- 相關(guān)推薦
二次函數(shù)說課稿
二次函數(shù)說課稿(一)
一。 教材分析
1、教材的地位及作用
函數(shù)是一種重要的數(shù)學(xué)思想,是實(shí)際生活中數(shù)學(xué)建模的重要工具,二次函數(shù)的教學(xué)在初中數(shù)學(xué)教學(xué)中有著重要的地位。本節(jié)內(nèi)容的教學(xué),在函數(shù)的教學(xué)中有著承上啟下的作用。它既是對已學(xué)一次函數(shù)及反比例函數(shù)的復(fù)習(xí),又是對二次函數(shù)知識的延續(xù)和深化,為將來二次函數(shù)一般情形的教學(xué)乃至高中階段函數(shù)的教學(xué)打下基礎(chǔ),做好鋪墊。
2.教學(xué)目標(biāo)
(1) 掌握二此函數(shù)的概念并能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。[知識與技能目標(biāo)]
。2)讓學(xué)生經(jīng)歷觀察、比較、歸納、應(yīng)用,以及猜想、驗(yàn)證的學(xué)習(xí)過程,使學(xué)生掌握類比、轉(zhuǎn)化等學(xué)習(xí)數(shù)學(xué)的方法,養(yǎng)成既能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣。[過程與方法目標(biāo)]
(3) 讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅,[情感、態(tài)度、價值觀目標(biāo)]
3、教學(xué)的重、難點(diǎn)
重點(diǎn):二次函數(shù)的概念和解析式
難點(diǎn):本節(jié)"合作學(xué)習(xí)"涉及的實(shí)際問題有的較為復(fù)雜,要求學(xué)生有較強(qiáng)的概括能力
4、 學(xué)情分析
、賹W(xué)生已掌握一次函數(shù),反比例函數(shù)的概念,圖象的畫法,以及它們圖象的性質(zhì)。 ②學(xué)生個性活潑,積極性高,初步具有對數(shù)學(xué)問題進(jìn)行合作探究的意識與 能力。
、鄢跞龑W(xué)生程度參差不齊,兩極分化已形成。
二、教法學(xué)法分析
1` 教法(關(guān)鍵詞:情境、探究、分層)
基于本節(jié)課內(nèi)容的特點(diǎn)和初三學(xué)生的年齡特征,我以"探究式"體驗(yàn)教學(xué)法和"啟發(fā)式"教學(xué)法 為主進(jìn)行教學(xué)。讓學(xué)生在開放的情境中,在教師的 引導(dǎo)啟發(fā)下,同學(xué)的合作幫助下,通過探究發(fā)現(xiàn),讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成和應(yīng)用過程,加深對數(shù)學(xué)知識的理解。教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進(jìn)行分層施教。
2、學(xué)法(關(guān)鍵詞:類比、自主、合作)
根據(jù)學(xué)生的思維特點(diǎn)、認(rèn)知水平,遵循"教必須以學(xué)為立足點(diǎn)"的教育理念,讓每一個學(xué)生自主參與整堂課的知識構(gòu)建。在各個環(huán)節(jié)中引導(dǎo)學(xué)生類比遷移,對照學(xué)習(xí)。以自主探索為主,學(xué)會合作交流,在師生互動、生生互動中讓每個學(xué)生動口,動手,動腦,培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性,使學(xué)生由"學(xué)會"變"會學(xué)"和"樂學(xué)".
3、教學(xué)手段
采用多媒體教學(xué),直觀呈現(xiàn)拋物線和諧、對稱的美,激發(fā)學(xué)生的學(xué)習(xí) 興趣,參與熱情,增大教學(xué)容量,提高教學(xué)效率。
三、教學(xué)過程
完整的數(shù)學(xué)學(xué)習(xí)過程是一個不斷探索、發(fā)現(xiàn)、驗(yàn)證的過程,根據(jù)新課標(biāo)要求,根據(jù)"以人為本,以學(xué)定教"的教學(xué)理念,結(jié)合學(xué)生實(shí)際,制訂以下教學(xué)流程:
(一)。創(chuàng)設(shè)情境 溫故引新
以提問的形式復(fù)習(xí)一元二次方程的一般形式,一次函數(shù),反比例函數(shù)的定義,然后讓學(xué)生欣賞一組優(yōu)美的有關(guān)拋物線的圖案,創(chuàng)設(shè)情境:
。1)你們喜歡打籃球嗎?
。2)你們知道:投籃時,籃球運(yùn)動的路線是什么曲線?怎樣計算籃球達(dá)到最高點(diǎn)時的高度?
從而引出課題〈〈二次函數(shù)〉〉,導(dǎo)入新課
。ǘ:献鲗W(xué)習(xí),探索新知
為了更貼近生活,我先設(shè)計了兩個和實(shí)際生活有關(guān)的練習(xí)題。鼓勵學(xué)生積極發(fā)言,充分調(diào)動學(xué)生的主動性。然后出示課本上的兩個問題,在這個環(huán)節(jié)中,我讓學(xué)生在教師的引導(dǎo)下,先獨(dú)立思考,再以小組為單位交流成果,以培養(yǎng)學(xué)生自主探索、合作探究的能力。四個解析式都列出來后。讓學(xué)生通過觀察與思考,這些解析式有什么共同特征,啟發(fā)學(xué)生用自己的語言總結(jié),從而得出二次函數(shù)的概念,并且提高了學(xué)生的語言表達(dá)能力。
學(xué)生在學(xué)習(xí)二次函數(shù)的概念時要求學(xué)生既要知道表示二次函數(shù)的解析式中字母的意義,還要能根據(jù)給出的函數(shù)解析式判斷一個函數(shù)是不是二次函數(shù)
。ㄈ┊(dāng)堂訓(xùn)練 鞏固提高
由于學(xué)生層次不一,練習(xí)的設(shè)計充分考慮到學(xué)生的個體差異,滿足不同層次學(xué)生的學(xué)習(xí)需求,實(shí)現(xiàn)有"差異的"發(fā)展。讓每一個學(xué)生都感受成功的喜悅。我設(shè)計了3道練習(xí)題,其難易程度逐步提高,第一道題面對所有的學(xué)生,學(xué)生可以根據(jù)二次函數(shù)的概念直接判斷,但需要強(qiáng)調(diào)該化簡的必須化簡后才可以判斷。第二道題讓學(xué)生逆向思維,根據(jù)條件自己寫二次函數(shù),從而加深了對二次函數(shù)概念的理解。最后一道題綜合性較強(qiáng),可以提高他們的綜合素質(zhì)。
。ㄋ模。小結(jié)歸納 拓展轉(zhuǎn)化
讓學(xué)生用自己的語言談?wù)勛约旱氖斋@,可以將這一節(jié)的知識條理化,進(jìn)一步掌握二次函數(shù)的概念。
。ㄎ澹┎贾米鳂I(yè) 學(xué)以致用
作業(yè)分必做題、選做題,體現(xiàn)分層思想,通過作業(yè),內(nèi)化知識,檢驗(yàn)學(xué)生掌握知識的情況,發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中遺漏與不足。同時,選做題具有總結(jié)性,可引導(dǎo)學(xué)生研究二次函數(shù),一次函數(shù),正比例函數(shù)的聯(lián)系。
四。評價分析
本節(jié)課的教學(xué)從學(xué)生已有的認(rèn)知基礎(chǔ)出發(fā),以學(xué)生自主探索、合作交流為主線,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,加深對所學(xué)知識的理解,從而突破重難點(diǎn)。整節(jié)課注重學(xué)生能力的培養(yǎng)和習(xí)慣的養(yǎng)成。由于學(xué)生的層次不一,我全程關(guān)注每一個學(xué)生的學(xué)習(xí)狀態(tài),進(jìn)行分層施教,因勢利導(dǎo),隨機(jī)應(yīng)變,適時調(diào)整教學(xué)環(huán)節(jié),實(shí)現(xiàn)評價主體和形式的多樣化,把握評價的時機(jī)與尺度,激發(fā)學(xué)生的學(xué)習(xí)興趣,激活課堂氣氛,使課堂教學(xué)達(dá)到最佳狀態(tài)。
五。教學(xué)反思
1.本節(jié)課通過學(xué)生合作交流,自己列出不同問題中的解析式,并通過觀察他們的共同特征,成功得出了二次函數(shù)的概念。
2.本節(jié)課設(shè)計的以問題為主線,培養(yǎng)學(xué)生有條理思考問題的習(xí)慣和歸納概括能力,并重視培養(yǎng)學(xué)生的語言表達(dá)能力。同時不斷激發(fā)學(xué)生的探索精神,提高了學(xué)生分析和解決問題的能力。使學(xué)生有成功體驗(yàn)。
以上是我對二次函數(shù)這節(jié)課的教學(xué)內(nèi)容的設(shè)計,請大家多提寶貴意見,謝謝大家!
二次函數(shù)說課稿(二)
一、說課內(nèi)容:
蘇教版九年級數(shù)學(xué)下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解"數(shù)形結(jié)合"的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
。1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
。2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力。
。3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。
3、教學(xué)重點(diǎn):對二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計:
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
。ㄒ淮魏瘮(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
。▂=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對函數(shù)性質(zhì)有什么影響?
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解。強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較。
(二)引入新課
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(px)時,面積s (px?)與半徑之間的關(guān)系是什么?
解:s=πr?(r>0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m?)與矩形一邊長x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x?+10x (0
例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
【設(shè)計意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
。ㄈ┲v解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1、強(qiáng)調(diào)"形如",即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0 ?
若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零。
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式。
【設(shè)計意圖】這里強(qiáng)調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
。1)y=3(x-1)?+1 (2)s=3-2t? (3)y=(x+3)?- x?
。4) s=10πr? (5) y=2?+2x
【設(shè)計意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實(shí)踐操作中。
。ㄋ模╈柟叹毩(xí)
1.已知一個直角三角形的兩條直角邊長的和是10px.
。1)當(dāng)它的一條直角邊的長為4.5px時,求這個直角三角形的面積;
。2)設(shè)這個直角三角形的面積為Spx2,其中一條直角邊為xpx,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xpx,它的表面積為Spx2,體積為Vpx3.
。1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
。2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實(shí)際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
3.設(shè)圓柱的高為h(px)是常量,底面半徑為rpx,底面周長為Cpx,圓柱的體積為Vpx3
(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;
(2)兩個函數(shù)中,都是二次函數(shù)嗎?
【設(shè)計意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識聯(lián)系起來。
4. 籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍。
【設(shè)計意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動腦筋,積極思考,讓學(xué)生能夠"跳一跳,夠得到".
。ㄎ澹┩卣寡由
1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時,y=0;x=1時,y=2;x= -1時,y=1.求a、b、c,并寫出函數(shù)解析式。
【設(shè)計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個鋪墊。
。 小結(jié)思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設(shè)計意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。
(七) 作業(yè)布置:
必做題:
1. 正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?
2. 在長20px,寬15px的矩形木板的四角上各鋸掉一個邊長為xpx的正方形,寫出余下木板的面積y(px2)與正方形邊長x(px)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
選做題:
1.已知函數(shù) 是二次函數(shù),求m的值。
2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象
【設(shè)計意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
五、教學(xué)設(shè)計思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個原則——以學(xué)生為主體的原則
突出一個特色——充分鼓勵表揚(yáng)的特色
二次函數(shù)說課稿(三)
一、教材分析
1.地位和作用
。1)函數(shù)是初等數(shù)學(xué)中最基本的概念之一,貫穿于整個初等數(shù)學(xué)體系之中,也是實(shí)際生活中數(shù)學(xué)建模的重要工具之一。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。在歷屆淮安市中考試題中,二次函數(shù)都是不可缺少的內(nèi)容。
。2)二次函數(shù)的圖像和性質(zhì)體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生基本數(shù)學(xué)思想和素養(yǎng)的形成起推動作用。
。3)二次函數(shù)與一元二次方程、不等式等知識的聯(lián)系,使學(xué)生能更好地將所學(xué)知識融會貫通。
2.課標(biāo)要求:
、偻ㄟ^對實(shí)際問題情境的分析確定二次函數(shù)的表達(dá)式,并體會二次函數(shù)的意義。
②會用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識二次函數(shù)的性質(zhì)。
、蹠鶕(jù)公式確定圖象的頂點(diǎn)、開口方向和對稱軸(公式不要求記憶和推導(dǎo)),并能解決簡單的實(shí)際問題。
、軙枚魏瘮(shù)的圖象求一元二次方程的近似解。
3.學(xué)情分析
。1)初三學(xué)生在新課的學(xué)習(xí)中已掌握二次函數(shù)的定義、圖像及性質(zhì)等基本知識。
(2)學(xué)生的分析、理解能力較學(xué)習(xí)新課時有明顯提高。
。3)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情很高,思維敏捷,具有一定的自主探究和合作學(xué)習(xí)的能力。
(4)學(xué)生能力差異較大,兩極分化明顯。
4.教學(xué)目標(biāo)
◆認(rèn)知目標(biāo)
(1)掌握二次函數(shù) y=ax2+bx+c圖像與系數(shù)符號之間的關(guān)系。
通過復(fù)習(xí),掌握各類形式的二次函數(shù)解析式求解方法和思路,能夠一題多解,發(fā)散提高學(xué)生的創(chuàng)造思維能力。
◆能力目標(biāo)
提高學(xué)生對知識的整合能力和分析能力。
◆ 情感目標(biāo)
制作動畫增加直觀效果,激發(fā)學(xué)生興趣,感受數(shù)學(xué)之美。在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動中學(xué)會與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅。
5.教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):(。┱莆斩魏瘮(shù)y=ax2+bx+c圖像與系數(shù)符號之間的關(guān)系。
。2) 各類形式的二次函數(shù)解析式的求解方法和思路。
難點(diǎn):(1)已知二次函數(shù)的解析式說出函數(shù)性質(zhì)
(2)運(yùn)用數(shù)形結(jié)合思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決幾何問題。
二、教學(xué)方法:
1.師生互動探究式教學(xué),以課標(biāo)為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初三學(xué)生的求知心理和已有的認(rèn)知水平開展教學(xué)。(www.htc668.com)形成學(xué)生自動、生生助動、師生互動,教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進(jìn)行分層施教,讓每一個學(xué)生都能獲得知識,能力得到提高。
2.將知識點(diǎn)分類,讓學(xué)生通過這個框架結(jié)構(gòu)很容易看出不同解析式表示的二次函數(shù)的內(nèi)在聯(lián)系,讓學(xué)生形成一個清晰、系統(tǒng)、完整的知識網(wǎng)絡(luò)。
三、學(xué)法指導(dǎo):
1.學(xué)法引導(dǎo)
"授人之魚,不如授人之漁"在教學(xué)過程中,不但要傳授學(xué)生基本知識,還要培育學(xué)生主動思考,親自動手,自我發(fā)現(xiàn)等能力,增強(qiáng)學(xué)生的綜合素質(zhì),.
2.學(xué)法分析:新課標(biāo)明確提出要培養(yǎng)"可持續(xù)發(fā)展的學(xué)生",因此教師有組織、有目的、有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主學(xué)習(xí),合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生"動手"、"動腦"、"動口"的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。
四、教學(xué)過程:
1、教學(xué)環(huán)節(jié)設(shè)計:
根據(jù)教材的結(jié)構(gòu)特點(diǎn),緊緊抓住新舊知識的內(nèi)在聯(lián)系,運(yùn)用類比、聯(lián)想、轉(zhuǎn)化的思想,突破難點(diǎn)。
本節(jié)課的教學(xué)設(shè)計環(huán)節(jié):
◆創(chuàng)設(shè)情境,引入新知:復(fù)習(xí)舊知識的目的是對學(xué)生新課應(yīng)具備的"認(rèn)知前提能力"和"情感前提特征進(jìn)行檢測判斷".學(xué)生自主完成,不僅體現(xiàn)學(xué)生的自主學(xué)習(xí)意識,調(diào)動學(xué)生學(xué)習(xí)積極性,也能為課堂教學(xué)掃清障礙。為了更好地理解、掌握二次函數(shù)圖像與系數(shù)之間的關(guān)系,根據(jù)不同學(xué)生的學(xué)習(xí)需要,按照分層遞進(jìn)的教學(xué)原則,設(shè)計安排了6個由淺入深的例題。讓每一個學(xué)生都能為下一步的探究做好準(zhǔn)備。
◆自主探究,合作交流:本環(huán)節(jié)通過開放性題的設(shè)置,發(fā)散學(xué)生思維,學(xué)生對二次函數(shù)的性質(zhì)作出全面分析。讓學(xué)生在教師的引導(dǎo)下,獨(dú)立思考,相互交流,培養(yǎng)學(xué)生自主探索,合作探究的能力。通過學(xué)生觀察、思考、交流,經(jīng)歷發(fā)現(xiàn)過程,加深對重點(diǎn)知識的理解。
◆運(yùn)用知識,體驗(yàn)成功:根據(jù)不同層次的學(xué)生,同時配有兩個由低到高、層次不同的鞏固性習(xí)題,體現(xiàn)漸進(jìn)性原則,希望學(xué)生能將知識轉(zhuǎn)化為技能。讓每一個學(xué)生獲得成功,感受成功的喜悅。
安排三個層次的練習(xí)。
(一)課前預(yù)習(xí)
。ǘ┑湫屠}分析
通過反饋使學(xué)生掌握重點(diǎn)內(nèi)容。
。ㄈ┚C合應(yīng)用能力提高
既培養(yǎng)學(xué)生運(yùn)用知識的能力,又培養(yǎng)學(xué)生的創(chuàng)新意識。引導(dǎo)學(xué)生對學(xué)習(xí)內(nèi)容進(jìn)行梳理,將知識系統(tǒng)化,條理化,網(wǎng)絡(luò)化,對在獲取新知識中體現(xiàn)出來的數(shù)學(xué)思想、方法、策略進(jìn)行反思,從而加深對知識的理解。并增強(qiáng)學(xué)生分析問題,運(yùn)用知識的能力。
【二次函數(shù)說課稿】相關(guān)文章:
《二次函數(shù)》教學(xué)反思08-14
二次函數(shù)教學(xué)反思03-02
二次函數(shù)的教學(xué)反思04-22
對數(shù)函數(shù)中與二次函數(shù)有關(guān)的問題08-17
二次函數(shù)概念教學(xué)反思08-22
初三二次函數(shù)教學(xué)反思04-08
第六冊二次函數(shù)08-17