四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>心得體會>教學(xué)反思>《圓錐的體積》教學(xué)反思

《圓錐的體積》教學(xué)反思

時間:2024-06-12 11:29:43 教學(xué)反思 我要投稿

(必備)《圓錐的體積》教學(xué)反思

  作為一名到崗不久的老師,我們的任務(wù)之一就是教學(xué),在寫教學(xué)反思的時候可以反思自己的教學(xué)失誤,如何把教學(xué)反思做到重點突出呢?以下是小編精心整理的《圓錐的體積》教學(xué)反思,歡迎大家分享。

(必備)《圓錐的體積》教學(xué)反思

《圓錐的體積》教學(xué)反思1

  《圓錐的體積》是人教版小學(xué)數(shù)學(xué)六年級下冊第三單元的內(nèi)容之一,它是學(xué)生在學(xué)習(xí)了圓柱的認(rèn)識,圓柱的表面積,圓柱的體積,圓錐的認(rèn)識基礎(chǔ)之上,學(xué)習(xí)的。這一堂課,我有幸邀請了三位同伴來聽我的課,給我一定的指導(dǎo),我也從中發(fā)現(xiàn)了自己的一些問題。

  這節(jié)課中,我注重學(xué)生操作的過程,我的設(shè)想就是要學(xué)生經(jīng)歷這個過程。首先要讓學(xué)生觀察,我手中的學(xué)具,圓錐和圓柱有什么共同點?學(xué)生發(fā)現(xiàn),它們是等底等高的。接下來,我提出問題,它們誰的體積大?但是關(guān)于這個問題,學(xué)生的回答,基本上沒有答到點子上,有學(xué)生說,因為誰的表面積大,所以體積大。本來我預(yù)設(shè)中,很容易觀察發(fā)現(xiàn)的體積對比,但是,因為我的提問,它們誰的體積大,為什么,這個為什么,讓學(xué)生絞盡腦汁去想,去套一些內(nèi)容。后來我反思,我應(yīng)該先把圓錐放入圓柱里,讓學(xué)生直接說出,圓錐的體積,比等底等高的圓柱體積小;蛘哂迷囼灥姆椒,把圓錐的水,倒入圓柱,讓學(xué)生直接得到體積比大小的結(jié)論。接下來,先讓學(xué)生說說方法如何驗證圓錐和等底等高圓柱體積之間的關(guān)系是什么?根據(jù)以前學(xué)的圓柱體積,學(xué)生得出了三個方法,排水法,實驗法,測量體積法。根據(jù)一些情況,排水法無法實現(xiàn)。學(xué)具是空心的,會漂浮在水面,其次,學(xué)具有縫隙,水會滲進(jìn)去。所以排水法,只是作為學(xué)生了解的方法,但并不實踐。在試驗環(huán)節(jié),我沒有說清楚具體的操作要求,導(dǎo)致個別學(xué)生在操作中,用圓柱的水,倒進(jìn)圓錐里,這樣難以得出正確的結(jié)論。大多數(shù)學(xué)生,聽清了我的'要求,幾杯圓錐的水,可以倒入圓柱。學(xué)生很容易就得出了結(jié)論。我讓學(xué)生在黑板上小組演示倒水的過程,同時,也讓其他學(xué)生一起數(shù)杯數(shù),也是加深試驗結(jié)果。我多讓幾個學(xué)生說一說,圓錐和等底等高圓柱體積之間的關(guān)系,用了關(guān)聯(lián)詞,因為...所以...我也引導(dǎo)學(xué)生,多次強(qiáng)調(diào),這樣的關(guān)系一定有一個前提,圓錐和圓柱是等底等高的。為了驗證這樣的體積關(guān)系,我抽學(xué)生上講臺,利用測量法,來驗證。當(dāng)然,我在最后也強(qiáng)調(diào),試驗只是一種手段,得出的結(jié)論可能是不精確的,但是數(shù)學(xué)家驗證了這一點,所以大家可以直接用這條結(jié)論。

  美中不足就是習(xí)題沒有時間去練習(xí)。學(xué)生都有最佳遺忘曲線,如果沒有練習(xí)題,學(xué)生的知識沒有在最佳的時間去鞏固去檢測,對于真正理解知識,鞏固知識是不利的。我設(shè)計的習(xí)題,都是書上的,還是缺乏一點趣味性、層次性。

  總之,這節(jié)課,不是很完美,有很多遺憾。以后的幾何課中,我還是會多讓學(xué)生歷經(jīng)操作的過程,學(xué)生在操作中觀察、歸納、驗證、總結(jié)。操作前,一定要講清楚操作要求,還要預(yù)設(shè)更多可能會出現(xiàn)的

  情況,時間的把控要再精確一點,自己的教學(xué)語言,還更規(guī)范一些,多用一些激勵語,以后的教學(xué)設(shè)計,盡量多考慮如何體現(xiàn)趣味性這個問題。

《圓錐的體積》教學(xué)反思2

  教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)目標(biāo)是讓學(xué)生通過觀察實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。由于六年級的學(xué)生對圓錐的認(rèn)識和圓柱的體積的知識掌握較牢固,學(xué)生感到簡單易懂,因此學(xué)起來并不感到困難。

  新課一開始,我用課件出示一個圓柱體和一個圓錐體讓學(xué)生觀察并猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。從展示實物圖形到空間圖形,采用對比的`方法,不斷加深學(xué)生對形體的認(rèn)識。然后課件演示實驗過程,讓孩子從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,這樣學(xué)生對知識的掌握就水到渠成了。對圓錐的體積建立了鮮明的印象之后,再應(yīng)用公式解決實際的生活問題,起到鞏固深化知識點的作用。

  當(dāng)然,教學(xué)是一門缺陷藝術(shù),在教學(xué)之后我感到遺憾

  的是,沒讓學(xué)生動手實際操作,我想如果每個小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個學(xué)生都能真切的參與到探究中去,最大限度的發(fā)揮每個學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會更多的知識,更重要的是能培養(yǎng)學(xué)生的能力。 1、探究圓錐體積計算方法的學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識,同時也獲得了更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。

  2、每個學(xué)生都經(jīng)歷“猜想估計---設(shè)計實驗驗證---發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,在教師適當(dāng)?shù)囊龑?dǎo)下給于學(xué)生根據(jù)自己的設(shè)想自由探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積的計算方法。讓每個學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。

  通過本節(jié)課的教學(xué),讓我真正體會到了讓學(xué)生通過動手實踐去發(fā)現(xiàn)新知識的好處,學(xué)生自己去發(fā)現(xiàn)的新知識,是一種真正的理解,不是老師硬灌輸給他的,他們能靈活用知識解決問題,這使我熟悉到新課改提倡的:“動手實踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!霸诮窈蟮慕虒W(xué)中我將用新課程的理念指導(dǎo)我的教學(xué),提高課堂教學(xué)效率。

《圓錐的體積》教學(xué)反思3

  課前我安排學(xué)生收集、整理生活中應(yīng)用圓錐的實例和信息資料。教學(xué)時我首先列舉生活中大量的圓錐實物,在學(xué)生觀察思考這些物體形狀的共同特點,并從實物中抽象出幾何形體的基礎(chǔ)上引入。再引導(dǎo)學(xué)生對照模型和圖形,互說圓錐的特征,加深對圓錐的認(rèn)識。感受幾何知識在生活中的應(yīng)用,同時提高學(xué)生運用數(shù)學(xué)為生活服務(wù)的意識和能力。

  在本課中,我無論從問題的引入,圓錐概念的'定義,高的尋找及測量方法的探索,我都給予學(xué)生充足的時間進(jìn)行嘗試、研究和討論,讓學(xué)生以不同的方式進(jìn)行合作、交流,這樣的過程,不僅提供了學(xué)生自主學(xué)習(xí)的機(jī)會,也提高了學(xué)生自主參與學(xué)習(xí)的意識和信心,大家積極發(fā)言,爭先操作,參與率很高。

  我積極地創(chuàng)造機(jī)會讓學(xué)生自己去學(xué)習(xí)或者去探究問題。通過看一看,摸一摸,比一比,指一指,說一說,猜一猜等問題情境,讓學(xué)生親身感受數(shù)學(xué),在找中學(xué),在測中學(xué),在思中學(xué),培養(yǎng)學(xué)生動手操作能力、直觀思維和抽象思維能力,使數(shù)學(xué)課堂教學(xué),動起來,活起來,讓學(xué)生在做中學(xué),使數(shù)學(xué)課堂煥發(fā)出生命活力。

《圓錐的體積》教學(xué)反思4

  課前我安排學(xué)生收集、整理生活中應(yīng)用圓錐的實例和信息資料。教學(xué)時我首先列舉生活中大量的圓錐實物,在學(xué)生觀察思考這些物體形狀的共同特點,并從實物中抽象出幾何形體的基礎(chǔ)上引入。再引導(dǎo)學(xué)生對照模型和圖形,互說圓錐的特征,加深對圓錐的認(rèn)識。感受幾何知識在生活中的應(yīng)用,同時提高學(xué)生運用數(shù)學(xué)為生活服務(wù)的意識和能力。

  在本課中,我無論從問題的引入,圓錐概念的定義,高的尋找及測量方法的探索,我都給予學(xué)生充足的時間進(jìn)行嘗試、研究和討論,讓學(xué)生以不同的.方式進(jìn)行合作、交流,這樣的過程,不僅提供了學(xué)生自主學(xué)習(xí)的機(jī)會,也提高了學(xué)生自主參與學(xué)習(xí)的意識和信心,大家積極發(fā)言,爭先操作,參與率很高。

  我積極地創(chuàng)造機(jī)會讓學(xué)生自己去學(xué)習(xí)或者去探究問題.通過“看一看”,“摸一摸”,“比一比”,“指一指”,“說一說”,“猜一猜”等問題情境,讓學(xué)生親身感受數(shù)學(xué),在“找”中學(xué),在

  “測”中學(xué),在“思”中學(xué),培養(yǎng)學(xué)生動手操作能力、直觀思維和抽象思維能力,使數(shù)學(xué)課堂教學(xué)“動”起來、 “活”起來,讓學(xué)生在

  “做”中學(xué),使數(shù)學(xué)課堂煥發(fā)出生命活力。

《圓錐的體積》教學(xué)反思5

  《圓錐的體積》是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時讓學(xué)生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。學(xué)生感到非常簡單易懂,因此學(xué)起來并不感到困難。

  新課一開始,我就讓學(xué)生觀察,先猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實物圖形到空間圖形,采用對比的方法,加深學(xué)生對形體的認(rèn)識。然后讓學(xué)生動手實驗,以小組合作學(xué)習(xí)的方式讓每個學(xué)生都能參與到探究中去,學(xué)生在實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實際的.生活問題,起到鞏固深化知識點的作用。

  由于本節(jié)課活動單設(shè)計合理,問題比較精細(xì),學(xué)生能在小組合作學(xué)習(xí)的過程中,自主設(shè)計實驗過程,從而選擇合適的學(xué)具來做實驗,在比較、分析中得出圓錐的體積公式,取得了較好的效果。具體分析如下:

  一、收獲:

  1、探究圓錐體積計算方法的學(xué)習(xí)過程,學(xué)生不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學(xué)習(xí)的主人。在整個學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識,同時也獲得了更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價值。

  2、每個學(xué)生都經(jīng)歷“猜想估計---設(shè)計實驗驗證---發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,在教學(xué)案的引導(dǎo)下學(xué)生能在小組合作學(xué)習(xí)的過程中,自主設(shè)計實驗過程,從而選擇合適的學(xué)具來做實驗,在比較、分析中得出只有等底等高的圓柱和圓錐才有這樣的關(guān)系,從而加深了等低等高的印象,進(jìn)而得出圓錐的體積公式,讓每個學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。

  3、學(xué)生在展示中獲得了成功的喜悅,體驗了探究的樂趣。

  自采用“活動單導(dǎo)學(xué)”教學(xué)模式以來,學(xué)生敢說、愿說、樂說,學(xué)生的語言能力及敘述問題的條理性、層次性有了明顯的提高。在本節(jié)課中學(xué)生能夠根據(jù)教學(xué)案中的問題進(jìn)行思考、討論,從而大膽展示,能夠把動手實踐和語言表達(dá)結(jié)合在一起,從而清楚地展示了圓錐的體積探究的全過程。這點值得充分的肯定。

  二、不足:

  1、。實驗教材具有現(xiàn)成性,學(xué)習(xí)用具具有一定的實際限制,使學(xué)生探索思考的空間較小,不利于學(xué)生思維的充分發(fā)展。

  2、學(xué)生在實驗時要求不高,導(dǎo)致存在著誤差。實驗失敗。

  3、學(xué)習(xí)困難的學(xué)生對于一些需要靈活判斷的題目還是不能有較好的把握,從而也可以看出,他們對于該體積公式的理解也只是停留在了較簡單的和較低的層面。在與圓柱的體積的聯(lián)系中,思維的靈活度不夠。后來也感覺他們有出現(xiàn)一點點厭學(xué)的情緒,這是因為在最后他們把自己當(dāng)成了傾聽者。缺少了一種主動思維和思考的愿望。

  三、 措施:

  1、讓學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,做題時認(rèn)真仔細(xì)。

  2、鼓勵學(xué)生利用課余時間間動手做一些學(xué)具,不僅會增強(qiáng)學(xué)生的動手操作能力,而且可以用到學(xué)習(xí)中去。

  3、教師要認(rèn)真的去設(shè)計教學(xué)案,把每一個問題設(shè)計精細(xì),小組合作學(xué)習(xí)才能真正發(fā)揮優(yōu)勢。

《圓錐的體積》教學(xué)反思6

  一、教材說明:

  《圓錐的體積》一課的教學(xué),是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上進(jìn)行的。多年的教學(xué),讓我學(xué)習(xí)和累計了很多的教學(xué)經(jīng)驗。教學(xué)時我先生活故事導(dǎo)入激發(fā)學(xué)生的學(xué)習(xí)興趣,再讓學(xué)生大膽的猜想圓錐的體積公式,然后通過實驗操作來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。

  二、三維目標(biāo)解析:

  教學(xué)目標(biāo)是:

  1、初步掌握圓錐體積的計算公式,并能運用公式正確地進(jìn)行計算。2、通過圓錐體積公式的推導(dǎo),培養(yǎng)學(xué)生動手操作與小組協(xié)作的能力。

  目標(biāo)解析:

  1、情感的發(fā)展

  小學(xué)數(shù)學(xué)教學(xué)中的情感發(fā)展主要包括學(xué)生對數(shù)學(xué)、數(shù)學(xué)學(xué)習(xí)活動的興趣;自信心和意志力,學(xué)習(xí)數(shù)學(xué)的'態(tài)度與學(xué)習(xí)習(xí)慣。本節(jié)課的教學(xué),擺脫了傳統(tǒng)“灌”的教學(xué),從引導(dǎo)學(xué)生發(fā)現(xiàn)問題、探索問題,學(xué)生在發(fā)現(xiàn)中激起興趣,從探索中尋找快樂,然后又應(yīng)用知識解決問題。學(xué)生經(jīng)歷了一個探索性的學(xué)習(xí)過程,不知不覺地掌握了知識,發(fā)展了能力,增進(jìn)了對數(shù)學(xué)的情感。學(xué)習(xí)變成了一個賞心悅目的活動。

  2、思想的發(fā)展

  小學(xué)數(shù)學(xué)教材中,含有大量思想教育因素,是對學(xué)生進(jìn)行教育的良好素材。教師在教學(xué)數(shù)學(xué)知識的同時,要注意發(fā)揮教材本身思想教育功能,不失時機(jī)地、潛移默化地滲透思想教育活動是兒童認(rèn)識數(shù)學(xué)的重要方式。新課改提倡學(xué)生的自主活動,把數(shù)學(xué)學(xué)習(xí)的主動權(quán)交給學(xué)生,鼓勵每個學(xué)生積極參與教學(xué)活動,在教學(xué)中創(chuàng)設(shè)豐富多彩的活動情境,讓學(xué)生親自實踐,大膽探索。

  3、通過練習(xí),形成技能。

  三、教法設(shè)計:

  1、讓學(xué)生經(jīng)歷發(fā)現(xiàn)、提問、解決問題的全過程

  復(fù)習(xí)有關(guān)圓柱體積知識后,教師出示一堆煤:將這堆煤倒在地上,會變成什么形狀情境導(dǎo)入。教師再演示削鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形,讓學(xué)生觀察,猜測圓錐的體積和什么有關(guān),由于課件很形象直觀,學(xué)生很快聯(lián)系到了圓柱的體積,而且很容易想到應(yīng)該是幾分之幾的關(guān)系。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學(xué)生對形體的認(rèn)識。然后讓學(xué)生動手實驗,讓孩子親歷教學(xué)的驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實際的生活問題,起到鞏固深化知識點的作用。

  2、讓學(xué)生在現(xiàn)實情境中體驗和理解數(shù)學(xué)

  在實驗前讓學(xué)生先猜想,再通過小組合作演示實驗、交流得出結(jié)論,親自去驗證自己的猜想是否正確,既調(diào)動了學(xué)生的實際操作能力,

《圓錐的體積》教學(xué)反思7

  圓錐的體積是學(xué)生在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。是小學(xué)幾何初步知識教學(xué)的重要內(nèi)容。本節(jié)教學(xué)分兩個層次進(jìn)行,一是推導(dǎo)圓錐體積計算公式,二是運用公式求圓錐的體積。在教學(xué)時,主要運用了探究式的教學(xué)方法進(jìn)行教學(xué),收到了較好的效果,現(xiàn)總結(jié)以下幾點做法:

  一、大膽猜測,培養(yǎng)猜測意識。

  假設(shè)和猜想是科學(xué)的天梯,是科學(xué)探究的重要一環(huán)。任何發(fā)明創(chuàng)造都是離不開假設(shè)和猜想的;谶@樣的認(rèn)識,結(jié)合本節(jié)課教學(xué)內(nèi)容的特點,在教學(xué)中借助教具和學(xué)具,讓學(xué)生充分觀察“等底等高的圓柱和圓錐”后,再大膽猜想它們的體積可能會有什么樣的關(guān)系?”這樣設(shè)計,事實證明不僅僅是能夠培養(yǎng)學(xué)生的'猜測意識,更重要的是充分調(diào)動了所有學(xué)生的積極性,大家探究的欲望強(qiáng)烈,為本節(jié)課的成功教學(xué)奠定了基礎(chǔ)。

  二、操作驗證,培養(yǎng)科學(xué)的實驗觀。

  數(shù)學(xué)不僅是思維科學(xué),也是實驗科學(xué),通過觀察猜想,實驗操作得到數(shù)學(xué)結(jié)論,這種形式也是進(jìn)行科學(xué)研究的最基本形式.教學(xué)中,使學(xué)生通過自主探究實驗得出結(jié)論:圓錐的體積是與這個圓錐等底等高的圓柱體積的三分之一。從而總結(jié)出圓錐體積的計算公式:V=1/3Sh。

  教學(xué)圓錐的體積計算時先分組做實驗,在空圓錐里裝滿沙子,然后倒入空等底等高的圓柱中,從倒的次數(shù)中觀察到怎樣的現(xiàn)象呢?兩者體積之間有怎樣的關(guān)系。我們將空圓錐里裝滿沙子,然后倒入空圓柱中,三次正好裝滿。說明圓錐的體積是圓柱的三分之一。然后用不等底等高的圓錐和圓柱所得的情況與以上不同。最后得到一個原理等底等高。圓錐的體積等于和它等底等高的圓柱體積的三分。

  《圓錐的體積》的教學(xué)都是先由教師演示等底等高情況下的三分之一,再讓學(xué)生去驗證,最后教師通過對比實驗說明不等底等高的差異,而在以上教育中卻不然,先采用學(xué)生做實驗的方法,讓學(xué)生親自實踐,在實際中懂得其中的道理,用一個等底等高圓柱和圓錐,讓學(xué)生分組進(jìn)行實際操作,使學(xué)生清楚的知道其中的知識點,明白了圓錐與圓柱之間的體積關(guān)系,從而是學(xué)生發(fā)現(xiàn)其中的數(shù)學(xué)原理,而且有意地將實驗的環(huán)節(jié)復(fù)合,在看似混亂無序的實踐中,增加了學(xué)生對實驗條件的辨別及信息的批判,同時這也是這堂課需要解決的重點和難點。在整個教學(xué)過程中,重視讓學(xué)生參與教學(xué)的全過程,學(xué)生始終是活動的主體,我則是這一活動的組織者、指導(dǎo)者、和參與者。同時引導(dǎo)學(xué)生用科學(xué)的態(tài)度去對待這個實驗,實事求是,認(rèn)真分析自己操作實驗出現(xiàn)了和別人不太一樣的結(jié)論的原因,培養(yǎng)學(xué)生科學(xué)實驗觀。學(xué)生學(xué)的主動,經(jīng)歷了一番觀察、發(fā)現(xiàn)、合作、探究的過程,既能達(dá)到圓滿地推導(dǎo)出了圓錐的體積公式,又使學(xué)生的實踐能力得到發(fā)揮。

  總之,這節(jié)課,每個學(xué)生都經(jīng)歷了“猜想———實驗———發(fā)現(xiàn)”的自主探究學(xué)習(xí)的過程。學(xué)生獲得的不僅是鮮活的數(shù)學(xué)知識,獲得更多的是科學(xué)探究的學(xué)習(xí)方法和研究問題的方法,孩子們體驗到了探究成功的喜悅,進(jìn)行了探究失敗的深刻反思,有利于從小樹立科學(xué)的實驗觀。思考:如果長期在這樣的探究中去學(xué)習(xí)知識,學(xué)生就會變成有思想、會思考、會研究、會學(xué)習(xí)的人。

《圓錐的體積》教學(xué)反思8

  這一節(jié)失敗的課讓我反思了很多,除了總結(jié)和練習(xí),還找到了很多不足之處均待提高。

  1.課堂提問沒有給學(xué)生留下足夠的思考空間。

  如:你打算用什么方法測量這個圓錐的體積?問題提出后,我僅停頓了2秒,沒有學(xué)生舉手我就接著說我們解決一個未知問題通常會把它轉(zhuǎn)化為已知問題,那么圓錐的體積可以轉(zhuǎn)化為我們原來學(xué)過的哪個立體圖形的體積呢?說完這句話,我就意識到,這個地方應(yīng)該讓學(xué)生充分的思考,充分的說一說方法,如果學(xué)生說不出,我再說這些話,學(xué)生可能會給我很多驚喜。

  2.實驗結(jié)束后,你想說什么?

  學(xué)生經(jīng)歷了猜想、體驗、探究、驗證的過程,在實驗的過程中肯定會發(fā)現(xiàn)很多問題、矛盾。實驗結(jié)束后,學(xué)生應(yīng)該有很多話要說。此時問一問,你想說什么?既給了學(xué)生一個思維提升的過程,又能順利的總結(jié)出這節(jié)課的結(jié)論。

  3.如何有效的調(diào)動起學(xué)生的積極性,讓高年級的學(xué)生也能積極回答問題?

  這個問題,我曾經(jīng)百思不得其解,總以為就是高年級學(xué)生的公開課比低年級的`公開課難上,這節(jié)課后也豁然找到了原因:一是出在我平時的課堂上。由于平時上課總要照顧后進(jìn)生,所以在回答問題時,往往不去叫舉手的好學(xué)生,總?cè)c不舉手的后進(jìn)生,公開課時也不由自主地這樣做。但是這樣做的后果就是導(dǎo)致,舉手的同學(xué)本來就有些害怕,我還總不去叫他。不但打擊了舉手同學(xué)的積極性,還打消了其他同學(xué)舉手的念頭。另一個很重要的原因是緣于教師上課的心態(tài)。對著低年級學(xué)生上課,我們很容易放下姿態(tài),去哄他們,有一點做的好、說的好了,教師就會給很高的評價。而且態(tài)度還和藹可親。但是對著六年級學(xué)生,就覺得他們是大孩子了。自己首先都沒有用同樣的態(tài)度去對待他們,又怎么能向他們要同樣的課堂效果呢?

  通過不斷的反思自己,讓我發(fā)現(xiàn)了很多自己的問題。這一節(jié)課,可以說是我從教以來對我打擊最大的一節(jié)課,卻又是讓我收獲最大的一節(jié)課。課堂上留下了很多遺憾,有機(jī)會真想再重新上一遍這節(jié)課。

《圓錐的體積》教學(xué)反思9

  六年級的學(xué)生對立體圖形已經(jīng)有了初步的認(rèn)識,因此,在教學(xué)中,我借助圓錐體和圓柱體的聯(lián)系和區(qū)別,引出圓錐體的特征,進(jìn)而分散了難點。在講授體積公式時,我設(shè)計的實驗環(huán)節(jié),把學(xué)習(xí)的主動權(quán)交給了學(xué)生,學(xué)生就可以既動手又動腦,通過自己的努力總結(jié)出圓錐體的體積公式,在學(xué)習(xí)中體會到成功的喜悅。

  建構(gòu)主義認(rèn)為,學(xué)生的學(xué)習(xí)不是由教師向?qū)W生的單向知識傳遞,而是學(xué)生建構(gòu)自己知識的過程。學(xué)生不是被動的信息接受者,而是一個主動探究、發(fā)現(xiàn)知識的研究者;谝陨系恼J(rèn)識,我很注重讓學(xué)生自主學(xué)習(xí),通過動手制作圓錐體,培養(yǎng)學(xué)生的空間概念,自主探究圓錐體的計算方法,提高解決問題的能力。

  這節(jié)課為學(xué)生提供了具體的實踐活動,創(chuàng)設(shè)了引導(dǎo)學(xué)生探索、操作和思考的情境,把教師變成“一位顧問”,“一位交換意見的參與者”,“一位幫助發(fā)現(xiàn)矛盾論點、而不是拿出現(xiàn)成真理的人”。這節(jié)課把學(xué)生推到探究新知的“第一線”,讓他們自己動手、動口、動腦,主動思考問題,并在探究新知的過程中,暴露感知的矛盾和差異,把他們弄不懂的地方、錯誤的地方都擺在桌面上,再引導(dǎo)他們通過獨立思考,摒棄錯誤,發(fā)現(xiàn)真理,實現(xiàn)由感性認(rèn)識到理性認(rèn)識的'轉(zhuǎn)化。這樣,通過活動,讓學(xué)生自己發(fā)現(xiàn)要學(xué)習(xí)的東西,能夠積極地被同化,因而容易得到更深刻的理解。整節(jié)課大部分時間都是學(xué)生在操作,有獨立的思考,有小組的合作學(xué)習(xí),有猜想,有驗證,有觀察,有分析,有想像,使學(xué)生在盡可能大的活動空間中切實體驗到數(shù)學(xué)對解決實際問題是有用的,讓學(xué)生在探究的氛圍中自主地學(xué)習(xí)知識,發(fā)現(xiàn)規(guī)律,實際應(yīng)用,從而獲得成功的體驗。

《圓錐的體積》教學(xué)反思10

  該學(xué)習(xí)“圓錐的認(rèn)識和體積”這部分知識了,想到在學(xué)生的生活中,純圓錐的物體并不多見,所以這樣安排本部分內(nèi)容的教學(xué)。

  第一節(jié)課帶領(lǐng)學(xué)生做圓錐,畫圓——剪圓——再剪出圓心角不同的扇形——把兩條半徑無縫隙的粘住,放在桌上,一個圓錐成型了,如果你想粘上底面也可以,可是得知道底面的半徑。。ㄍ卣乖鯓又郎刃蔚陌霃胶蛨A心角的度數(shù),求出圓錐底面半徑的大。

  學(xué)生自己做出來的`圓錐,對它的認(rèn)識肯定是比較深刻的——圓錐由一個底面和一個曲面圍城,底面是圓,側(cè)面展開是一個扇形,還有強(qiáng)調(diào)對圓錐的高的理解。直角三角形沿一條直角邊所在的直線旋轉(zhuǎn)可以得到一個圓錐,讓學(xué)生試一試,想象一下。

  第一節(jié)課圓錐的認(rèn)識,因為加上了讓學(xué)生動手制作這一環(huán)節(jié),教學(xué)效果出奇的好,也為下一節(jié)課做好的鋪墊。

《圓錐的體積》教學(xué)反思11

  以前教學(xué)《圓錐的體積》時多是先由教師演示等底等高情況下的三分之一,再讓學(xué)生驗證,最后教師通過對比實驗說明不等底等高的差異,但效果不太好,學(xué)生對等底等高這一重要前提條件,掌握得并不牢固,理解很模糊。為了讓學(xué)生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我就設(shè)計了以上的教學(xué)片斷:讓學(xué)生自選空圓柱和圓錐研究圓柱和圓錐體積之間的關(guān)系,學(xué)生通過動手操作得出的結(jié)論與書上的結(jié)論有很大的差異,有三分之一、四分之一、二分之一,思維出現(xiàn)激烈的碰撞,這時我沒有評判結(jié)果,而是讓學(xué)生經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新過程,得出圓錐體積等于等底等高的圓柱體積的三分之一,這樣讓學(xué)生裝在看似混亂無序的實踐中,增加對實驗條件的辨別及信息的批判。既圓滿地推導(dǎo)出了圓錐的`體積公式,又促進(jìn)了學(xué)生實踐能力和批判意識的發(fā)展。而這些目標(biāo)的達(dá)成完全是靈活機(jī)智地利用“錯誤”這一資源,所產(chǎn)生的效果。

  在平時的課堂教學(xué)中,我們要善于利用“錯誤”這一資源,讓學(xué)生思考問題幾經(jīng)碰壁終于找到解決問題的方法,把思考問題的實際過程展現(xiàn)給學(xué)生看,讓學(xué)生經(jīng)過思維的碰撞,這樣做實際上是非常富于啟發(fā)性的.學(xué)習(xí)數(shù)學(xué)不僅要學(xué)會這道題的解法,而且更要學(xué)會這個解法是如何找到的。

  教學(xué)不僅僅是告訴,更需要經(jīng)歷。真正關(guān)注學(xué)生學(xué)習(xí)的過程,就要有效利用錯誤這一資源,教師要勇于樂于向?qū)W生提供充分研究的機(jī)會,幫助他們真正理解和掌握數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗,這樣,我們的課堂才是學(xué)生成長和成功的場所。

《圓錐的體積》教學(xué)反思12

 。ㄕn前準(zhǔn)備:等底等高、不等底不等高的空圓柱、圓錐、沙子,利用“錯誤”資源,展示思維過程 ——《圓錐的體積》一課的案例反思。課前學(xué)生都預(yù)習(xí)過這一內(nèi)容。)

  教學(xué)片斷

  師:下面分組做實驗,在空圓錐里裝滿沙子,然后倒入空圓柱中,看看幾次正好裝滿。

  小組代表從教具箱中自選實驗用的空圓錐圓柱各一個,分頭操作。

  師:請同學(xué)們利用手中的圓柱和圓錐、沙子,從倒的次數(shù)看,研究兩者體積之間有怎樣的關(guān)系?

  生1:我們將空圓錐里裝滿沙子,然后倒入空圓柱中,三次正好裝滿。說明圓錐的體積是圓柱的三分之一。

  生2:三次倒?jié)M,圓錐的體積是圓柱的三分之一。

  生3(有些遲疑地):我們將空圓錐里裝滿沙子,然后倒入空圓柱中,四次正好裝滿。說明圓錐的體積是圓柱的四分之一。

  生1:是三分之一,不是四分之一。

  生5:我們在空圓錐里裝滿沙子,然后倒入空圓柱中,不到三次就將圓柱裝滿了。

  ……

  師:并不都是三分之一呀。怎么會是這樣!我來做。(教師從教具箱中隨手取出一個空圓錐一個空圓柱)你們看, 將空圓錐里裝滿沙子,倒入空圓柱里。一次,再來一次。兩次正好裝滿。圓錐的體積是圓柱的二分之一。怎么回事?是不是書上的結(jié)論有錯誤?(以前曾有學(xué)生對教材中的內(nèi)容提出過疑問)

  學(xué)生議論紛紛。……

  師:你們說該怎么辦?

  生6:老師,你取的圓柱太大了。(教師在他的推薦下重新使用一個空圓柱繼續(xù)實驗,三次正好倒?jié)M,教育論文《利用“錯誤”資源,展示思維過程 ——《圓錐的體積》一課的案例反思》。)學(xué)生調(diào)換教具,再試。

  師:什么情況下,圓錐的體積是圓柱的三分之一?

  生:等底等高。

  生:圓錐的體積等于和它等底等高的圓柱體積的三分之一。

  師:也就是說圓錐的體積等于圓柱體積的三分之一的前提條件是等底等高。

  案例反思

  以前教學(xué)《圓錐的體積》時多是先由教師演示等底等高情況下的三分之一,再讓學(xué)生驗證,最后教師通過對比實驗說明不等底等高的差異,但效果不太好,學(xué)生對等底等高這一重要前提條件,掌握得并不牢固,理解很模糊。為了讓學(xué)生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我就設(shè)計了以上的教學(xué)片斷:讓學(xué)生自選空圓柱和圓錐研究圓柱和圓錐體積之間的'關(guān)系,學(xué)生通過動手操作得出的結(jié)論與書上的結(jié)論有很大的差異,有三分之一、四分之一、二分之一,思維出現(xiàn)激烈的碰撞,這時我沒有評判結(jié)果,而是讓學(xué)生經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新過程,得出圓錐體積等于等底等高的圓柱體積的三分之一,這樣讓學(xué)生裝在看似混亂無序的實踐中,增加對實驗條件的辨別及信息的批判。既圓滿地推導(dǎo)出了圓錐的體積公式,又促進(jìn)了學(xué)生實踐能力和批判意識的發(fā)展。而這些目標(biāo)的達(dá)成完全是靈活機(jī)智地利用“錯誤”這一資源,所產(chǎn)生的效果

  在平時的課堂教學(xué)中,我們要善于利用“錯誤”這一資源,讓學(xué)生思考問題幾經(jīng)碰壁終于找到解決問題的方法,把思考問題的實際過程展現(xiàn)給學(xué)生看,讓學(xué)生經(jīng)過思維的碰撞,這樣做實際上是非常富于啟發(fā)性的.學(xué)習(xí)數(shù)學(xué)不僅要學(xué)會這道題的解法,而且更要學(xué)會這個解法是如何找到的.

《圓錐的體積》教學(xué)反思13

  在教學(xué)“圓錐的體積”這一課時,我沒有用傳統(tǒng)的講解演示法去組織教學(xué),而是采用探究性學(xué)習(xí)的方法組織學(xué)生的學(xué)習(xí)活動。圍繞怎樣能讓學(xué)生積極參與探究活動的問題,我思索了好一陣子,曾作過這樣的設(shè)計:圓錐的體積大小與什么有關(guān)?當(dāng)學(xué)生回答與圓錐的底面積和高有關(guān)時,教師接著問:已知圓錐的底面積和高怎樣計算圓錐的體積?這時,估計有學(xué)生很快說出計算公式,因為有學(xué)生已看過書,這是班級學(xué)生的實際情況,此時教師該怎么辦?不讓這些學(xué)生回答,這是對他們的不尊重,可能會打消他們學(xué)習(xí)的積極性,如果讓他們回答,勢必會影響班上絕大多數(shù)學(xué)生探索的積極性,因為他們原本是不知道這個結(jié)論的,現(xiàn)在結(jié)論已給出,又何必苦苦進(jìn)行探索?

  我反復(fù)地思考著,預(yù)想著學(xué)生中可能會出現(xiàn)的種種情況……,于是我決定提問:你能想什么辦法自己去發(fā)現(xiàn)圓錐體積的計算公式?這一問題的提出,不在公式本身,而在于發(fā)現(xiàn)公式的思考方法上,我想,小學(xué)生往往只關(guān)心結(jié)果,不注意思考方法和過程,既使看過書的學(xué)生,大多也未曾思考為什么會是這樣之類的問題,這問題能將學(xué)生的思維聚焦在探究的方法上,而重視對探究方法的思考,正是我們的數(shù)學(xué)教學(xué)應(yīng)該加強(qiáng)的,問題一提出,學(xué)生就置身于問題情景中,興趣盎然地投入探究活動之中。

  實踐證明,整個學(xué)習(xí)過程,是一個積極探究的過程,學(xué)生始終是主動的探索者,從教學(xué)效果來看,學(xué)生不僅主動地建構(gòu)計算圓錐體積的新知,而且思考力得到有效的培養(yǎng)。

  課后反思這節(jié)課,我想探究性學(xué)習(xí)決不是讓學(xué)生盲目的試誤,否則將會出現(xiàn)形似探究,實際上還是講解灌輸?shù)?教學(xué)。我認(rèn)為,進(jìn)行探究性學(xué)習(xí)的關(guān)鍵是:教師要將自己假設(shè)成學(xué)生,了解學(xué)生思維的實際情況,善于將書本上結(jié)論性知識轉(zhuǎn)變成學(xué)生樂于探究的問題,從而燃起學(xué)生探究的欲望,使學(xué)生以飽滿的情態(tài)積極投入到探索性學(xué)習(xí)活動中,教師還必須引導(dǎo)學(xué)生關(guān)注探究的方法,給予探究方法的指導(dǎo),讓學(xué)生在探究中學(xué)會探究,提高主動獲取知識的能力。

《圓錐的體積》教學(xué)反思14

  《圓錐的體積》教學(xué)設(shè)計與反思 教學(xué)目的:使學(xué)生初步掌握圓錐體積的計算公式。

  并能運用公式正確地計算圓錐的體積,發(fā)展學(xué)生的空間觀念。

  教學(xué)難點:圓錐的體積應(yīng)用

  學(xué)具準(zhǔn)備:等底等高的圓柱和圓錐,水和沙,多媒體課件

  教學(xué)時間:一課時

  教學(xué)過程:

  一、復(fù)習(xí)

  1、圓錐有什么特征?(課件出示)

  使學(xué)生進(jìn)一步熟悉圓錐的特征:底面,側(cè)面,高和頂點。

  2、圓柱體積的計算公式是什么?

  指名學(xué)生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉(zhuǎn)化方法在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。

  二、導(dǎo)人新課

  出示一個圓錐形的谷堆,給出底面直徑和高,讓學(xué)生思考如何求它的體積。 板書課題:圓錐的體積

  三、新課

  1、教學(xué)圓錐體積的計算公式。

  師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

  指名學(xué)生敘述圓柱體積計算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長方體來求得的。

  師:那么圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的圖形來求呢?

  先讓學(xué)生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

  教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

  然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關(guān)系?”

  學(xué)生分組實驗。

  匯報實驗結(jié)果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。 圓柱里裝滿沙子,倒入與他等底等高的圓錐,三次正好倒完。

  接著,教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?

  問:把圓柱裝滿一共倒了幾次?

  生:3次。

  師:這說明了什么?

  生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

  多找?guī)酌瑢W(xué)說。

  板書:圓錐的體積=1/3 ×圓柱體積

  師:圓柱的體積等于什么?

  生:等于“底面積×高”。

  師:那么,圓錐的體積可以怎樣表示呢?

  引導(dǎo)學(xué)生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

  板書:圓錐的體積= 1/3 ×底面積×高 師:用字母應(yīng)該怎樣表示?

  然后板書字母公式:V=1/3 Sh

  師:在這個公式里你覺得哪里最應(yīng)該注意?

  教學(xué)例1一個圓錐的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

  1/3×19×12=76((立方厘米))

  答:這個零件體積是76立方厘米。

  做一做:課件出示,學(xué)生回答后,教師訂正。

  1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

  2、已知圓錐的底面半徑r和高h(yuǎn),如何求體積V?

  3、已知圓錐的底面直徑d和高h(yuǎn),如何求體積V?

  4、已知圓錐的底面周長C和高h(yuǎn),如何求體積V?

  5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?

  例2在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克) 判斷:課件出示,學(xué)生回答后,教師訂正。

  1、圓柱體的體積一定比圓錐體的體積大( )

  2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。

  3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )

  4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )

  四、教師小結(jié)。

  這節(jié)課我們學(xué)習(xí)了哪些知識?你還有什么問題嗎?

  五、作業(yè)。課本練習(xí)

  六、板書

  圓柱的`體積=底面積×高

  字母公式:V圓柱= S·h

  圓錐的體積=圓柱的體積=底面積×高

  字母公式:V圓錐= S·h

  教學(xué)反思

  這節(jié)課是六年級圓柱和圓錐的內(nèi)容,主要是求圓錐體的體積。就小學(xué)現(xiàn)有的知識,把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學(xué)圓錐體積公式采用的方法與圓柱相同,采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先復(fù)習(xí)圓柱的體積公式及推導(dǎo)方法,讓學(xué)生從圖畫直觀上感受——圓錐體的體積比等底等高的圓柱體體積小。在此直觀的基礎(chǔ)上,讓學(xué)生親自動手實驗,這里除了培養(yǎng)學(xué)生的自主探究、發(fā)現(xiàn)的能力,還讓學(xué)生在操作實驗的過程中,各種能力得到鍛煉,同時還讓學(xué)生在實驗中感受數(shù)學(xué)的嚴(yán)密性,感受數(shù)學(xué)的內(nèi)在魅力,激發(fā)學(xué)生對數(shù)學(xué)的熱愛。學(xué)生學(xué)識的關(guān)鍵還在于會不會運用,因而,在學(xué)生探索好后,讓學(xué)生用自己探索到的結(jié)論,解決生活中的一些實際問題,讓他們真正感受到數(shù)學(xué)的用處——生活中處處離不開數(shù)學(xué)。最后讓學(xué)生談?wù)勈斋@,鞏固這節(jié)課的重點,加深印象。

《圓錐的體積》教學(xué)反思15

  圓錐的體積是在學(xué)生掌握了圓柱的特征及圓柱的體積等有關(guān)知識的基礎(chǔ)上進(jìn)行教學(xué)的。

  體積的推導(dǎo),必須讓學(xué)生經(jīng)歷圓錐體積計算公式的推導(dǎo)過程,弄清來龍去脈。在教學(xué)中,我首先通過給學(xué)生提供兩組不同的學(xué)具:一組是等底等高的圓柱和圓錐,另一組是等底不等高的圓柱和圓錐。讓學(xué)生通過倒水,發(fā)現(xiàn)在等底等高的圓柱和圓錐中,用圓錐容器裝水倒入等底等高的圓柱容器中,剛好倒三次,即圓錐的體積是與它等底等高圓柱體積的三分之一,而在等底不等高的圓柱和圓錐中,則不存在這樣的關(guān)系,圓錐的體積就不是與它等底不等高圓柱體積的三分之一,由此通過公式可以得出:

  V圓錐=1/3圓柱=1/3Sh(知道底面積和高)

  =1/3πr2h(知道半徑和高)

  =1/3π(d÷2)2h(知道直徑和高)

  =1/3π(C÷2÷π)2h(知道周長和高)

  加強(qiáng)學(xué)生的.實踐,培養(yǎng)學(xué)生的動手操作能力與自主解決問題的能力。在教學(xué)中,我提供的是兩組不同的學(xué)具,目的是讓學(xué)生通過自己的親身實踐,親自動手,親身體會圓柱與圓錐體積之間的關(guān)系,這樣利于培養(yǎng)學(xué)生自主探索,與同學(xué)之間合作學(xué)習(xí),共同解決問題的能力。學(xué)生在此項活動中,不僅收獲了知識的來龍去脈,還體會到了與同學(xué)合作,共享成果的幸福喜悅。

【《圓錐的體積》教學(xué)反思】相關(guān)文章:

《圓錐的體積》教學(xué)反思04-03

《圓錐的體積》教學(xué)反思05-16

《圓錐體積》教學(xué)反思04-02

圓錐的體積教學(xué)反思(15篇)04-06

圓錐的體積教學(xué)反思15篇03-31

《圓錐的體積》教學(xué)反思(通用22篇)02-24

《圓錐的體積》教學(xué)反思(通用23篇)12-01

圓錐的體積教學(xué)設(shè)計08-16

圓錐和圓錐的體積08-16

“圓錐的體積”教學(xué)設(shè)計與評析08-16