四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>心得體會>教學反思>圓錐的體積教學反思

圓錐的體積教學反思

時間:2023-03-31 13:31:50 教學反思 我要投稿

圓錐的體積教學反思15篇

  身為一位到崗不久的教師,我們要在教學中快速成長,教學的心得體會可以總結在教學反思中,教學反思應該怎么寫呢?下面是小編為大家收集的圓錐的體積教學反思,僅供參考,希望能夠幫助到大家。

圓錐的體積教學反思15篇

圓錐的體積教學反思1

  圓錐的體積是圓柱體積的延伸,所以再學生了解圓柱體積計算公式以后,我有意識地讓學生來解決圓錐的體積,有的同學說圓錐的'體積公式是V=sh,也有的同學說不是V=sh,而是V=sh÷3,當我問及為什么是V=sh÷3時,這位同學說,是書上是這樣說的。我知道這位同學在老師講新課之前,他已提前預習了。接著我把提前準備好的兩個學具擺在學生面前,找人上來操作,讓學生從實際操作中驗證圓錐的體積公式到底是V=sh,還是V=sh÷3。因為數(shù)學由于語言的嚴謹性,我說“圓錐的體積是圓柱體積的1/3”這句話是否正確。有不少同學通過剛才的試驗,絕大多數(shù)同學都說這句話是對的。然而也有極少數(shù)同學認為這句話不夠嚴謹,還應該加上“當圓錐與圓柱等底、等高時,圓錐的體積才是圓柱體積的1/3.”通過辨析,我讓學生不僅明白了圓錐體積公式的推導過程,還讓學生明白圓錐體積公式與圓柱體積公式之間的內(nèi)在聯(lián)系。

  一節(jié)好的數(shù)學課不是老師教出來的,而是學生通過試驗總結、歸納、體驗,通過活動“做”出來的。

圓錐的體積教學反思2

  一、教學內(nèi)容:義務教育課程標準實驗教科書(北師大版)六年級下冊第11~13頁

  二、教學目標:

  1、知識技能目標:

  ◆使學生探索并初步掌握圓錐體積的計算方法和推導過程;

  ◆使學生會應用公式計算圓錐的體積并解決一些實際問題。

  2、思維能力目標:

  ◆提高學生實踐操作、觀察比較、抽象概括的能力,發(fā)展空間觀念。

  3、情感態(tài)度目標:

  ◆使學生在經(jīng)歷中獲得成功的體驗,體驗數(shù)學與生活的聯(lián)系。

  三、教學重點、難點:

  重點:使學生初步掌握圓錐體積的計算方法并解決一些實際問題

  難點:探索圓錐體積的計算方法和推導過程。

  四、教具準備:

  1、多媒體課件。

  2、等底等高、等底不等高、等高不等底的圓錐和圓柱共六套,沙、米,實驗報告單;帶有刻度的直尺,繩子等。

  五、教學過程:

  (一)創(chuàng)設情境,導入新課

  1、故事情景引發(fā)猜想

  電腦呈現(xiàn)出動畫情境(伴圖配音)。

  炎熱的夏天,小明和小強去“廣場超市”的 冷飲專柜買冰淇淋,圓錐形的冰淇淋標價是0.8元,圓柱形的標價2元。于是,他們兩個為買哪一種形狀的冰淇淋爭執(zhí)起來。同學們,你們能幫他們解決到底買哪種形狀的冰淇淋更合算嗎?(圖中圓柱形和圓錐形的雪糕是等底等高的。)

  (學生回答自己的猜想,有說買圓錐形的,有說買圓柱形的)

  教師:學完今天的內(nèi)容后,同學們就能正確解決了!

  2、圓錐實物揭示課題

 、俳處煶鍪疽煌 沙,師:將這筒沙倒在桌上,會變成什么形狀?

 。▽W生猜想后教師演示)

 、趲煟涸谶@堂課上,你希望學到哪些知識呢?

  (生自主回答,確立學習目標)

  ③揭題:圓錐的體積

  師:好,我們一起努力吧!

 。ǘ┳灾魈剿,合作交流

  1、直觀引入直覺猜想

  (1)教師演示刨鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形。

  (2)引導學生觀察,并思考:你覺得圓錐的體積與相應的圓柱體積之間有聯(lián)系嗎?你認為有什么聯(lián)系?

 、俳處煿膭顚W生大膽猜想。(生說可能的情況)

 、趲:你們是怎樣理解“相應的”一詞的?說說你的看法。

  生說后,師總結:“相應的”,即圓錐與圓柱是等底等高的。(用實物演示給生看)

  2、實驗探索發(fā)現(xiàn)規(guī)律

  (1)小組討論填寫材料單,有順序地領取材料

  學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、米、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子、米等,等底不等高和等高不等底的圓柱形和圓錐形容器各一個)

  (2)小組合作實驗,并填寫實驗報告單。

  實驗方法

  發(fā)現(xiàn)結果

  第一次實驗

  第二次實驗

  第三次實驗

  結論:

 。3)匯報結果,實物投影展示實驗報告單。

 。4)組際交流,得出結論:

  結論1:圓錐的體積v等于和它等底等高圓柱體積的三分之一。

  結論2:等底不等高的圓錐體與圓柱體,圓錐的.體積是圓柱體積的二分之一。

  結論3:等高不等底的圓錐體與圓柱體,圓錐的體積是圓柱體積的四分之一。

  結論4:圓柱的體積正好是圓錐體積的3倍。

  結論5:圓柱的體積是等底等高的圓錐體積的3倍。

  ……

  師:同學們實驗的結論各不相同,到底哪組的結論對呢?

 。ǜ餍〗M紛紛敘述自己小組的實驗過程、結論;說明自己小組的準確性,學生的思維處于高度集中狀態(tài))。

 。5)參與處理信息。

  圍繞三分之一或3倍關系的情況討論:

  師:我們先來看得出三分之一或3倍關系的這幾個小組;請小組代表說說他們是怎樣通過實驗得出這一結論的?

 。ㄕ埶麄兡贸鰧嶒炗玫钠鞑模约罕葎、驗證這個結論。突出他們小組的圓柱和圓錐是等底等高的)

  師:其他小組得出的結論不同,是不是由于實驗過程或結論有錯誤呢?我們也請小組代表說說你們的看法。

 。ㄉf明他們的過程和結論都是對的,只是他們的圓錐和圓柱不是即等底又等高的)。

  師:總結以上各個小組的看法,我們可以得出什么樣的結論?

  生1:圓錐的體積等于和它等底等高圓柱體積的三分之一。

  生2:圓柱的體積是等底等高的圓錐體積的3倍。

  生3:我認為第一種說法較合理,強調(diào)了圓錐體積的求法。

  ……

  師總結并板書:

  圓錐的體積等于和它等底等高的圓柱體積的1/3。

  3、啟發(fā)引導推導公式

  師:對于同學們得出的結論,你能否用數(shù)學公式來表示呢?

  生:因為圓柱的體積計算公式v=sh;所以我們可以用1/3 sh表示圓錐的體積。

  師:其他同學呢?你們認為這個同學的方法可以嗎?

  生:可以。

  師:那我們就用1/3 sh表示圓錐的體積。

  計算公式:v= 1/3 sh

  >師:(1)這里sh表示什么?為什么要乘1/3?

  (2)要求圓錐體積需要知道哪兩個條件?

  生回答,師做總結

  4、簡單應用嘗試解答

  例1:(課件出示教材情景圖)在打谷場上,有一個近似于圓錐的小麥堆,底面半徑是2米,高是1.5米。你能計算出小麥堆的體積嗎?

  (生獨立列式計算全班交流)

  (三)鞏固練習,運用拓展

  1、試一試

  一個圓錐形零件,它的底面直徑是10厘米,高是3厘米,這個零件的體積是多少立方厘米?

  2、練一練

  計算下面各圓錐的體積:

  3、實踐性練習

  師:請你們將做實驗時裝在圓柱容器里的沙(或米)倒出,堆成一個圓錐形沙(米)堆,小組合作測量計算它的體積。

  4、開放性練習

  一段圓柱形鋼材,底面直徑10厘米,高是15厘米,把它加工成一個圓錐零件。根據(jù)以上條件信息,你想提出什么問題?能得出哪些數(shù)學結論?(可小組討論)

  (四)整理歸納,回顧體驗

  1、上了這些課,你有什么收獲?(互說中系統(tǒng)整理)

  2、用什么方法獲取的?你認為哪組表現(xiàn)最棒?

  3、通過這節(jié)課的學習,你有什么新的想法?還有什么問題?

 。ㄎ澹﹩栴}解決。(電腦呈現(xiàn)出動畫情境)

  小明和小強到底買哪種形狀的冰淇淋更合算呢?

  師:誰能幫他們解決這個問題呢?

 。▽W生說出買圓柱形的冰淇淋更合算的理由。)

  六、板書設計:

  圓錐的體積

  圓錐的體積等于和它等底等高的圓柱體積的1/3。

  七、設計反思:

  《數(shù)學課程標準》指出:“有效的數(shù)學學習活動不能單純地依賴模仿和記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式!币虼,在教學圓錐體積計算時,一改以前教師演示或在教師指令下實驗的做法;采取提供學生材料和機會,引導學生自主探究的學習方式。具體表現(xiàn)在:

 。1)密切數(shù)學與生活的聯(lián)系,富有兒童情趣。

  從學生熟悉的生活故事引入,為新知識作好鋪墊和準備。又從刨鉛筆直觀引入,引發(fā)學生大膽猜想,學生的主動性,探究性得到培養(yǎng)。最后的問題解決回歸于生活,實現(xiàn)了叢生活中來,又服務于生活的指導思想。

 。2)在經(jīng)歷“錯誤”之中歷煉思維

  在平時的課堂教學中,學生往往會出現(xiàn)很多錯誤性的東西,比如:錯誤的認識、錯誤的過程、錯誤的結論等。很多老師不是“遇錯即糾”,就是“遇錯即批”,其實大可不必,因為錯誤之中也有可以充分利用的寶貴資源。“授人以魚,不如授之以漁”。學生學習數(shù)學不僅要學會題的解法,更要懂得解法的來龍去脈。我們要利用“錯誤”這一資源讓學生思考問題,經(jīng)歷碰壁,最終找到解決問題的方法,把思考的實際過程展現(xiàn)給學生,讓學生經(jīng)歷思維的碰撞,真正關注學習的過程,幫助他們理解和掌握數(shù)學思維和方法。

  為了使學生對“等底等高”這一條件能牢固掌握并深刻理解,在分發(fā)學具時,我有意將等底等高、等底不等高和等高不等底的三組不同的圓錐形和圓柱形容器分發(fā)給各小組,學生通過動手操作后,得出的結論大不相同,在學生匯報的過程中,意見發(fā)生了重大分歧,不同結論的各小組都堅持自己的結論準確無誤,認知出現(xiàn)了激烈的沖突,此時,我并沒有給出評判,而是要求學生認真去觀察、比較、發(fā)現(xiàn)各自小組的圓錐和圓柱有什么相同或不同的地方,通過觀察、比較,最后終于得出只有在等底等高的條件下圓錐的體積才等于圓柱體積的三分之一。這樣做既圓滿地推導出了圓錐的體積公式,又促進了學生實踐能力和批判意識的發(fā)展。而這些目標的實現(xiàn),完全是利用“錯誤”這一資源產(chǎn)生的效果

 。3)學習過程中揭示了一般科學的研究方法:

  提出問題——直覺猜想——實驗探索——合作交流——實驗驗證——得出結論——實踐運用。這為以后的探究學習提供了一個基本方法,使學生在自主探索中掌握了知識,同時獲得了最廣泛的數(shù)學活動經(jīng)驗、思想和方法,更發(fā)展了學生的反思意識、小組自我評價意識。課堂中,啟發(fā)學生提問,猜想,動手測量,注重了解決問題能力的培養(yǎng),學生體驗到了成功的快樂。

  縱觀本節(jié)課的設計,運用現(xiàn)代教學理論,以新課程的理念指導教學,較好的處理了主導和主體、知識和能力、過程和結論的關系,充分調(diào)動了學生的積極性,引導全體學生動腦、動手、動口參與學習的全過程。整節(jié)課教學目標明確,教學層次清楚。結構嚴謹,重點突出。

圓錐的體積教學反思3

  以前教學圓錐的體積時,多是先由教師演示等底等高情況下的圓柱體積的三分之一正好是圓錐的體積,再讓學生驗證,最后教師通過對比實驗說明不等底等高的差異,但收到的效果不佳。

  學生對“等底等高”這一重要條件掌握并不牢固,理解很模糊。為了讓學生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我在六年級(6)班設計了這樣的教學片斷:讓學生自選空圓柱和圓錐,研究圓柱和圓錐體積之間的關系,學生通過動手操作,得出的結論與書上的結論有很大的差異,有三分之一、四分之一、二分之一的。

  思維也出現(xiàn)了激烈的`碰撞。這時,我沒有評判結果,而是讓學生經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新的過程,得出圓錐體積等于和它等底等高圓柱體積的三分之一。這樣讓學生置身于看似混亂無序的實踐中,增加對實驗條件的辨別及信息的批判。既圓滿地推導出了圓錐的體積公式,又促進了學生實踐能力和批判意識的發(fā)展。而這些目標的實現(xiàn),完全是靈活機智地利用“錯誤”這一資源所產(chǎn)生的效果。

  在平時的課堂教學中,我們要善于利用“錯誤”這一資源,讓學生思考問題,讓他們?nèi)捉?jīng)碰壁,終于找到解決問題的方法。把思考問題的實際過程展現(xiàn)給學生,讓學生經(jīng)歷思維的碰撞。這樣做實際上是非常富于啟發(fā)性的。學生做數(shù)學題不僅要學會這道題的解法,而且更要懂得這個解法的來歷。

  教學不僅僅是告訴,更需要經(jīng)歷。真正關注學生學習的過程,有效利用“錯誤”這一資源,勇于、樂于為學生創(chuàng)造時機,幫助他們真正理解和掌握數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗。這樣,我們的課堂才是學生成長和成功的樂園!

圓錐的體積教學反思4

  圓錐的體積是在學生直觀認識圓錐的特征,會算圓的面積,以及長方體、正方體、圓柱體的體積的基礎上安排教學的。因此,我有針對性地設計、制作了本節(jié)課的輔助教學課件,既突出重點、突破難點,又激發(fā)學生的學習興趣,優(yōu)化教學過程,提高課堂教學質(zhì)量。

  1、復習遷移,做好鋪墊

  由于圓錐體的體積是在學生學過圓柱體的體積的基礎上安排教學的,為了讓學生回憶圓柱體的體積計算公式,以便為知識的遷移和新知識的學習做好鋪墊,我制作了一張圖文并茂的圖文片向?qū)W生展示了一個圓柱體圖形,并在圖形下面用醒目的文字向?qū)W生提出問題:這是什么形體?它的體積應怎樣計算?這樣一張集文字、圖形、聲音于一體的圖文片,很容易引起學生注意,營造學習氣氛。

  2、創(chuàng)設情境,引入新知

  數(shù)學來源于生活,我取材于生活以創(chuàng)設情境,使教學過程與生活實際密聯(lián)系起來,我制作了一張圖文并茂的圖文片向?qū)W生展示了曬谷場上一堆圓錐形的谷子,并在顯眼的位置向?qū)W生巧設問題:這堆谷成什么形體?你們能求出這堆谷的體積嗎?這樣,激發(fā)了學生的求知欲望,把學生引入到新課探索的活動中。

  3、實驗操作,推導公式

  圓錐體積的推導,是本節(jié)課的教學難點,為了讓學生直觀感知圓錐的體積與它等底等高的圓柱的`體積的關系。首先讓學生用工具做實驗,初步感知,再呈現(xiàn)我制作的圖文片向?qū)W生演示:用圓錐裝滿水倒入和它等底等高的圓柱里的過程。并在動畫下面巧設問題:用圓錐裝滿水倒入和它等底等高的空圓柱里,倒幾次正好倒?jié)M?每次水的高度是圓柱高度的幾分之幾?有層次的教學設計,豐富多彩的教學活動,充分體現(xiàn)以教師為主導,以學生為主體的教與學的雙邊活動。學生通過認真操作實驗,觀察思考,都明白了圓錐的體積等于和它等底等高的圓柱體積的1/3,從而推導出圓錐體積的計算公式。

  4、自學嘗試,解惑答疑

  為了提高學生解決實際問題的能力,我把課本上的例1制成一張圖文片,配上悠閑的樂曲,讓學生嘗試解答。試做時,我則進行巡視,如有問題,個別輔導,接著指名回答。這樣,能夠把較多的時間留給學生,培養(yǎng)學生的自學能力,使他們從中體驗到學習的成功的樂趣。

  圓錐的體積教學反思

  本節(jié)課《圓錐的體積》以談話法、實驗法為主,討論法、練習法為輔,實現(xiàn)教學目標。教學中,既充分發(fā)揮學生的主體作用,調(diào)動學生積極主動地參與教學的全過程。小學階段學習的幾何知識是直觀幾何。小學生學習幾何知識不是靠嚴格的論證,而主要是通過觀察、操作。根據(jù)課題的特點,主要采取讓學生做實驗的方法主動獲取知識,而且在教學中我注重如何有效的引導學生探究。

  例如,在上課開始,我是讓學生回憶圓柱體積公式的推導過程,

  讓學生猜測圓錐的體積也可以借助我們已經(jīng)學過的圖形來驗證,培養(yǎng)學生的遷移類推能力。到學生猜測出用圓柱的體積來幫助研究圓錐時,再進一步讓學生猜測圓柱與圓錐之間的關系,激起學生的學習興趣,然后馬上讓學生自己以小組為單位去驗證自己的猜測是否正確,讓每個學生都經(jīng)歷一次探究學習的過程。每個學生都經(jīng)歷了“猜想估計---設計實驗驗證---發(fā)現(xiàn)算法”的自主探究學習的過程,按自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。

  在探究圓錐體積計算方法的學習過程中,學生不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數(shù)學知識,獲得更多的是探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。而且在探究出圓錐體積公式的基礎上,再讓他們想辦法計算出他們小組實驗用的圓錐的體積,又一次給了學生探究的空間,使他們對不光能得出圓錐的體積公式,而且知道怎么應用它。

  充分發(fā)揮了學生的個性潛能。在學習中充分發(fā)揮學生的潛能,讓他們按自己的觀察進行猜測估計,按自己的設想操作學習,對自己學習情況進行總結,反思,在全體學生思維火花的相互碰撞中,出現(xiàn)了驗證等底等高的圓錐體和圓柱體體積的方法。涌現(xiàn)出了對圓錐體體積計算公式中“1/3”的不同理解,實現(xiàn)了學習策略的多樣化,豐富了學生的學習資源。

圓錐的體積教學反思5

  《圓錐的體積》一課的教學,是在學生掌握了圓錐的認識和圓柱的體積的基礎上進行的。多年的教學,讓我學習和累計了很多的教學經(jīng)驗。教學時我先生活故事導入激發(fā)學生的學習興趣,再讓學生大膽的猜想圓錐的體積公式,然后通過實驗操作來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關系計算圓錐的體積,讓學生從感性認識上升到理性認識。

  一、讓學生經(jīng)歷發(fā)現(xiàn)、提問、解決問題的全過程

  新課一開始,我就利用教師出示一堆煤,師:將這堆煤倒在地上,會變成什么形狀情境導入,教師再演示削鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形,讓學生觀察,猜測圓錐的體積和什么有關,由于課件很形象直觀,學生很快聯(lián)系到了圓柱的體積,而且很容易想到應該是幾分之幾的關系。在猜想中學生的學習興趣高漲,更明確了學習的目標。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后讓學生動手實驗,讓孩子親歷教學的驗證過程,從實驗中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,起到鞏固深化知識點的作用。

  二、讓學生在現(xiàn)實情境中體驗和理解數(shù)學

  在實驗前讓學生先猜想,再通過小組合作實驗、演示、交流得出結論,親自去驗證自己的猜想是否正確,既調(diào)動了學生的實際操作能力,也通過他們的實際操作自己得到結論促進了小組的合作意識。符合數(shù)學來源于實踐的認知。充分發(fā)揮學生小組合作的精神,大膽放手讓學生動手操作,實驗,并完成實驗結論。推導出圓錐的體積計算公式,并懂得圓錐體和圓柱體之間的關系。在感知事物,獲取感性知識中,操作與思維緊密結合,加深對圓錐及體積的認識

  1、情感的發(fā)展

  小學數(shù)學教學中的`情感發(fā)展主要包括學生對數(shù)學、數(shù)學學習活動的興趣;自信心和意志力,學習數(shù)學的態(tài)度與學習習慣。本節(jié)課的教學,擺脫了傳統(tǒng)“灌”的教學,從引導學生發(fā)現(xiàn)問題、探索問題,學生在發(fā)現(xiàn)中激起興趣,從探索中尋找快樂,然后又應用知識解決問題。學生經(jīng)歷了一個探索性的學習過程,不知不覺地掌握了知識,發(fā)展了能力,增進了對數(shù)學的情感。學習變成了一個賞心悅目的活動。

  2、思想的發(fā)展

  小學數(shù)學教材中,含有大量思想教育因素,是對學生進行教育的良好素材。教師在教學數(shù)學知識的同時,要注意發(fā)揮教材本身思想教育功能,不失時機地、潛移默化地滲透思想教育活動是兒童認識數(shù)學的重要方式。新課改提倡學生的自主活動,把數(shù)學學習的主動權交給學生,鼓勵每個學生積極參與教學活動,在教學中創(chuàng)設豐富多彩的活動情境,讓學生親自實踐,大膽探索。

  三、多層次設計練習題

  練習設計從基本題入手,過渡到情境題,發(fā)展到綜合解決實際問題,這個過程中訓練了學生的解題能力,培養(yǎng)了運用所學知識解決實際問題的能力。

  在教學后感覺到遺憾的是,由于教具準備不足的關系,學生參與以小組合作學習的面小,小組合作分工不太合理,使每個學生不是全身心投入到探究實驗中去。這樣少部份學生的學習參與積極性不高,有點被動、遺憾進行學習,沒有最大限度的發(fā)揮每個學生的自主學習的能力。這樣的學習雖然是培養(yǎng)了學生的能力,但合作意識還需加強,學生小組合作完成試驗的默契還需加強。

圓錐的體積教學反思6

  圓錐的體積是在學習了圓錐的認識的基礎上進行教學的。

  這節(jié)課我是這樣設計的:第一部分,復習圓錐的特征和圓柱的體積=底面積×高。反思:復習舊知識之間的聯(lián)系,便于運用已學知識推動新知識的學習,為學習新知識做準備。

  第二部分,便于圓柱體積的計算公式,先讓學生用轉(zhuǎn)化的思想大膽猜測,能否把體積計算方法轉(zhuǎn)化成已學過的立體圖形來推導圓錐體積公式呢?學生猜測之后,讓學生拿出手中等底等高的圓柱體,然后同桌討論得出結論,全班交流。再進行第二次實驗,同桌交換圓柱或圓錐倒進沙子之后,同桌討論,全班交流,老師引導學生兩次實驗的結論有什么不同,經(jīng)過學生的討論,師生歸納出:圓錐的體積等于等底等高的圓柱體積的三分之一。并強調(diào)V=3SH的前提條件是等底等高。

  反思:這一環(huán)節(jié)讓學生用轉(zhuǎn)化的思想猜測,激發(fā)學生的學習興趣,調(diào)動學生的探究欲望。緊接著讓學生兩次動手實驗,親自體驗知識的探究過程。符合小學生的認知規(guī)律,便于學生主動地獲取知識,掌握正確的學習方法。通過實驗,學生參與了知識的形成過程,得出了只有在等底等高的情況下圓錐的體積是圓柱的三分之一,否則這個結論不成立。

  全課反思:英國教育家思賓塞說過:“在教育中應該盡量鼓勵個人發(fā)展的過程,應該引導兒童自己進行探究,自己去推理,給他們講的應該盡量少,而引導他們?nèi)グl(fā)現(xiàn)的應該盡量多,這樣教師在教學中才能真正由重結果向重過程轉(zhuǎn)變,成為學生的.組織者、引導者與合作者”。因此,這節(jié)課,我引導學生進行實驗,放手讓他們動手操作,在操作的過程中得出結論,突破教學難點,理解圓錐的體積計算方法?粗⒆觽兟牭嚼蠋煹姆Q贊,他們那開心的笑臉,我想:只有讓孩子們成為學習的主人,老師只做引導者和合作者,引導得當,合作愉快時,那我們就真正起到了教書育人的作用,還有誰不想學習數(shù)學這門有意義的課程呢? 1

圓錐的體積教學反思7

  上完《圓錐的體積》這節(jié)課,我反思了整堂課的教學,總的來說,上下來還是可以,通過學生大膽猜測圓錐的體積可能和什么形狀的物體有關引入科學驗證,然學生在兩次倒水的過程中發(fā)現(xiàn)等底等高的圓柱與圓錐體積間的關系,由此引出圓錐的的體積公式V=Sh÷3,在整個教學過程中,我非常注重讓學生參與教學的全過程,畢竟學生始終是活動的主體。同時引導學生用科學的態(tài)度去對待這個實驗,驗證自己的猜想,整個過程注重實事求是,認真分析自己的實驗結論,培養(yǎng)了學生科學的實驗觀。教學中“圓錐的體積是圓柱的1/3,它們一定等底等高”這個環(huán)節(jié)我沒有預先設計的,它是課堂中隨機生成的,卻讓學生增加了知識,通過學生的舉例子,學生能發(fā)現(xiàn)當當圓柱和圓錐的底面積和高交叉相等時,圓錐的體積也是圓柱體的三分之一,因此這句話是錯的?偠灾,這節(jié)課每個學生都經(jīng)歷了“猜想---實驗---發(fā)現(xiàn)”的'環(huán)節(jié),不僅讓學生獲取了新知,也讓學生體會到探索成功的樂趣。

  但課后反應的的作業(yè)情況來看,學生基本理解了圓錐的體積,但在計算時卻經(jīng)常忘記除以3。一些學習困難的學生對于稍微需要靈活判斷的題目還是不能有較好地把握,從而也可以看出,他們對于該體積公式的理解也只是停留在了較簡單的和較低的層面,知識死記公式,不能靈活應用。

圓錐的體積教學反思8

  圓錐的體積這一部分內(nèi)容是圓柱體積的遷移。在這節(jié)的設計上我主要是采用讓學生自主探究----動手實踐-----得出結論的模式進行教學的。在操作的過程中,我充分的利用學具,先讓學生觀察手中的圓柱與圓錐有什么關系,學生觀察到他們是等底等高的,我的目的就是為了深化學生對這一個條件的認識。緊接著學生開始嘗試用學具研究圓柱與圓錐體積的關系。當他們一切進行的都很順利的時候,有一個小組突然提出用“圓柱向圓錐里倒水也是可以的。”話音剛落,另一個小組的學生馬上說道:“那樣很麻煩的',還得測量出圓柱的體積,計算出來!憋@然圓柱與圓錐之間的體積公式的推導過程已經(jīng)牢牢的印在腦海中,這就已經(jīng)達到了我所需要的效果了。

  記得有位老師曾經(jīng)說過:老師說了,學生記住了,沒有多久就忘了,只有動手操作了,學生記住了,形象的記憶就會產(chǎn)生了。讓我們多創(chuàng)造一些動手的機會給他們吧!

圓錐的體積教學反思9

  《數(shù)學課程標準》指出:“有效的數(shù)學學習活動不能單純地依賴模仿和記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。”因此,在教學圓錐體積計算時,一改以前教師演示或在教師指令下實驗的做法;采取提供學生材料和機會,引導學生自主探究的學習方式。具體表現(xiàn)在:

 。1)密切數(shù)學與現(xiàn)實的聯(lián)系,富有兒童情趣。

  學生從熟悉的經(jīng)典歷史故事《曹操稱象》中,理解了“大象”轉(zhuǎn)化為“石頭”的等量代換的數(shù)學方法,滲透轉(zhuǎn)化的方法,為新知識作好鋪墊和準備。又從刨鉛筆直觀引入,引發(fā)學生大膽猜想,學生的主動性,探究性得到培養(yǎng)。實驗中的米;最后,習題中又回歸生活,延伸了課堂。

 。2)致力于改變學生的學習方式。

  在教學過程中,能夠在學生已有的知識經(jīng)驗基礎和動手操作上,經(jīng)過學生自主探索與合作交流,解決了與生活經(jīng)驗密切聯(lián)系,具有挑戰(zhàn)性的問題。課堂中,啟發(fā)學生提問,猜想,動手測量,注重了解決問題能力的培養(yǎng),體驗到了成功的快樂。

 。3)學習過程中揭示了一般科學的研究方法。

  提出問題——直覺猜想——實驗探索——合作交流——實驗驗證——得出結論——實踐運用。這為以后的.探究學習提供了一個基本方法,使學生在自主探索中掌握了知識,同時獲得了最廣泛的數(shù)學活動經(jīng)驗、理想和方法,更發(fā)展了學生的反思意識、小組自我評價意識。

  縱觀本節(jié)課的設計,運用現(xiàn)代教學理論,以新課程的理念指導教學,較好的處理了主導和主體、知識和能力、過程和結論的關系,充分調(diào)動了學生的積極性,引導全體學生動腦、動手、動口參與學習的全過程。整節(jié)課教學目標明確,教學層次清楚。結構嚴謹,重點突出,取得了良好的教學效果。

圓錐的體積教學反思10

  《圓錐的體積》教學設計與反思 教學目的:使學生初步掌握圓錐體積的計算公式。

  并能運用公式正確地計算圓錐的體積,發(fā)展學生的空間觀念。

  教學難點:圓錐的體積應用

  學具準備:等底等高的圓柱和圓錐,水和沙,多媒體課件

  教學時間:一課時

  教學過程:

  一、復習

  1、圓錐有什么特征?(課件出示)

  使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。

  2、圓柱體積的計算公式是什么?

  指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉(zhuǎn)化方法在數(shù)學學習中的應用。

  二、導人新課

  出示一個圓錐形的谷堆,給出底面直徑和高,讓學生思考如何求它的體積。 板書課題:圓錐的體積

  三、新課

  1、教學圓錐體積的計算公式。

  師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

  指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。

  師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?

  先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

  教師拿出等底等高的.圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

  然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”

  學生分組實驗。

  匯報實驗結果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。 圓柱里裝滿沙子,倒入與他等底等高的圓錐,三次正好倒完。

  接著,教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?

  問:把圓柱裝滿一共倒了幾次?

  生:3次。

  師:這說明了什么?

  生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

  多找?guī)酌瑢W說。

  板書:圓錐的體積=1/3 ×圓柱體積

  師:圓柱的體積等于什么?

  生:等于“底面積×高”。

  師:那么,圓錐的體積可以怎樣表示呢?

  引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

  板書:圓錐的體積= 1/3 ×底面積×高 師:用字母應該怎樣表示?

  然后板書字母公式:V=1/3 Sh

  師:在這個公式里你覺得哪里最應該注意?

  教學例1一個圓錐的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

  1/3×19×12=76((立方厘米))

  答:這個零件體積是76立方厘米。

  做一做:課件出示,學生回答后,教師訂正。

  1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

  2、已知圓錐的底面半徑r和高h,如何求體積V?

  3、已知圓錐的底面直徑d和高h,如何求體積V?

  4、已知圓錐的底面周長C和高h,如何求體積V?

  5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?

  例2在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克) 判斷:課件出示,學生回答后,教師訂正。

  1、圓柱體的體積一定比圓錐體的體積大( )

  2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。

  3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )

  4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )

  四、教師小結。

  這節(jié)課我們學習了哪些知識?你還有什么問題嗎?

  五、作業(yè)。課本練習

  六、板書

  圓柱的體積=底面積×高

  字母公式:V圓柱= S·h

  圓錐的體積=圓柱的體積=底面積×高

  字母公式:V圓錐= S·h

  教學反思

  這節(jié)課是六年級圓柱和圓錐的內(nèi)容,主要是求圓錐體的體積。就小學現(xiàn)有的知識,把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學圓錐體積公式采用的方法與圓柱相同,采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先復習圓柱的體積公式及推導方法,讓學生從圖畫直觀上感受——圓錐體的體積比等底等高的圓柱體體積小。在此直觀的基礎上,讓學生親自動手實驗,這里除了培養(yǎng)學生的自主探究、發(fā)現(xiàn)的能力,還讓學生在操作實驗的過程中,各種能力得到鍛煉,同時還讓學生在實驗中感受數(shù)學的嚴密性,感受數(shù)學的內(nèi)在魅力,激發(fā)學生對數(shù)學的熱愛。學生學識的關鍵還在于會不會運用,因而,在學生探索好后,讓學生用自己探索到的結論,解決生活中的一些實際問題,讓他們真正感受到數(shù)學的用處——生活中處處離不開數(shù)學。最后讓學生談談收獲,鞏固這節(jié)課的重點,加深印象。

圓錐的體積教學反思11

  優(yōu)點:

  教學“圓錐的體積”一課,重點是體積公式的推導。公式導出后,如何進行計算應用。我讓每個學生都經(jīng)歷“猜想估計———設計實驗驗證———發(fā)現(xiàn)算法”的自主探究學習的過程,適當?shù)囊龑W生根據(jù)自己的設想探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式——V=1/3Sh,這樣,就有一種水到渠成的感覺。然后,利用公式解決生活中的實際問題,加深學生印象。

  不足:

  1、學生對公式推導過程理解有困難,對圓錐體體積計算公式中“1/3”的理解不深入,雖然學生的學習用具是固定的,但是他們所采用的.方式卻是不一樣的,學生有著各自不同的思維方式。

  2、在計算的過程中,運用公式計算時往往丟失“1/3”,單位名稱用錯,體積單位用面積單位。

  再教設想:

  1.為了避免單位名稱的錯誤,可在課前復習中設計單位換算的填空題,辨析題等。例如:1立方米=——立方分米=——立方厘米,100平方厘米=1立方分米。

  2.在學生利用學具理解公式的推導過程時,應放手讓學動手動腦自己解決,但動手之前一定要把任務布置清楚,讓孩子們自己發(fā)現(xiàn)圓錐與圓柱體各部分之間的關系,從而推導出圓錐的體積公式。

圓錐的體積教學反思12

  本節(jié)課在學習圓柱的體積的基礎上,再學習圓錐的體積,學生感到非常簡單易懂,因此學起來并不感到困難。但教學過后,仍感到有許多不盡人意之處,當然也有許多收獲。

  一、收獲

  1、是在教學新課時,沒有像傳統(tǒng)教學那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學生觀察倒沙實驗,而是通過師生交流、問答、猜想等形式,調(diào)動學生的積極性,激發(fā)學生強烈的探究欲望,學生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;

  2、是在實驗時,讓學生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學習,學生學的活,記得牢,即發(fā)揮教師的主導作用,又體現(xiàn)了學生的主體地位。學生在學習的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學習體驗。

  3、探究圓錐體積計算方法的學習過程,學生可以不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數(shù)學知識,同時也獲得了更多的是探究學習的科學方法,探究成功的`喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。

  4、每個學生都經(jīng)歷“猜想---設計實驗驗證---發(fā)現(xiàn)算法”的自主探究學習的過程,在教師適當?shù)囊龑陆o于學生根據(jù)自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。讓每個學生都經(jīng)歷一次探究學習的過程。

  二、不足:

  1、許多學生在計算過程中常忘記除以3,需要加強練習。

  2、許多學生在計算中出現(xiàn)錯誤,計算能力不過關,口算也不過關,導致計算失敗。

  3、在學生進行倒沙實驗時,應該事先讓學生準備好充分的學具,比如,準備一個圓柱,然后做一個和圓柱等底等高的圓錐,在做一個等底不等高的圓錐或者等高不等底的,這樣學生就比較明顯的看出與圓柱等底等高的圓錐的體積是圓柱體積的三分之一。

  4、一節(jié)好課在教學時要層次清楚,步步深入,重點突出。應注意激發(fā)學生的求知欲。要有全體學生的積極參與,突出學生的主體作用。我在這幾個方面都還要加強。

圓錐的體積教學反思13

  教學過程

  一、復習舊知,鋪墊孕伏

  1、(電腦出示一個透明的圓錐)仔細觀察,圓錐有哪些主要特征呢?

  2、復習高的概念。

 。1)什么叫圓錐的高?

 。2)請一位同學上來指出用橡皮泥制作的圓錐體模型的高。(提供刀片、橡皮泥模型等,幫助學生進行操作)

  評析:

  圓錐特征的復習簡明扼要。圓錐高的復習頗具新意,通過動手操作,從而使抽象的高具體化、形象化。

  二、創(chuàng)設情境,引發(fā)猜想

  1、 電腦呈現(xiàn)出動畫情境(伴圖配音)。

  夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去“動物超市”購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)

  2、 引導學生圍繞問題展開討論。

  問題一:狐貍貪婪地問:“小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)

  問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)

  問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學交流一下,再向全班同學匯報)

  過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了“圓錐的體積“后,就會弄明白這個問題。

  評析:

  數(shù)學課程要關注學生的生活經(jīng)驗和已有的知識體驗,教師在引入新知時,創(chuàng)設了一個有趣的童話情境,使枯燥的數(shù)學問題變?yōu)榛钌纳瞵F(xiàn)實,讓數(shù)學課堂充滿生命活力。學生在判斷公平與不公平中蘊涵了對等底等高圓柱和圓錐體積關系的猜想,他們在這一情境中敢猜想、要猜想、樂猜想,在猜想中交流,在交流中感悟,自然地提出了一個富有挑戰(zhàn)性的數(shù)學問題,從而引發(fā)了學生進一步探究的強烈欲望。

  三、自主探索,操作實驗

  下面,請同學們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關系,解決電腦博士給我們提出的問題。

  出示思考題:

 。1)通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關系?

  (2)你們的小組是怎樣進行實驗的?

  1、小組實驗。

 。1)學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、水、水槽、量杯、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子等,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關系的,也有5倍關系的。

  (2)同組的學生做完實驗后,進行交流,并把實驗結果寫在長條黑板上。

  2、大組交流。

 。1)組織收集信息。

  學生匯報時可能會出現(xiàn)下面幾種情況,教師把這些信息逐一呈現(xiàn)在插式黑板上:

  ①圓柱的體積正好是圓錐體積的3倍。

 、趫A柱的體積不是圓錐體積的3倍。

 、蹐A柱的體積正好是圓錐體積的8倍。

 、軋A柱的體積正好是圓錐體積的5倍。

 、輬A柱的體積是等底等高的圓錐體積的3倍。

 、迗A錐的體積是等底等高的圓柱體積的1/3。

  ……

  (2)引導整理信息。

  指導學生仔細觀察,把黑板上的信息分類整理。(根據(jù)學生反饋的實際情況靈活進行)

  (3)參與處理信息。

  圍繞3倍關系的情況討論:

 、僬堖@幾個小組同學說出他們是怎樣通過實驗得出這一結論的?

 、谀膫小組得出的結論更加科學合理一些?

  圓錐的體積是等底等高的圓柱體積的1/3。

  (突出等底等高,并請他們拿出實驗用的器材,自己比劃、驗證這個結論。)

 、垡龑W生自主修正另外兩個結論。

  3、誘導反思。

  (1)為什么有兩個小組實驗的結果不是3倍關系呢?

 。2)把一個空心的圓錐慢慢按入等底等高且裝滿水的圓柱形容器里,剩下水的體積是多少?這時和圓柱體積有什么關系?

  4、推導公式。

  嘗試運用信息推導圓錐的體積計算公式。

 。1)這里sh表示什么?為什么要乘1/3?

  (2)要求圓錐體積需要知道哪兩個條件?

  5、問題解決。

  童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高)之后播放狐貍拿著圓錐形雪糕離去的畫面。

  評析:

  圓錐體積公式的推導,教師敢于大膽放手,讓學生自主探索,經(jīng)歷“再創(chuàng)造”的過程。學生在教師的引導下,通過觀察、實驗、猜測、驗證、推理與交流等數(shù)學活動,積極主動地發(fā)現(xiàn)了等底等高的圓柱與圓錐體積間的關系,進而推導出圓錐體積的計算公式。特別是數(shù)學交流體現(xiàn)得很充分,有學生與教師之間的交流、學生與學生之間的交流以及小組或大組的多向交流,這種交流是立體、交叉型的,它能催化學生的意義建構。在有的小組實驗失敗后,引導學生在反思中不斷進行自我調(diào)控,在調(diào)控中增強了體驗的力度,有效培養(yǎng)了學生的元認知能力。

  四、運用公式,解決問題

  1、教學例1。一個圓錐形的零件,底面積是19平萬厘米,高是12厘米。這個零件的體積是多少?

  2、學生嘗試行算,指名板演,集體訂正。

  3、引導小結:不要漏乘1/3;計算時,能約分時要先約分。

  五、鞏固練習,拓展深化(略)

  六、質(zhì)疑問難,總結升華

  通過這節(jié)課的學習,你們探索到了什么?怎樣推導出圓錐體積公式的?

  回到童話情節(jié)。我們發(fā)現(xiàn)三個圓錐形的雪糕換一個與它等底等高的圓柱形雪糕公平合理,如果狐貍只用一個圓錐形的雪糕和小白兔交換,而不使小白兔吃虧,那么圓錐形的雪糕應該是什么樣的?配合用課件演示、

  總評

  1、摸得清,考慮周。教師能深入了解學生,對學生的原有認知水平、知識技能、情感態(tài)度,即學習起點能力分析得比較清楚。設計教案時,能充分估計教學過程的復雜性,考慮學生在課堂上可能發(fā)生的“意外情況”,以順應學生的學習過程,力求構建一種非直線型的'教學路徑,這樣的教學設計思路值得提倡。

  2、理念新,設計巧。教師能利用《數(shù)學課程標準(實驗稿)》的理念處理教材,加工教材。如本節(jié)課結合了現(xiàn)實中的具體情景,創(chuàng)設了一個學生喜聞樂見的童話情境——狐貍和小白兔換雪糕,并把這一故事情節(jié)貫穿整節(jié)課的始終。教學中盡量做到一波未平,一波又起,整節(jié)課的結構渾然一體。教師遵循了“現(xiàn)實題材——數(shù)學問題——數(shù)學模型——數(shù)學方法——解決問題”的過程來設計教學,引導學生親身經(jīng)歷將實際問題抽象成數(shù)學模型,并進行探索與應用的過程,使學生逐步學會用數(shù)學知識和方法解決生活中的實際問題。

  3、重建構,促發(fā)展。建構主義學習觀認為,學習是學習者主動建構內(nèi)部心理表征的過程,不同的學習者可能以不同的方式來建構對事物的理解,產(chǎn)生不同的建構結果,本節(jié)課在實驗探索中,學生通過小組合作,發(fā)現(xiàn)出等底等高的圓柱體積是圓錐體積的3倍,有的同學會持反對意見,這樣剛剛建立起來的平衡旋即被打破,當大家發(fā)現(xiàn)他們的實驗器材不等底等高時,又能建立起新的平衡,學生在“平衡——不平衡——新的平衡”中,認知結構得到了豐富和發(fā)展。多樣化的數(shù)學活動,如實驗、交流、反思、推理、問題解決使學生的意義建構有了堅實的基礎。學生的情感在認知的過程中也得到了和諧的發(fā)展,他們在相互交往中加深了理解、溝通和包容,品嘗到了探索成功的喜悅。

圓錐的體積教學反思14

  教學圓錐的體積是在掌握了圓錐的認識和圓柱的體積的基礎上教學的。本課教學摒棄了以往把學生分成若干組,小組實驗得出結論的方法。

  新課一開始,我就讓學生觀察,先猜測圓錐的體積和什么有關,學生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學生的學習興趣,使學生明白學習目標。然后讓學生看白板演示將圓錐里的水倒入等底等高的圓柱里,需要倒幾次。雖然孩子們沒有進行實驗,但孩子目睹了過程,從中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。對圓錐的`體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,鞏固深化知識點。

  思考:雖然學生在學習的過程中,應該成為一個探索者、研究者、發(fā)現(xiàn)者,但不是并不是每個知識的獲得都必須學生動手操作。從課后的作業(yè)反饋來看,學生的出錯率比以前小組合作的學習的還要好。看來,這樣的學習,學生學的活,記得牢,即發(fā)揮教師的主導作用,又體現(xiàn)了學生的主體地位。

圓錐的體積教學反思15

  就小學現(xiàn)有的知識,把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學圓錐體積公式采用的方法與圓柱不同,沒有采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先出示例5,讓學生從圖畫直觀上感受——圓錐體的體積比等底等。就小學現(xiàn)有的知識,把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學圓錐體積公式采用的方法與圓柱不同,沒有采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先出示例5,讓學生從圖畫直觀上感受——圓錐體的體積比等底等高的圓柱體體積小。在此直觀的基礎上,讓學生猜想該圓錐的體積是圓柱的幾分之幾。當然這里教師并不追究學生猜想的是否準確,可以說1/2,1/3,或其它的分數(shù)都可以。,關鍵在猜想的基礎上讓他們明白,估計的結果一定要經(jīng)過驗證才能確認或修正。

  讓他們明白“估計——驗證”是解決問題的'一種策略。因而,在估計的基礎上,我再讓學生親自動手實驗,這里除了培養(yǎng)學生的自主探究、發(fā)現(xiàn)的能力,還讓學生在操作實驗的過程中,各種能力得到鍛煉,同時還讓學生在實驗中感受數(shù)學的嚴密性,感受數(shù)學的內(nèi)在魅力,激發(fā)學生對數(shù)學的熱愛。學生學識的關鍵還在于會不會運用,因而,在學生探索好后,讓學生用自己探索到的結論,解決生活中的一些實際問題,讓他們真正感受到數(shù)學的用處——生活中處處離不開數(shù)學。最后讓學生談談收獲,鞏固這節(jié)課的重點,加深印象。

【圓錐的體積教學反思】相關文章:

圓錐的體積教學反思04-19

《圓錐的體積》教學反思04-03

《圓錐體積》教學反思04-02

圓錐的體積教學反思(15篇)04-06

《圓錐的體積》教學反思(通用23篇)12-01

《圓錐的體積》教學反思(通用22篇)02-24

圓錐的體積教學反思(通用18篇)03-24

圓錐的體積教學設計01-23

圓錐和圓錐的體積01-23