)小(18和30中,18是小的數(shù)),在18的因數(shù)中找公因數(shù)的確更快、更好些。
所以請(qǐng)老師們?cè)谄綍r(shí)的教學(xué)中也去分析、思考,把握例題和練習(xí)中每個(gè)需要提升之處,在課堂中時(shí)時(shí)注意方法和策略的滲透,較好地用實(shí)這套教材。
《最大公因數(shù)》教學(xué)反思12
“因數(shù)和倍數(shù)”的知識(shí),向來(lái)是小學(xué)數(shù)學(xué)教學(xué)的難點(diǎn)。“最大公因數(shù)”這節(jié)課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進(jìn)行的,通過(guò)這節(jié)課的學(xué)習(xí),學(xué)生會(huì)說(shuō)出兩個(gè)數(shù)的公因數(shù)和最大公因數(shù),會(huì)求兩個(gè)數(shù)的最大公因數(shù),并為后面學(xué)習(xí)分?jǐn)?shù)的約分打好基礎(chǔ)。反思這節(jié)課我認(rèn)為有以下幾點(diǎn):
一、精心設(shè)計(jì)數(shù)學(xué)活動(dòng),讓學(xué)生大膽探究。
1、通過(guò)找8和12的因數(shù),引出公因數(shù)的.概念。
教師引導(dǎo)學(xué)生先寫(xiě)出8和12的因數(shù),再觀察發(fā)現(xiàn)8和12有公有的因數(shù),自然引出了公因數(shù)的概念。然后通過(guò)集合圈的形式,直觀呈現(xiàn)什么詩(shī)因數(shù),什么又是最大公因數(shù)。促進(jìn)學(xué)生建立”公因數(shù)和最大公因數(shù)”的概念。
2、通過(guò)找18和27的最大公因數(shù),掌握找最大公因數(shù)的方法。
掌握了公因數(shù)的概念之后,教師放手給予學(xué)生足夠的時(shí)間,讓學(xué)生自主探究找最大公因數(shù)的方法。交流反饋時(shí),考慮到中下水平的學(xué)生,教師只匯報(bào)了書(shū)本中的三種基本方法,并沒(méi)有提到短除法。
二、思路清晰,環(huán)環(huán)相扣。
本節(jié)課,教師從認(rèn)識(shí)公因數(shù)——理解最大公因數(shù)——探究找最大公因數(shù)的方法——相應(yīng)的練習(xí)鞏固這幾個(gè)環(huán)節(jié)入手,每個(gè)環(huán)節(jié)都是層層遞進(jìn),環(huán)環(huán)相扣,促進(jìn)了學(xué)生對(duì)概念的理解。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者。”在本節(jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計(jì)成為學(xué)生探索問(wèn)題,解決問(wèn)題的過(guò)程,各個(gè)環(huán)節(jié)的學(xué)習(xí)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個(gè)教學(xué)的過(guò)程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過(guò)學(xué)生積極主動(dòng)地探索以及不斷地中驗(yàn)證得到的,所以整節(jié)課學(xué)生個(gè)性得到發(fā)揮。
《最大公因數(shù)》教學(xué)反思13
《最大公因數(shù)》這部分內(nèi)容是在學(xué)生掌握了因數(shù)概念的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為學(xué)習(xí)約分做準(zhǔn)備!蹲畲蠊驍(shù)》被安排在分?jǐn)?shù)的意義這一單元內(nèi),與以前的老教材有很大的區(qū)別。
一、借助操作活動(dòng),經(jīng)歷數(shù)學(xué)概念的形成過(guò)程
以往教學(xué)公因數(shù)的概念,通常是直接找出兩個(gè)自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)哪些因數(shù)是兩個(gè)自然數(shù)公有的,從而去揭示公因數(shù)和最大公因數(shù)的概念。而新教材注意以直觀的操作活動(dòng)為主,主題圖中出現(xiàn)的是一幅鋪地磚的畫(huà)面,從而去創(chuàng)設(shè)給貯藏室地面鋪地磚的情境。
這樣安排有兩點(diǎn)好處:一是學(xué)生通過(guò)操作活動(dòng),能體會(huì)公倍數(shù)和公因數(shù)的實(shí)際背景,加深對(duì)抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過(guò)操作和交流經(jīng)歷學(xué)習(xí)過(guò)程。在這節(jié)課上,讓學(xué)生按要求自主操作,通過(guò)小組合作,去鋪格子圖,發(fā)現(xiàn)用邊長(zhǎng)1厘米、2厘米、4厘米的正方形正好鋪滿長(zhǎng)16厘米,寬12厘米的長(zhǎng)方形,但是用邊長(zhǎng)3厘米的正方形能把寬12厘米鋪完,但是不能正好鋪完長(zhǎng)16厘米,在此基礎(chǔ)上,引導(dǎo)學(xué)生思考正方形的邊長(zhǎng)既要是長(zhǎng)方形長(zhǎng)的因數(shù),也要是寬的因數(shù)。這時(shí)揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,通過(guò)數(shù)字卡的`游戲,借助直觀的集合圖顯示公因數(shù)的意義。實(shí)實(shí)在在讓學(xué)生經(jīng)歷了概念的形成過(guò)程,效果較好。
二、找兩個(gè)數(shù)的公因數(shù),提倡思考方法的多樣化。
以前的教材中安排的是利用短除法找最大公因數(shù),現(xiàn)在的教材則是采用列舉法,所以我在教學(xué)這部分知識(shí)時(shí),把重點(diǎn)放在找兩個(gè)數(shù)的公因數(shù)的方法上來(lái),鼓勵(lì)學(xué)生找最大公因數(shù)方法的多樣化。從教材的練習(xí)設(shè)計(jì)出發(fā),讓學(xué)生尋找其中的規(guī)律,特殊情況下找兩個(gè)數(shù)的最大公因數(shù)是有規(guī)律的:
。1)當(dāng)兩個(gè)數(shù)是倍數(shù)的關(guān)系時(shí),小的數(shù)就是這兩個(gè)數(shù)的最大公因數(shù)。
(2)當(dāng)兩個(gè)數(shù)是互質(zhì)數(shù)時(shí),這兩個(gè)數(shù)的最大公因數(shù)是1。
不是特殊的情況時(shí),如教學(xué)“找18和27的最大公因數(shù)”時(shí),學(xué)生運(yùn)用最普遍的方法是分別列舉出18和27的因數(shù),再在因數(shù)中圈出它們的公因數(shù);這時(shí)適時(shí)引導(dǎo)你還有更簡(jiǎn)單的方法嗎?引導(dǎo)學(xué)生去發(fā)現(xiàn)可以在18的因數(shù)中直接圈出27的因數(shù),也可以直接運(yùn)用短除法去發(fā)現(xiàn)。再在學(xué)生感悟、理解的基礎(chǔ)上,進(jìn)行方法的優(yōu)化。一開(kāi)始的時(shí)候,老師們商量還是遵循教材的意圖,既然新教材沒(méi)有講到短除法,我們只是介紹,不重點(diǎn)掌握,但是作業(yè)出來(lái)后,老師們發(fā)現(xiàn),有的學(xué)生首先連因數(shù)都找不全,既是找全了,也沒(méi)有找出最大的公因數(shù),在這種情況下,看來(lái)教學(xué)短除法還是非常有必要的!
三、課后反思:
這節(jié)數(shù)學(xué)課我的感受很深:第一、新教材的優(yōu)勢(shì),有利于培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力。例1的引入概念與原教材不同例題前創(chuàng)設(shè)了鋪地磚的問(wèn)題情境,由實(shí)際生活抽象出概念而不是利用直觀教具和學(xué)具引入概念。這樣處理的好處是便于揭示數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系、有利于學(xué)生理解公因數(shù)、最大公因數(shù)概念的現(xiàn)實(shí)意義、有利于培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力。第二、相信學(xué)生是最棒的!第三、小組學(xué)習(xí)要給學(xué)生充分的交流與研究的時(shí)間。第四、教師要引導(dǎo)學(xué)生自己去探索、去發(fā)現(xiàn),精心設(shè)計(jì)情境和問(wèn)題,使學(xué)生充分展開(kāi)思維活動(dòng)空間,在問(wèn)題的發(fā)現(xiàn)過(guò)程,方法的總結(jié)過(guò)程發(fā)展思維能力。
《最大公因數(shù)》教學(xué)反思14
教學(xué) 例3時(shí)先用邊長(zhǎng)6厘米和4厘米的正方形紙片,分別鋪長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形,教師選擇正方形紙片鋪長(zhǎng)方形的活動(dòng)教學(xué)公因數(shù),是因?yàn)檫@一活動(dòng)能吸引學(xué)生發(fā)現(xiàn)和提出問(wèn)題,能引導(dǎo)學(xué)生思考。學(xué)生用同兩張正方形紙片分別鋪一個(gè)不同的長(zhǎng)方形,面對(duì)出現(xiàn)的兩種結(jié)果,會(huì)發(fā)現(xiàn)“為什么有時(shí)正好鋪滿、有時(shí)不能”,“什么時(shí)候正好鋪滿、什么時(shí)候不能”這些有研究?jī)r(jià)值的問(wèn)題。他們沿著長(zhǎng)方形的邊鋪正方形紙片,就會(huì)想到正好鋪滿與不能正好鋪滿的原因可能和邊長(zhǎng)有關(guān),于是產(chǎn)生進(jìn)一步研究長(zhǎng)方形邊長(zhǎng)和正方形邊長(zhǎng)關(guān)系的愿望。分析長(zhǎng)方形的長(zhǎng)、寬和正方形邊長(zhǎng)之間的關(guān)系,按學(xué)生的認(rèn)知規(guī)律,設(shè)計(jì)成兩個(gè)層次: 第一個(gè)層次聯(lián)系鋪的過(guò)程與結(jié)果,從長(zhǎng)方形的長(zhǎng)、寬除以正方形的邊長(zhǎng)沒(méi)有余數(shù)和有余數(shù)的層面上,體會(huì)正好鋪滿與不能正好鋪滿的原因。第二個(gè)層次根據(jù)邊長(zhǎng)6厘米的正方形正好鋪滿長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形、而邊長(zhǎng)4厘米的正方形不能正好鋪滿長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形的經(jīng)驗(yàn),聯(lián)想邊長(zhǎng)幾厘米的正方形還能正好鋪滿長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形。先找到這些正方形,把它們邊長(zhǎng)從小到大排列,知道這樣的正方形的個(gè)數(shù)是有限的.。再用“既是12的因數(shù),又是18的因數(shù)”概括地描述這些正方形邊長(zhǎng)的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對(duì)后一層次的抽象認(rèn)識(shí)有重要的支持作用。
反思:突出概念的內(nèi)涵、外延,讓學(xué)生準(zhǔn)確理解概念。
我用“既是……又是……”的描述,讓學(xué)生理解“公有”的意思。例3先聯(lián)系用邊長(zhǎng)1、2、3、6厘米的正方形正好能鋪滿長(zhǎng)18厘米、寬12厘米的長(zhǎng)方形紙片的現(xiàn)象,從長(zhǎng)方形的長(zhǎng)、寬分別除以正方形邊長(zhǎng)都沒(méi)有余數(shù),得出正方形的邊長(zhǎng)“既是12的因數(shù),又是18的因數(shù)”,一方面概括了這些正方形邊長(zhǎng)的特點(diǎn),另一方面讓學(xué)生體會(huì)“既是……又是……”的意思。然后進(jìn)一步概括 “1、2、3、6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)”,形成公因數(shù)的概念。
由于知識(shí)的遷移,學(xué)生很容易想到用集合圖直觀形象地顯示公因數(shù)的含義。第27頁(yè)把8的因數(shù)和12的因數(shù)分別寫(xiě)到兩個(gè)集合圈里,這兩個(gè)集合圈有一部分重疊,在重疊部分里寫(xiě)的數(shù)既是8的因數(shù),也是12的因數(shù),是8和12的公因數(shù)。先觀察這個(gè)集合圖,再填寫(xiě)第28頁(yè)的集合圖,學(xué)生能進(jìn)一步體會(huì)公因數(shù)的含義。概念的外延是指這個(gè)概念包括的一切對(duì)象。
運(yùn)用數(shù)學(xué)概念,讓學(xué)生探索找兩個(gè)數(shù)的最大公因數(shù)的方法。
例4教學(xué)求兩個(gè)數(shù)的最大公因數(shù),出現(xiàn)了兩種解決問(wèn)題的方法。學(xué)生有的先分別寫(xiě)出8和12的因數(shù),再找出它們的公因數(shù)和最大公因數(shù)。有的在8的因數(shù)里找12的因數(shù),這樣操作比較方便,但容易遺漏。我有意引導(dǎo)學(xué)生選擇第一種。練習(xí)五的第3題就是這種方法的應(yīng)用。
充分利用教育資源,自制課件,協(xié)助教學(xué)。
限于操作的局部性,我認(rèn)真制作了實(shí)用的課件,讓直觀、清晰的頁(yè)面直接輔助我教學(xué),學(xué)生表現(xiàn)積極,課堂氣氛比較活躍,提問(wèn)、釋疑、解惑,練習(xí)的熱情很高。
本課設(shè)計(jì)目的是使學(xué)生學(xué)習(xí)公因數(shù)、最大公因數(shù)的意義,并學(xué)會(huì)找兩個(gè)數(shù)的最大公因數(shù)的方法,從整節(jié)課學(xué)生表現(xiàn)情況和課后作業(yè)反饋來(lái)看,學(xué)生對(duì)本部分知識(shí)知識(shí)掌握較好,學(xué)習(xí)積極并具有熱情,就實(shí)效性講很令人滿意。
《最大公因數(shù)》教學(xué)反思15
日本著名數(shù)學(xué)教育家米山國(guó)藏指出:“作為知識(shí)的數(shù)學(xué)出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數(shù)學(xué)的精神,數(shù)學(xué)的思想、研究的方法和著眼點(diǎn)等,這些隨時(shí)隨地發(fā)生作用,使他們終身受益!睆倪@個(gè)教學(xué)的設(shè)計(jì)中我們可以看到,教學(xué)中不只是讓學(xué)生接受一個(gè)概念知識(shí)或一種求最大公約數(shù)的方法;不只是注重?cái)?shù)學(xué)形式層面的教學(xué),而是更重視數(shù)學(xué)發(fā)現(xiàn)層面的教學(xué),即讓學(xué)生在經(jīng)歷“數(shù)學(xué)家”解決問(wèn)題的過(guò)程中去理解、去感受一種數(shù)學(xué)的思想和觀念──數(shù)學(xué)化思想。學(xué)生先是感知地板磚中隱含的數(shù)學(xué),會(huì)用約數(shù)、倍數(shù)知識(shí)解釋簡(jiǎn)單的生活現(xiàn)象,進(jìn)而思考并嘗試解決畫(huà)廊內(nèi)裝飾畫(huà)的設(shè)計(jì),學(xué)生自然會(huì)聯(lián)想到地板磚中數(shù)學(xué)知識(shí)。但是,從解釋到應(yīng)用設(shè)計(jì),在沒(méi)有學(xué)習(xí)公約數(shù)的情況下會(huì)存在較大的難度。于是,創(chuàng)設(shè)了做數(shù)學(xué)的空間。讓他們?cè)谠O(shè)計(jì)正方形的過(guò)程中,逐漸感知公約數(shù)的存在,建立了解決這種問(wèn)題的數(shù)學(xué)模型。再反思與總結(jié),引導(dǎo)學(xué)生自己創(chuàng)造了“公約數(shù)”與“最大公約數(shù)”的概念。
數(shù)學(xué)化思想觀念是指用數(shù)學(xué)眼光去認(rèn)識(shí)和處理周圍事物或數(shù)學(xué)問(wèn)題,可以培養(yǎng)學(xué)生良好的“用數(shù)學(xué)”意識(shí),使數(shù)學(xué)關(guān)系成為學(xué)生的一種思維模式。而我們的`課堂中,大多還是圍繞知識(shí)就事論事,沒(méi)有從形成學(xué)生思維模式的角度去展開(kāi)知識(shí)形成和問(wèn)題解決的思維過(guò)程,去注重現(xiàn)代的數(shù)學(xué)思想,去隱含重要的數(shù)學(xué)方法,這樣,學(xué)生學(xué)到的只是知識(shí)的堆砌,沒(méi)有自主的發(fā)展和對(duì)數(shù)學(xué)本質(zhì)的領(lǐng)悟。
【《最大公因數(shù)》教學(xué)反思】相關(guān)文章:
最大公因數(shù)的教學(xué)反思02-10
公因數(shù)和最大公因數(shù)教學(xué)反思04-22
《公因數(shù)和最大公因數(shù)》教學(xué)反思09-12
最大公因數(shù)說(shuō)課稿11-11
《最大的書(shū)》教學(xué)反思01-30
最大的麥穗教學(xué)反思03-29
最大的書(shū)教學(xué)反思04-08